CPSC 4240/6240 Spring 2017 HW # 3 v1 Last update: 3/22/2017

Size: px
Start display at page:

Download "CPSC 4240/6240 Spring 2017 HW # 3 v1 Last update: 3/22/2017"

Transcription

1 CPSC 4240/6240 Spring 2017 HW # 3 v1 Last update: 3/22/2017 You can work individually or with a partner (we won t allow groups > 2). Note that the grading will be identical if you work on your own or with a partner. Just one submission is required per team. Make sure to clearly write both names on all material. Submission instructions: Please submit a PDF that includes all of your answers to turnitin. Question 1- Network Concepts and Analysis The objective of this problem is to deepen your understanding of the following networking concepts (refer to the paragraphs below and material in the attached Appendix A1-A3 for further information): -Network access methods: FDM, TDM, STDM -Traffic models and traffic generators: constant bit rate (CBR), On/Off traffic sources -Traffic shaping and rate control, Network access protocols typically involve one or more of the following methods. We will use the example of a 6 MHz channel that can be accessed using one of the following methods: 1. Frequency division multiplexing (FDM) - allocate to each Host a dedicated subchannel of 2 MHz. 2. Time Division Multiplexing (TDM) - each Host is granted periodic, fixed time intervals to access the 6 MHz channel. Hosts can send data during assigned intervals at the maximum data rate. Hosts are synchronized such that transmissions between different flows never overlap. This requires a scheduler that enforces the TDM structure. 3. Statistical TDM - A Host can access the channel whenever it has data to send. This requires a scheduling component that multiplexes traffic from different Hosts over a shared network resource. In some networks, the access protocol must deal with collisions that can happen when two or more Hosts attempt to transmit at the same time. There are well established approaches to modeling traffic. Implementations of these models can be used as traffic generators. The following are some well known traffic models. The first two are deterministic, the last two are stochastic (i.e., incorporate randomness). 1. Constant packet rate (emulates well known constant bit rate or CBR traffic generator): A Host sends a packet at a fixed rate. 2. Constant burst rate : A Host sends a burst of packets at the maximum data rate and then is idle of a specific amount of time. The cycle repeats forming on/off behavior. 3. Exponential traffic generator : There are different ways to implement this, with the most general method referred to as a Poisson traffic model. In brief, an exponential traffic generator bursts a random amount of data during the On time (the amount is based on an exponential random variable) and with an idle time that is also based on an exponential random variable. 4. Heavy tailed traffic generator - Many specific forms of this, the most notable referred to as a Pareto Traffic Model. A simplified concept is that it is similar to the exponential traffic generator except the distributions are heavy tailed rather than exponential. This means the probability of the random variables being very large is small but the tail of the distribution extends orders of magnitude greater than one based on an exponential distribution. Token bucket rate control. A token bucket filter can be applied at a different levels in a network (link, network, transport, application levels). It can be applied to a single application traffic flow or it can operate on aggregated traffic flows. At can smooth arriving traffic, and shape outbound traffic to a desired average 1

2 rate and with a desired level of On/Off characteristics. Broadband service providers implement services using mechanisms that are likely based on token bucket filters. The perftool client implements a token bucket to control the sending behavior. The config params related to the perftool s token bucket are: avgsendrate : the target sending rate in bits per second tokenbucketsize : maximum size of the bucket in bytes tokensize : the size of each token in bytes msgsize : the amount of application data sent with each message. This question considers the following scenario : Host H1 Host H R Host D1 Host H3 Net 1 Net 2 Token bucket rate control Figure 1.1 Network Scenario (rate control at the application) Net1 is a shared medium network and Net 2 is a point-to-point link. The channel capacity of Net2 is 1 Gbps. Net 1 has a total bandwidth of 6 MHz. The transmission method over Net 1 supports a maximum data rate of 6 Mbps. We consider applications that implement a token bucket rate control mechanism. The output of the rate control from all Hosts (H1, H2, H3) represents the total traffic that is sent over Net 1. Let s assume Net 1 is a shared medium network that handles the case when multiple Hosts send at the same time. Each of the three hosts H1, H2, H3 runs one instance of perfclient (the client side of the perftool). Each client interacts with a single instance of the perfserver. This question considers how the different access network methods might perform subject to different traffic patterns. We identify three experimentalal scenarios that could be applied to the network illustrated in Figure 1.1. Experiment 1: Each Host runs an instance of perfclient interacting with the server at D1. This models a constant packet rate traffic pattern../perfclient D (used by all 3 hosts) Experiment 2: : Each Host runs an instance of perfclient interacting with the server at D1. This models a constant burst rate pattern../perfclient D (used by all 3 hosts) Experiment 3: Each Host runs an instance of perfclient but each is configured slightly differently. This models a constant burst rate pattern but with each Host set with different demands (the avg send rate is different)../perfclient D /perfClient D /perfClient D Question 1a. Explain the tradeoffs between the three network access methods using the above discussion of traffic models and if helpful using the three experiments to help illustrate your answer. HINT: What are the traffic patterns that might cause FDM, TDM, or stdm to not be efficient, fair, or lead to overall good system performance? Specifically, for each Experiment, what is the expected perfclient result (just indicate the avg throughput and possible loss rate the perfclient/server sessions might experience. 2

