Πρωτόκολλα Διαδικτύου (ΨΣ-326 DS151)

Size: px
Start display at page:

Download "Πρωτόκολλα Διαδικτύου (ΨΣ-326 DS151)"

Transcription

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Πρωτόκολλα Διαδικτύου (ΨΣ-326 DS151) 3 Η ΕΡΓΑΣΤΗΡΙΑΚΗ ΔΙΑΛΕΞΗ (SOCKET PROGRAMMING) Υπεύθυνος καθηγητής: Άγγελος Ρούσκας Βοηθός: Υ.Δ. Ευθύμης Οικονόμου Πέμπτη 30/03/2017

2 Chapter 2 Application Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following: If you use these slides (e.g., in a class) that you mention their source (after all, we d like people to use our book!) If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material. Thanks and enjoy! JFK/KWR Computer Networking: A Top Down Approach 4th, 5th and 6th edition Jim Kurose, Keith Ross Addison-Wesley All material copyright J.F Kurose and K.W. Ross, All Rights Reserved 2

3 Chapter 2: Application layer Principles of network applications Socket programming 3

4 Some network apps web instant messaging remote login P2P file sharing multi-user network games streaming stored video (YouTube, Hulu, Netflix) voice over IP (e.g., Skype) real-time video conferencing social networking search 4

5 Creating a network app write programs that run on (different) end systems communicate over network e.g., web server software communicates with browser software No need to write software for network-core devices* Network-core devices do not run user applications or tamper with packet payloads applications on end systems allows for rapid app development, propagation application transport network data link physical application transport network data link physical application transport network data link physical * Will revisit this statement later when we talk about NAT devices 5

6 Application layer functions Implement desired functionality within application protocols when no underlying transport/network service supports it e.g. Mail, Web, News, P2P, etc. Congestion and flow control (Non-TCP applications) Reliability (Non-TCP applications) underlying transport/network service is inadequate Security (S/MIME, PGP, HTTPS) Delivery semantics (multicast) Naming (DNS, URLs) Routing (overlays) Functionality that is common rolled into libraries and middleware 6

7 Application architectures Client-server Peer-to-peer (P2P) Hybrid of client-server and P2P 7

8 Client-server architecture client/server server: always-on host permanent IP address data centers for scaling clients: communicate with server may be intermittently connected may have dynamic IP addresses do not communicate directly with each other 8

9 Pure P2P architecture no always-on server arbitrary end systems directly communicate peers request service from other peers, provide service in return to other peers peers are intermittently connected and change IP addresses Examples: Gnutella, Skype peer-peer Highly scalable but difficult to manage 9

10 Hybrid of client-server and P2P Skype voice-over-ip P2P application centralized server: finding address of remote party: client-client connection: direct (not through server) Instant messaging Chatting between two users is P2P Presence detection/location centralized in client-server manner: User registers its IP address with central server when it comes online User contacts central server to find IP addresses of buddies 10

11 Processes communicating Process: program running within a host. within same host, two processes communicate using inter-process communication (defined by OS). processes in different hosts communicate by exchanging messages Client process: process that initiates communication Server process: process that waits to be contacted Note: applications with P2P architectures have client processes & server processes 11

12 Sockets process sends/receives messages to/from its socket socket analogous to door sending process shoves message out door sending process relies on transport infrastructure on other side of door which brings message to socket at receiving process host or server process socket TCP with buffers, variables controlled by app developer controlled by OS Internet host or server process socket TCP with buffers, variables API: (1) choice of transport protocol; (2) ability to fix a few parameters (lots more on this later) 12

13 App-layer protocol defines types of messages exchanged, e.g., request, response message syntax: what fields in messages & how fields are delineated message semantics meaning of information in fields rules for when and how processes send & respond to messages open protocols: defined in RFCs allows for interoperability e.g., HTTP, SMTP proprietary protocols: e.g., Skype 12

14 Application layer protocols Types of application protocols Public-domain protocols defined in RFCs allows for interoperability e.g., HTTP, SMTP Proprietary protocols e.g., KaZaA, Skype Your game protocol for your final project Key design characteristic What transport service should the application protocol use? 14

15 What transport service does an app need? Data integrity some apps (e.g., audio) can tolerate some loss other apps (e.g., file transfer, telnet) require 100% reliable data transfer Timing some apps (e.g., Internet telephony, interactive games) require low delay to be effective Throughput some apps (e.g., multimedia) require minimum amount of throughput to be effective other apps ( elastic apps ) make use of whatever throughput they get Security Encryption, data integrity, 15

16 Transport service requirements of common apps Application Data loss Bandwidth Time Sensitive file transfer Web documents real-time audio/video streaming audio/video interactive games instant messaging no loss no loss no loss loss-tolerant loss-tolerant loss-tolerant no loss elastic elastic elastic audio: 5kbps-1Mbps video:10kbps-5mbps same as above few kbps up elastic no no no yes, 100 s msec yes, few secs yes, 100 s msec yes and no 16

17 Internet transport protocols services TCP service: connection-oriented: setup required between client and server processes reliable transport between sending and receiving process flow control: sender won t overwhelm receiver congestion control: throttle sender when network overloaded does not provide: timing, minimum throughput guarantee, security UDP service: unreliable data transfer between sending and receiving process does not provide: connection setup, reliability, flow control, congestion control, timing, or bandwidth guarantee 17

18 Internet apps: application, transport protocols Application remote terminal access Web file transfer streaming multimedia Internet telephony Application layer protocol SMTP [RFC 2821] Telnet [RFC 854] HTTP [RFC 2616] FTP [RFC 959] proprietary (e.g. RealNetworks) proprietary (e.g., Vonage,Dialpad) Underlying transport protocol TCP TCP TCP TCP TCP or UDP typically UDP 18