3 Question 1b. You are to approximate the network illustrated in Figure 1.1 using your VM system (see Figure 1.2). And then you are to run the three experiments. However instead of three separate Hosts (H1, H2, H3), you will simply run three separate instances of perfclient on VM1. You are to use the tc capability of Linux to rate shape aggregate traffic (VM1 to VM2) to a rate of 6 Mbps. Campus network -----Host OS ---- VM1(Ubuntu) ---- VM2(Kali) perfclient perfserver token bucket rate control Figure 1.2 VM Network Setup (with rate control) You are to approximate the network illustrated in Figure 1.1 using your VM system. And then you are to run the three experiments. However instead of three separate Hosts (H1, H2, H3), you will simply run three separate instances of perfclient on VM1 concurrently. You are to use the tc capability of Linux to rate shape aggregate traffic (VM1 to VM2) to a rate of 6 Mbps. Campus network -----Host OS ---- VM1(Ubuntu) ---- VM2(Kali) perfclient perfserver token bucket rate control Figure 1.2 VM Network Setup (with rate control) This will generate 9 perfclient results. Record the avg Throughput and loss rate observed by the server, and the RTT observed by the client. Explain if these experiments reflect a network access method of FDM, TDM, or stdm. Comment on your results in the context of the network access methods and the traffic models presented above. 3

4 Question 2. Assuming your VM setup is similar to Figure 1.2, from VM2, find two different hosts (from different networks) on the Internet that respond to pings. The two choices should reflect to very different paths. Try to find one path that exhibits an average path RTT greater than 60ms (and/or a loss rate of at least 1%). The second path should exhibit a lower average RTT of around 20 ms. We refer to these paths as path #1 and path #2. Once you have found appropriate hosts, perform the following experiments: Run ping for 1 hour to generate 3600 data points for each path. Using matlab (plotdatapdf.m), awk, or excel (or any tool you like) o find the summary statistics (mean RTT and average loss rate). o plot the distribution of the ping RTT data set. On VM2, Issue traceroute to each of the two Internet Hosts. You may need to use ICMP rather than UDP mode. Or you may need to issue the traceroute from your HostOS rather than from your VM2. The objective is to identify the number of routers between VM2 and each of the two Internet Hosts. 4

5 Question 3 following: Issue an ifconfig on an department linux machine. Based on what you see answer the a. What is the subnetwork address in extended network prefix format? b. What is the subnetwork address that this host is directly connected with? c. What is the subnet number? d. Assuming this subnetworking scheme is deployed throughout campus, how many usable subnetworks can be defined? e. How many hosts can exist on the subnetwork that this host is directly connected with? f. Identify the range of host IP addresses (just indicate the first and last address of the block of valid IP host addresses) that can exist on this subnetwork. g. What is the directed broadcast for this subnet? Question 4 Find the aggregate address of a contiguous block of 8 class C network addresses beginning with /24. Do not worry about all 1 or all 0 network prefixes or host ids. So the first IP address in this aggregate block would be Question 5 On your VM (assuming you have SocNetwork-----VM1--- VM2, do this from VM2), ping a nonexistent host by issuing ping -c Using tcpdump, capture all packets that are sent and received as a result of this invocation of ping. You should see one arp frame. Note: you might see some extraneous arp frames just ignore. You might also capture other packets that we are not interested in. To capture just icmp and arp, and to make sure to capture ALL the data in the packets, issue tcpdump as follows: sudo tcpdump -s w trace.dmp 'arp or icmp' To create a readable version of the trace: sudo tcpdump X s 1500 r trace.dmp > trace.trace a. Before issuing the ping, issue an arp to see the contents of the arp cache. After you issue the ping, recheck the arp cache. Explain what you see in the context of this problem. Keep this simple.one very brief sentence should be sufficient. b. Print (and include in your submission) the tcpdump ascii formatted trace of the arp frame. c Identify the sender s MAC address in the trace. Print on your submission the MAC address in hex format. Make sure you state your answer in proper network byte order. d. Repeat, but now add a bogus arp table entry in your VM (destination IP address of and use a bogus MAC). Use tcpdump and capture the network flows when you issue the same ping. Show the tcpdump readable result (any ICMP and ARP frames) and provide a one sentence explanation for what you find. 5

6 Question 6 DNS On your VM, issue a host v and use tcpdump to trace the data. Make sure the tcpdump trace includes the data contained in the packets. Note: Feel free to use dig instead of host. Also, feel free to use any other valid domain name. sudo tcpdump X s 1500 r dns.dmp > dns.trace Include the ascii formatted tcpdump text trace. Identify the name (IP address and domain name) of the DNS server that your DNS client directly interacts with. Please identify the octets that give the IP address associated with the answer. Please identify the TTL value that is associated with this answer (circle the octets and give the timeout as an integer number of seconds). Please indicate if the answer was authoritative or not (identify the data in the trace that shows this). Question 7 for 6240 students only (4240 students can do this and earn up to 5 extra credit points for this homework) Add IP V6 support to the currnet UDPEchoV1-2.tar.gz tool. Add a optional parameter to the client to specify IP v4 or IP v6. For the server, add the same parameter but include a third option which is either. For the client, IP v4 should be the default. For the server, the either IP v4 or IP v6 option should be the default. At the server side, please use a select to deal with handling two different sockets (one for IP V4, one for IP V6). Do basic testing and in one page document several test cases and copy/paste the results. Submit this with your HW3 pdf submission to turnitin. Submit your updated UDPEchoV1-2 using handin. 6

7 Appendix 1. Additional Material Figure A1. Excerpt from Tanenbaum s Computer Networks : TDM, STDM Figure A2. Excerpt from Tanenbaum s Computer Networks : Nyquist and Shannon s thm 7

8 Figure A3. Token Bucket Algorithm 8

CPSC 4240/6240 Spring 2017 HW # 3 v1 Solutions Last update: 4/20/2017

CPSC 4240/6240 Spring 2017 HW # 3 v1 Solutions Last update: 4/20/2017 CPSC 4240/6240 Spring 2017 HW # 3 v1 Solutions Last update: 4/20/2017 You can work individually or with a partner (we won t allow groups > 2). Note that the grading will be identical if you work on your

More information

CPSC 424/624 HW #2 version 1 Solution Spring 2017 Last revision: 3/4/2017

CPSC 424/624 HW #2 version 1 Solution Spring 2017 Last revision: 3/4/2017 CPSC 424/624 HW #2 version 1 Solution Spring 2017 Last revision: 3/4/2017 You can work individually or with a partner (we won t allow groups > 2). Note that the grading will be identical if you work on

More information

Section 1 Short Answer Questions

Section 1 Short Answer Questions CPSC 3600 section 002 HW #1 Fall 2017 Last revision: 9/7/2017 You must work on this homework individually!! Submission: You are to submit your written answers to turnitin. Also, you are to submit your

More information

15-441: Computer Networks Homework 3

15-441: Computer Networks Homework 3 15-441: Computer Networks Homework 3 Assigned: Oct 29, 2013 Due: Nov 12, 2013 1:30 PM in class Name: Andrew ID: 1 TCP 1. Suppose an established TCP connection exists between sockets A and B. A third party,

More information

When the ACK message arrives at the client, it computes an RTT sample and then immediately sends the next message.

When the ACK message arrives at the client, it computes an RTT sample and then immediately sends the next message. CPSC 3600 HW #2 s Fall 2017 Last update: 10/12/2017 Please submit your written answers as a PDF using canvas And your modified UDPEcho.tar.gz using handin Please work independently Name: 1 (10) Two nodes

More information

CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007

CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007 CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007 Question 344 Points 444 Points Score 1 10 10 2 10 10 3 20 20 4 20 10 5 20 20 6 20 10 7-20 Total: 100 100 Instructions: 1. Question

More information

Question Score 1 / 19 2 / 19 3 / 16 4 / 29 5 / 17 Total / 100

Question Score 1 / 19 2 / 19 3 / 16 4 / 29 5 / 17 Total / 100 NAME: Login name: Computer Science 461 Midterm Exam March 10, 2010 3:00-4:20pm This test has five (5) questions. Put your name on every page, and write out and sign the Honor Code pledge before turning

More information

ECE 650 Systems Programming & Engineering. Spring 2018

ECE 650 Systems Programming & Engineering. Spring 2018 ECE 650 Systems Programming & Engineering Spring 2018 Networking Introduction Tyler Bletsch Duke University Slides are adapted from Brian Rogers (Duke) Computer Networking A background of important areas

More information

CPSC 3600 HW #4 Solutions Fall 2017 Last update: 12/10/2017 Please work together with your project group (3 members)

CPSC 3600 HW #4 Solutions Fall 2017 Last update: 12/10/2017 Please work together with your project group (3 members) CPSC 3600 HW #4 Solutions Fall 2017 Last update: 12/10/2017 Please work together with your project group (3 members) Name: Q 1 Kurose chapter 3, review question R14 (20 points) Solution: a) false b) false

More information

LAB THREE STATIC ROUTING

LAB THREE STATIC ROUTING LAB THREE STATIC ROUTING In this lab you will work with four different network topologies. The topology for Parts 1-4 is shown in Figure 3.1. These parts address router configuration on Linux PCs and a

More information

A closer look at network structure:

A closer look at network structure: T1: Introduction 1.1 What is computer network? Examples of computer network The Internet Network structure: edge and core 1.2 Why computer networks 1.3 The way networks work 1.4 Performance metrics: Delay,

More information

Short answer (35 points)

Short answer (35 points) CPSC 360 Fall 2017 Exam 1 Version 2 Solutions (last updated 10/19/2017) This exam is closed book, closed notes, closed laptops. You are allowed to have one 8.5x11 sheet of paper with whatever you like

More information

Reliable File Transfer

Reliable File Transfer Due date Wednesday, Mar 14, 11:59pm Reliable File Transfer CS 5565 Spring 2012, Project 2 This project is worth 100 points. You may form teams of up to two students for this project. You are not required

More information

ECEN Final Exam Fall Instructor: Srinivas Shakkottai

ECEN Final Exam Fall Instructor: Srinivas Shakkottai ECEN 424 - Final Exam Fall 2013 Instructor: Srinivas Shakkottai NAME: Problem maximum points your points Problem 1 10 Problem 2 10 Problem 3 20 Problem 4 20 Problem 5 20 Problem 6 20 total 100 1 2 Midterm

More information

CSCI Computer Networks

CSCI Computer Networks CSCI-1680 - Computer Networks Chen Avin (avin) Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti, Peterson & Davie, Rodrigo Fonseca Administrivia Sign and hand in Collaboration

More information

TCP/IP and the OSI Model

TCP/IP and the OSI Model TCP/IP BASICS TCP/IP and the OSI Model TCP/IP BASICS The network protocol of the Internet Composed of six main protocols IP Internet Protocol UDP User Datagram Protocol TCP Transmission Control Protocol

More information

PLEASE READ CAREFULLY BEFORE YOU START

PLEASE READ CAREFULLY BEFORE YOU START Page 1 of 20 MIDTERM EXAMINATION #1 - B COMPUTER NETWORKS : 03-60-367-01 U N I V E R S I T Y O F W I N D S O R S C H O O L O F C O M P U T E R S C I E N C E Fall 2008-75 minutes This examination document

More information

PLEASE READ CAREFULLY BEFORE YOU START

PLEASE READ CAREFULLY BEFORE YOU START Page 1 of 20 MIDTERM EXAMINATION #1 - A COMPUTER NETWORKS : 03-60-367-01 U N I V E R S I T Y O F W I N D S O R S C H O O L O F C O M P U T E R S C I E N C E Fall 2008-75 minutes This examination document

More information

CCM 4300 Lecture 5 Computer Networks, Wireless and Mobile Communications. Dr Shahedur Rahman. Room: T115

CCM 4300 Lecture 5 Computer Networks, Wireless and Mobile Communications. Dr Shahedur Rahman. Room: T115 CCM 4300 Lecture 5 Computer Networks, Wireless and Mobile Communications Dr Shahedur Rahman s.rahman@mdx.ac.uk Room: T115 1 Recap of Last Session Described the physical layer Analogue and Digital signal

More information

IP: Addressing, ARP, Routing

IP: Addressing, ARP, Routing IP: Addressing, ARP, Routing Network Protocols and Standards Autumn 2004-2005 Oct 21, 2004 CS573: Network Protocols and Standards 1 IPv4 IP Datagram Format IPv4 Addressing ARP and RARP IP Routing Basics

More information

Defining Networks with the OSI Model. Module 2

Defining Networks with the OSI Model. Module 2 Defining Networks with the OSI Model Module 2 Objectives Skills Concepts Objective Domain Description Objective Domain Number Understanding OSI Basics Defining the Communications Subnetwork Defining the

More information

Fundamental Questions to Answer About Computer Networking, Jan 2009 Prof. Ying-Dar Lin,

Fundamental Questions to Answer About Computer Networking, Jan 2009 Prof. Ying-Dar Lin, Fundamental Questions to Answer About Computer Networking, Jan 2009 Prof. Ying-Dar Lin, ydlin@cs.nctu.edu.tw Chapter 1: Introduction 1. How does Internet scale to billions of hosts? (Describe what structure

More information

CS 421: COMPUTER NETWORKS SPRING FINAL May 16, minutes

CS 421: COMPUTER NETWORKS SPRING FINAL May 16, minutes CS 4: COMPUTER NETWORKS SPRING 03 FINAL May 6, 03 50 minutes Name: Student No: Show all your work very clearly. Partial credits will only be given if you carefully state your answer with a reasonable justification.

More information

CSCI Networking Name:

CSCI Networking Name: CSCI 3335- Networking Name: Final Exam Problem 1: Error Checking and TCP (15 Points) (a) True or false: [2.5 points for circling correct answers, -1 points for each wrong answer] i. CRC can both correct

More information

Operating Systems. 16. Networking. Paul Krzyzanowski. Rutgers University. Spring /6/ Paul Krzyzanowski

Operating Systems. 16. Networking. Paul Krzyzanowski. Rutgers University. Spring /6/ Paul Krzyzanowski Operating Systems 16. Networking Paul Krzyzanowski Rutgers University Spring 2015 1 Local Area Network (LAN) LAN = communications network Small area (building, set of buildings) Same, sometimes shared,

More information

ECSE-6600: Internet Protocols Spring 2007, Exam 1 SOLUTIONS

ECSE-6600: Internet Protocols Spring 2007, Exam 1 SOLUTIONS ECSE-6600: Internet Protocols Spring 2007, Exam 1 SOLUTIONS Time: 75 min (strictly enforced) Points: 50 YOUR NAME (1 pt): Be brief, but DO NOT omit necessary detail {Note: Simply copying text directly

More information

EECS 228a Lecture 1 Overview: Networks. Jean Walrand

EECS 228a Lecture 1 Overview: Networks. Jean Walrand EECS 228a Lecture 1 Overview: Networks Jean Walrand www.eecs.berkeley.edu/~wlr Fall 2002 Course Information Instructor: Jean Walrand n Office Hours: M-Tu 1:00-2:00 Time/Place: MW 2:00-3:30 in 285 Cory

More information

Congestion Control in Communication Networks

Congestion Control in Communication Networks Congestion Control in Communication Networks Introduction Congestion occurs when number of packets transmitted approaches network capacity Objective of congestion control: keep number of packets below

More information

PLEASE READ CAREFULLY BEFORE YOU START

PLEASE READ CAREFULLY BEFORE YOU START Page 1 of 11 MIDTERM EXAMINATION #1 OCT. 13, 2011 COMPUTER NETWORKS : 03-60-367-01 U N I V E R S I T Y O F W I N D S O R S C H O O L O F C O M P U T E R S C I E N C E Fall 2011-75 minutes This examination

More information

ICS 351: Networking Protocols

ICS 351: Networking Protocols ICS 351: Networking Protocols IP packet forwarding application layer: DNS, HTTP transport layer: TCP and UDP network layer: IP, ICMP, ARP data-link layer: Ethernet, WiFi 1 Networking concepts each protocol

More information

Lecture 10: Addressing

Lecture 10: Addressing Lecture 10: Addressing CSE 123: Computer Networks Alex C. Snoeren HW 2 due WEDNESDAY Lecture 10 Overview ICMP The other network-layer protocol IP Addresses Class-based addressing Subnetting Classless addressing

More information

Final Exam Computer Networks Fall 2015 Prof. Cheng-Fu Chou

Final Exam Computer Networks Fall 2015 Prof. Cheng-Fu Chou Final Exam Computer Networks Fall 2015 Prof. Cheng-Fu Chou Question 1: CIDR (10%) You are given a pool of 220.23.16.0/24 IP addresses to assign to hosts and routers in the system drawn below: a) (3%) How

More information

CS 421: COMPUTER NETWORKS FALL FINAL January 10, minutes

CS 421: COMPUTER NETWORKS FALL FINAL January 10, minutes CS 4: COMPUTER NETWORKS FALL 00 FINAL January 0, 0 50 minutes Name: Student No: Show all your work very clearly. Partial credits will only be given if you carefully state your answer with a reasonable

More information

Chapter 5: Trouble shooting of a network

Chapter 5: Trouble shooting of a network 5 Troubleshooting TCP/IP Fig 5 show trouble shooting a TCP/IP Chapter 5: Trouble shooting of a network Steps 1 First, determines whether your local host is properly configured. Step 2 Next, uses the ping

More information

First Exam for ECE671 Spring /22/18

First Exam for ECE671 Spring /22/18 ECE67: First Exam First Exam for ECE67 Spring 208 02/22/8 Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 75 minutes to complete the exam. Be a

More information

Example questions for the Final Exam, part A

Example questions for the Final Exam, part A ETSF10, ETSF05 Ht 2010 Example questions for the Final Exam, part A 1. In AdHoc routing there are two main strategies, reactive and proactive routing. Describe in a small number of words the concept of

More information

2 Network Basics. types of communication service. how communication services are implemented. network performance measures. switching.

2 Network Basics. types of communication service. how communication services are implemented. network performance measures. switching. 2 Network Basics types of communication service how communication services are implemented switching multiplexing network performance measures 1 2.1 Types of service in a layered network architecture connection-oriented:

More information

Review problems (for no credit): Transport and Network Layer

Review problems (for no credit): Transport and Network Layer Review problems (for no credit): Transport and Network Layer V. Arun CS 653, Fall 2018 09/06/18 Transport layer 1. Protocol multiplexing: (a) If a web server has 100 open connections, how many sockets

More information

Introduction to Computer Networks. CS 166: Introduction to Computer Systems Security

Introduction to Computer Networks. CS 166: Introduction to Computer Systems Security Introduction to Computer Networks CS 166: Introduction to Computer Systems Security Network Communication Communication in modern networks is characterized by the following fundamental principles Packet

More information

CS 716: Introduction to communication networks. - 9 th class; 19 th Aug Instructor: Sridhar Iyer IIT Bombay

CS 716: Introduction to communication networks. - 9 th class; 19 th Aug Instructor: Sridhar Iyer IIT Bombay CS 716: Introduction to communication networks - 9 th class; 19 th Aug 2011 Instructor: Sridhar Iyer IIT Bombay Contention-based MAC: ALOHA Users transmit whenever they have data to send Collisions occur,

More information

Outline: Connecting Many Computers

Outline: Connecting Many Computers Outline: Connecting Many Computers Last lecture: sending data between two computers This lecture: link-level network protocols (from last lecture) sending data among many computers 1 Review: A simple point-to-point

More information

CPSC 3600 HW #4 Fall 2017 Last update: 11/9/2017 Please work together with your project group (3 members)

CPSC 3600 HW #4 Fall 2017 Last update: 11/9/2017 Please work together with your project group (3 members) CPSC 3600 HW #4 Fall 2017 Last update: 11/9/2017 Please work together with your project group (3 members) Name: Q 1 Kurose chapter 3, review question R14 Q 2 Kurose chapter 3, review question R15 Q 3 Kurose

More information

Concept Questions Demonstrate your knowledge of these concepts by answering the following questions in the space that is provided.

Concept Questions Demonstrate your knowledge of these concepts by answering the following questions in the space that is provided. 223 Chapter 19 Inter mediate TCP The Transmission Control Protocol/Internet Protocol (TCP/IP) suite of protocols was developed as part of the research that the Defense Advanced Research Projects Agency

More information

Islamic University of Gaza Faculty of Engineering Department of Computer Engineering ECOM 4021: Networks Discussion. Chapter 1.

Islamic University of Gaza Faculty of Engineering Department of Computer Engineering ECOM 4021: Networks Discussion. Chapter 1. Islamic University of Gaza Faculty of Engineering Department of Computer Engineering ECOM 4021: Networks Discussion Chapter 1 Foundation Eng. Haneen El-Masry February, 2014 A Computer Network A computer

More information

CCNA Exam File with Answers. Note: Underlines options are correct answers.

CCNA Exam File with Answers. Note: Underlines options are correct answers. CCNA Exam File with Answers. Note: Underlines options are correct answers. 1. Which of the following are ways to provide login access to a router? (choose all that apply) A. HTTP B. Aux Port /TELNET C.

More information

Your Name: Your student ID number:

Your Name: Your student ID number: CSC 573 / ECE 573 Internet Protocols October 11, 2005 MID-TERM EXAM Your Name: Your student ID number: Instructions Allowed o A single 8 ½ x11 (front and back) study sheet, containing any info you wish

More information

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING ECE361 Computer Networks Midterm March 09, 2016, 6:15PM DURATION: 75 minutes Calculator Type: 2 (non-programmable calculators) Examiner:

More information

Data Communication & Networks Final Exam (Fall 2008) Page 1 / 13. Course Instructors: Engr. Waleed Ejaz. Marks Obtained Marks

Data Communication & Networks Final Exam (Fall 2008) Page 1 / 13. Course Instructors: Engr. Waleed Ejaz. Marks Obtained Marks Data Communication & Networks Final Exam (Fall 2008) Page 1 / 13 Data Communication & Networks Fall 2008 Semester FINAL Thursday, 4 th December 2008 Total Time: 180 Minutes Total Marks: 100 Roll Number

More information

Introduction... xiii Chapter 1: Introduction to Computer Networks and Internet Computer Networks Uses of Computer Networks...

Introduction... xiii Chapter 1: Introduction to Computer Networks and Internet Computer Networks Uses of Computer Networks... Table of Contents Introduction... xiii Chapter 1: Introduction to Computer Networks and Internet... 1 1.1 Computer Networks... 1 1.1.1 Advantages of Computer Networks... 2 1.1.2 Disadvantages of Computer

More information

The Internet Protocol. IP Addresses Address Resolution Protocol: IP datagram format and forwarding: IP fragmentation and reassembly

The Internet Protocol. IP Addresses Address Resolution Protocol: IP datagram format and forwarding: IP fragmentation and reassembly The Internet Protocol IP Addresses Address Resolution Protocol: IP datagram format and forwarding: IP fragmentation and reassembly IP Addresses IP Addresses are 32 bit. Written in dotted decimal format:

More information

Homework 4 assignment for ECE374 Posted: 04/06/15 Due: 04/13/15

Homework 4 assignment for ECE374 Posted: 04/06/15 Due: 04/13/15 ECE374: Homework 4 1 Homework 4 assignment for ECE374 Posted: 04/06/15 Due: 04/13/15 Note: In all written assignments, please show as much of your work as you can. Even if you get a wrong answer, you can

More information

Subnetting Questions with Detailed Answers: Subnetting Questions with Detailed Answers:

Subnetting Questions with Detailed Answers: Subnetting Questions with Detailed Answers: Subnetting Questions with Detailed Answers: Subnetting Questions with Detailed Answers: These questions were designed to test your knowledge of subnetting. Hopefully, by the end of the worksheet, the exercise

More information

CPSC 424/624 Exam 1 Solutions Spring 2016

CPSC 424/624 Exam 1 Solutions Spring 2016 CPSC 424/624 Exam 1 Solutions Spring 2016 Name: You can use a single 8.5 by 11.0 sheet of paper (front and back) for notes. You can use a calculator. Please do not share your notes sheet or your calculator.

More information

PLEASE READ CAREFULLY BEFORE YOU START

PLEASE READ CAREFULLY BEFORE YOU START Page 1 of 11 MIDTERM EXAMINATION #1 OCT. 16, 2013 COMPUTER NETWORKS : 03-60-367-01 U N I V E R S I T Y O F W I N D S O R S C H O O L O F C O M P U T E R S C I E N C E Fall 2013-75 minutes This examination

More information

Lecture 8. Basic Internetworking (IP) Outline. Basic Internetworking (IP) Basic Internetworking (IP) Service Model

Lecture 8. Basic Internetworking (IP) Outline. Basic Internetworking (IP) Basic Internetworking (IP) Service Model Lecture 8 Basic Internetworking (IP) Reminder: Homework 3, Programming Project 2 due on Tuesday. An example internet is shown at right. Routers or gateways are used to connect different physical networks.

More information

FINAL EXAM - SLOT 2 TCP/IP NETWORKING Duration: 90 min. With Solutions

FINAL EXAM - SLOT 2 TCP/IP NETWORKING Duration: 90 min. With Solutions First name: Family name: FINAL EXAM - SLOT 2 TCP/IP NETWORKING Duration: 90 min. With Solutions Jean-Yves Le Boudec, Patrick Thiran 2011 January 15 INSTRUCTIONS 1. The exam is in two time slots. Slot 1

More information

EE Spring 1997 Midterm #1-15 % of course grade March 12, 1997 (closed book)

EE Spring 1997 Midterm #1-15 % of course grade March 12, 1997 (closed book) EE 122 - Spring 1997 Midterm #1-15 % of course grade March 12, 1997 (closed book) EE122, Midterm #1, Spring 1997 1) Multiple Choice & Why (17 possible points) In this problem, you are to select which of

More information

CS455: Introduction to Distributed Systems [Spring 2018] Dept. Of Computer Science, Colorado State University

CS455: Introduction to Distributed Systems [Spring 2018] Dept. Of Computer Science, Colorado State University CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [NETWORKING] Shrideep Pallickara Computer Science Colorado State University Frequently asked questions from the previous class survey Why not spawn processes

More information

CS 716: Introduction to communication networks. - 8 th class; 17 th Aug Instructor: Sridhar Iyer IIT Bombay

CS 716: Introduction to communication networks. - 8 th class; 17 th Aug Instructor: Sridhar Iyer IIT Bombay CS 716: Introduction to communication networks - 8 th class; 17 th Aug 2011 Instructor: Sridhar Iyer IIT Bombay Key points to consider for MAC Types/Modes of communication: Although the medium is shared,

More information

Packet Header Formats

Packet Header Formats A P P E N D I X C Packet Header Formats S nort rules use the protocol type field to distinguish among different protocols. Different header parts in packets are used to determine the type of protocol used

More information

CSCI 466 Midterm Networks Fall 2011

CSCI 466 Midterm Networks Fall 2011 CSCI 466 Midterm Networks Fall 2011 Name: This exam consists of 7 problems on the following 9 pages. You may use your single- sided hand- written 8 ½ x 11 note sheet and a calculator during the exam. No

More information

CS 457 Lecture 11 More IP Networking. Fall 2011

CS 457 Lecture 11 More IP Networking. Fall 2011 CS 457 Lecture 11 More IP Networking Fall 2011 IP datagram format IP protocol version number header length (bytes) type of data max number remaining hops (decremented at each router) upper layer protocol

More information

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition ELEC / COMP 177 Fall 2016 Some slides from Kurose and Ross, Computer Networking, 5 th Edition Presentation 2 Security/Privacy Presentations Nov 3 rd, Nov 10 th, Nov 15 th Upload slides to Canvas by midnight

More information

Lecture 8. Reminder: Homework 3, Programming Project 2 due on Thursday. Questions? Tuesday, September 20 CS 475 Networks - Lecture 8 1

Lecture 8. Reminder: Homework 3, Programming Project 2 due on Thursday. Questions? Tuesday, September 20 CS 475 Networks - Lecture 8 1 Lecture 8 Reminder: Homework 3, Programming Project 2 due on Thursday. Questions? Tuesday, September 20 CS 475 Networks - Lecture 8 1 Outline Chapter 3 - Internetworking 3.1 Switching and Bridging 3.2

More information

521262S Computer Networks 2 (fall 2007) Laboratory exercise #4: Multimedia, QoS and testing

521262S Computer Networks 2 (fall 2007) Laboratory exercise #4: Multimedia, QoS and testing 521262S Computer Networks 2 (fall 2007) Laboratory exercise #4: Multimedia, QoS and testing Name Student ID Signature In this exercise we will take a little look at the multimedia and Quality of Service

More information

Vorlesung Kommunikationsnetze

Vorlesung Kommunikationsnetze Picture 15 13 Vorlesung Kommunikationsnetze Prof. Dr. H. P. Großmann mit B. Wiegel sowie A. Schmeiser und M. Rabel Sommersemester 2009 Institut für Organisation und Management von Informationssystemen

More information

ECE 697J Advanced Topics in Computer Networks

ECE 697J Advanced Topics in Computer Networks ECE 697J Advanced Topics in Computer Networks Network Measurement 12/02/03 Tilman Wolf 1 Overview Lab 3 requires performance measurement Throughput Collecting of packet headers Network Measurement Active

More information

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING ECE361 Computer Networks Midterm March 06, 2017, 6:15PM DURATION: 80 minutes Calculator Type: 2 (non-programmable calculators) Examiner:

More information

CMPE 344 Computer Networks Spring Foundations. Reading: Peterson and Davie,

CMPE 344 Computer Networks Spring Foundations. Reading: Peterson and Davie, CMPE 344 Computer Networks Spring 2017 Foundations Reading: Peterson and Davie, 1.1-1.5 Sources of slides: Computer networks: A systems Approach by Peterson and Davie, Morgan Kaufmann, 2010 CN5E by Tanenbaum

More information

Interconnecting Networks with TCP/IP. 2000, Cisco Systems, Inc. 8-1

Interconnecting Networks with TCP/IP. 2000, Cisco Systems, Inc. 8-1 Interconnecting Networks with TCP/IP 2000, Cisco Systems, Inc. 8-1 Objectives Upon completion of this chapter you will be able to perform the following tasks: Identify the IP protocol stack, its protocol

More information

ipv6 hello-interval eigrp

ipv6 hello-interval eigrp ipv6 hello-interval eigrp ipv6 hello-interval eigrp To configure the hello interval for the Enhanced Interior Gateway Routing Protocol (EIGRP) for IPv6 routing process designated by an autonomous system

More information

CSCD 433/533 Advanced Networks

CSCD 433/533 Advanced Networks CSCD 433/533 Advanced Networks Lecture 2 Network Review Winter 2017 Reading: Chapter 1 1 Topics Network Topics Some Review from CSCD330 Applications Common Services Architecture OSI Model AS and Routing

More information

Deploying ATM in a Data Network: An Analysis of SVC Requirements

Deploying ATM in a Data Network: An Analysis of SVC Requirements Deploying ATM in a Data Network: An Analysis of SVC Requirements Russell J. Clark Ronald R. Hutchins Scott Walker Register GIT-CC-95-1 March 15, 1995 Abstract Past and current campus data networks generally

More information

COMP 361 Computer Communications Networks. Fall Semester Final Examination: Solution key

COMP 361 Computer Communications Networks. Fall Semester Final Examination: Solution key COMP 361 Computer Communications Networks all Semester 2003 inal Examination: Solution key Date: Dec 15, 2003, ime 8:30am - 11:30am, venue Rm 3007 Name: Student ID: Email: Instructions: 1. his examination

More information

Question A B C D E F Points / 28 / 16 / 21 / 15 / 18 / 2

Question A B C D E F Points / 28 / 16 / 21 / 15 / 18 / 2 Carnegie Mellon Computer Science Department. 15-441 Spring 2005 Midterm Name: Andrew ID: INSTRUCTIONS: There are 15 pages (numbered at the bottom). Make sure you have all of them. Please write your name

More information

School of Engineering Department of Computer and Communication Engineering Semester: Fall Course: CENG415 Communication Networks

School of Engineering Department of Computer and Communication Engineering Semester: Fall Course: CENG415 Communication Networks School of Engineering Department of Computer and Communication Engineering Semester: Fall 2012 2013 Course: CENG415 Communication Networks Instructors: Mr Houssam Ramlaoui, Dr Majd Ghareeb, Dr Michel Nahas,

More information

a. (4pts) What general information is contained in a LSR-PDU update that A might send?

a. (4pts) What general information is contained in a LSR-PDU update that A might send? B1: Networks (25 points) Link State Routing (LSR). (Hint: flooding and Dijkstra s Algorithm). Assume Router A has physical links to Routers W, X, Y, Z. a. (4pts) What general information is contained in

More information

Exam HP0-Y43 Implementing HP Network Infrastructure Solutions Version: 10.0 [ Total Questions: 62 ]

Exam HP0-Y43 Implementing HP Network Infrastructure Solutions Version: 10.0 [ Total Questions: 62 ] s@lm@n HP Exam HP0-Y43 Implementing HP Network Infrastructure Solutions Version: 10.0 [ Total Questions: 62 ] Question No : 1 A customer requires an HP FlexCampus solution with a core that scales to 40/100G.

More information

Computer Networks. More on Standards & Protocols Quality of Service. Week 10. College of Information Science and Engineering Ritsumeikan University

Computer Networks. More on Standards & Protocols Quality of Service. Week 10. College of Information Science and Engineering Ritsumeikan University Computer Networks More on Standards & Protocols Quality of Service Week 10 College of Information Science and Engineering Ritsumeikan University Introduction to Protocols l A protocol is a set of rules

More information

521262S Computer Networks 2 (fall 2007) Laboratory exercise #2: Internetworking

521262S Computer Networks 2 (fall 2007) Laboratory exercise #2: Internetworking 521262S Computer Networks 2 (fall 2007) Laboratory exercise #2: Internetworking Name Student ID Signature In this exercise we will connect our LANs made in first exercise with routers and build an internet.

More information

Department of Information Technology. CS6551 Computer Networks. Anna University - Two Mark Questions

Department of Information Technology. CS6551 Computer Networks. Anna University - Two Mark Questions Department of Information Technology CS6551 Computer Networks Anna University - Two Mark Questions 1. What are the functions of application layer? The application layer is the top-most layer of OSI model.

More information

COS 140: Foundations of Computer Science

COS 140: Foundations of Computer Science COS 140: Foundations of Computer Science ALOHA Network Protocol Family Fall 2017 Homework 2 Introduction 3 Network Protocols.......................................................... 3 Problem.................................................................

More information

A B C D E Total / 24 / 23 / 12 / 18 / 3 / 80

A B C D E Total / 24 / 23 / 12 / 18 / 3 / 80 Carnegie Mellon Computer Science Department. 15-441 Spring 2010 Midterm Name: Andrew ID: INSTRUCTIONS: There are 10 pages (numbered at the bottom). Make sure you have all of them. Please write your name

More information

Computer Networks. Homework #4: No Grading

Computer Networks. Homework #4: No Grading Computer Networks Homework #4: No Grading Problem #1. Assume you need to write and test a client-server application program on two hosts you have at home. a. What is the range of port numbers you would

More information

CS244a: An Introduction to Computer Networks

CS244a: An Introduction to Computer Networks Do not write in this box MCQ 9: /10 10: /10 11: /20 12: /20 13: /20 14: /20 Total: Name: Student ID #: CS244a Winter 2003 Professor McKeown Campus/SITN-Local/SITN-Remote? CS244a: An Introduction to Computer

More information

CCNA Exploration Network Fundamentals. Chapter 06 Addressing the Network IPv4

CCNA Exploration Network Fundamentals. Chapter 06 Addressing the Network IPv4 CCNA Exploration Network Fundamentals Chapter 06 Addressing the Network IPv4 Updated: 20/05/2008 1 6.0.1 Introduction Addressing is a key function of Network layer protocols that enables data communication

More information

Applications/Design. Example. Locating Resource. End-to-end. Connection UCB. Applications EECS 122

Applications/Design. Example. Locating Resource. End-to-end. Connection UCB. Applications EECS 122 /Design Web Browsing Web Browsing Telephone Call Multiplexing Protocols IETF Summary Example Locating Resource: DNS Connection End-to-end Packets Bits Points to remember TOC TOC Web Browsing Example Click

More information

ECE453 Introduction to Computer Networks. Broadcast vs. PPP. Delay. Lecture 7 Multiple Access Control (I)

ECE453 Introduction to Computer Networks. Broadcast vs. PPP. Delay. Lecture 7 Multiple Access Control (I) ECE453 Introduction to Computer Networks Lecture 7 Multiple Access Control (I) 1 Broadcast vs. PPP Broadcast channel = multiaccess channel = random access channel Broadcast LAN Satellite network PPP WAN

More information

Network Management & Monitoring

Network Management & Monitoring Network Management & Monitoring Network Delay These materials are licensed under the Creative Commons Attribution-Noncommercial 3.0 Unported license (http://creativecommons.org/licenses/by-nc/3.0/) End-to-end

More information

Communication Fundamentals in Computer Networks

Communication Fundamentals in Computer Networks Lecture 5 Communication Fundamentals in Computer Networks M. Adnan Quaium Assistant Professor Department of Electrical and Electronic Engineering Ahsanullah University of Science and Technology Room 4A07

More information

CS244A Review Session

CS244A Review Session CS244A Review Session Building your own Router Assignment#2 Friday, January 25, 2008 Clay Collier (based on slide by Martin Casado) Assignment Overview You build a virtual network topology You write a

More information

CS 458 Internet Engineering Spring First Exam

CS 458 Internet Engineering Spring First Exam CS 458 Internet Engineering Spring 2005 First Exam Instructions (read carefully): There are 6 problems for a total of 60 points. This is a closed book and closed notes in-class exam. If any problem is

More information

15-441: Computer Networks Spring 2017 Homework 3

15-441: Computer Networks Spring 2017 Homework 3 15-441: Computer Networks Spring 2017 Homework 3 Assigned: Feb 15, 2018 Due: Mar 19, 2018 Lead TA: M.Ahmed Shah 1. Chapter 3: Exercise 41, page 294 2. Chapter 3: Exercise 43, page

More information

Homework 1 50 points. Quantitative Comparison of Packet Switching and Circuit Switching 20 points Consider the two scenarios below:

Homework 1 50 points. Quantitative Comparison of Packet Switching and Circuit Switching 20 points Consider the two scenarios below: Homework 1 50 points Quantitative Comparison of Packet Switching and Circuit Switching 20 points Consider the two scenarios below: A circuit-switching scenario in which Ncs users, each requiring a bandwidth

More information

INSTRUCTIONS TO CANDIDATES

INSTRUCTIONS TO CANDIDATES NATIONAL UNIVERSITY OF SINGAPORE SCHOOL OF COMPUTING FINAL EXAMINATION FOR Semester 2 AY2012/2013 Introduction to Computer Networks April 2013 Time Allowed 2 hours INSTRUCTIONS TO CANDIDATES 1. This exam

More information

ECE 610: Homework 4 Problems are taken from Kurose and Ross.

ECE 610: Homework 4 Problems are taken from Kurose and Ross. ECE 610: Homework 4 Problems are taken from Kurose and Ross. Problem 1: Host A and B are communicating over a TCP connection, and Host B has already received from A all bytes up through byte 248. Suppose

More information

Date: June 4 th a t 1 4:00 1 7:00

Date: June 4 th a t 1 4:00 1 7:00 Kommunika tionssyste m FK, Examina tion G 5 0 7 Date: June 4 th 0 0 3 a t 4:00 7:00 KTH/IMIT/LCN No help material is allowed. You may answer questions in English or Swedish. Please answer each question

More information

Traffic Characteristics of Bulk Data Transfer using TCP/IP over Gigabit Ethernet

Traffic Characteristics of Bulk Data Transfer using TCP/IP over Gigabit Ethernet Traffic Characteristics of Bulk Data Transfer using TCP/IP over Gigabit Ethernet Aamir Shaikh and Kenneth J. Christensen Department of Computer Science and Engineering University of South Florida Tampa,

More information

CSE398: Network Systems Design

CSE398: Network Systems Design CSE398: Network Systems Design Instructor: Dr. Liang Cheng Department of Computer Science and Engineering P.C. Rossin College of Engineering & Applied Science Lehigh University February 21, 2005 Outline

More information