19 Chapter 2: Application layer Principles of network applications Socket programming 19

20 Programming application protocols Many possible programming interfaces Socket APIs (most common) BSD C Socket API (most common) Java socket API Python socket API Other APIs Client-side Java URLconnections Server-side Java servlets Python urllib Python HTTPServer RPC, CORBA, Java RMI (not covered) 20

21 Socket programming Goal: learn how to build client/server application that communicate using sockets Socket API introduced in BSD4.1 UNIX, 1981 explicitly created, used, released by apps client/server paradigm two types of transport service via socket API: unreliable datagram reliable, byte streamoriented socket a host-local, application-created, OS-controlled interface (a door ) into which application process can both send and receive messages to/from another application process 21

22 Socket-programming using TCP Socket: a door between application process and endend-transport protocol (UCP or TCP) TCP service: reliable transfer of bytes from one process to another controlled by application developer controlled by operating system process socket TCP with buffers, variables internet process socket TCP with buffers, variables controlled by application developer controlled by operating system host or server host or server 22

23 Socket programming using TCP Server setup server process must first be running server must have created a listening socket (door) that welcomes client s contact Client contacts server by: creating client-local TCP socket specifying IP address, port number of server process When client connects a socket: client TCP establishes connection to server TCP When client connects, server TCP creates new socket for server process to communicate with client different than listening socket (allows server to talk with multiple clients) source IP and port numbers used to distinguish clients (more in Chap 3) application viewpoint TCP provides reliable, in-order transfer of bytes ( pipe ) between client and server 23

24 Addressing processes to receive messages, process must have identifier host device has unique 32-bit IP address Q: does IP address of host on which process runs suffice for identifying the process? A: No, many processes can be running on same host identifier includes both IP address and port numbers associated with process on host. Example port numbers: HTTP server: 80 Mail server: 25 to send HTTP message to gaia.cs.umass.edu web server: IP address: Port number: 80 more shortly 24

25 IPs 32-bit identifier Dotted-quad: > Identifies a host interface (not a host) 25

26 Ports Identifying the ultimate destination IP addresses identify hosts Host has many applications Ports (16-bit identifier) 26

27 Ports For many common services, standard port numbers are defined. 27

28 Sockets socket programming interface in relation to the protocol stack 28

29 Sockets Identified by protocol and local/remote address/port Applications may refer to many sockets 29

30 TCP sockets in action *,SIP:80 *,SIP:80 CIP:1099,SIP:80 *,SIP:80 CIP:1099,SIP:80 CIP:1099,SIP:80 30

31 TCP sockets in action CIP:1099,SIP:80 *,SIP:80 CIP:1099,SIP:80 *,SIP:80 CIP:1100,SIP:80 CIP:1099,SIP:80 CIP:1100,SIP:80 CIP:1099,SIP:80 CIP:1100,SIP:80 31

32 Java network programming Java network applications java.net package System-dependent implementations 32

33 Java installation on linuxlab J2SE javac java java compiler java interpreter 33

34 java.net classes Low-level networking classes Sockets and Packets java.net.socket java.net.serversocket java.net.datagramsocket java.net.datagrampacket java.net.inetaddress High-level URL networking classes java.net.url java.net.urlconnection java.net.httpurlconnection java.net.urlencoder 34

35 java.net.socket Constructors Socket(InetAddress, int) Socket(String, int) Socket(InetAddress, int, InetAddress, int) Some methods getinputstream() getoutputstream() getinetaddress() getport() getlocaladdress() getlocalport() get/set individual socket options 35

36 java.net.serversocket Constructors ServerSocket(int) // port specified ServerSocket(int, int) // port, backlog specified ServerSocket(int, int, InetAddress) // port, backlog, IP address Some methods accept() getinetaddress() getlocalport() 36

37 Stream jargon for Java network programming A stream is a sequence of characters that flow into or out of a process. An input stream is attached to some input source for the process, e.g., keyboard or socket. An output stream is attached to an output source, e.g., monitor or socket. 37

38 Socket programming with TCP Example client-server app: 1) client reads line from standard input (infromuser stream), sends to server via socket (outtoserver stream) 2) server reads line from socket 3) server converts line to uppercase, sends back to client 4) client reads, prints modified line from socket (infromserver stream) Client Process process input stream output stream keyboard infromuser outtoserver monitor infromserver client TCP clientsocket socket input stream TCP socket to network from network 38

39 Client/server socket interaction: TCP Server (running on hostid) create socket, port=x, for incoming request: welcomesocket = ServerSocket() wait for incoming connection request connectionsocket = welcomesocket.accept() read request from connectionsocket write reply to connectionsocket close connectionsocket TCP connection setup Client create socket, connect to hostid, port=x clientsocket = Socket() send request using clientsocket read reply from clientsocket close clientsocket 39

40 40

41 TCP communication Communication of 2 pairs via sockets necessitates existence of this 4-tuple: - Local IP address - Local Port# - Foreign IP address - Foreign Port# 41

42 TCP 3-way handshake client state LISTEN SYNSENT ESTAB choose init seq num, x send TCP SYN msg received SYNACK(x) indicates server is live; send ACK for SYNACK; this segment may contain client-to-server data SYNbit=1, Seq=x SYNbit=1, Seq=y ACKbit=1; ACKnum=x+1 ACKbit=1, ACKnum=y+1 choose init seq num, y send TCP SYNACK msg, acking SYN received ACK(y) indicates client is live server state LISTEN SYN RCVD ESTAB 42

43 TCP 3-way handshake 43

44 TCP: closing a connection client state server state ESTAB ESTAB clientsocket.close() FIN_WAIT_1 FIN_WAIT_2 can no longer send but can receive data wait for server close FINbit=1, seq=x ACKbit=1; ACKnum=x+1 can still send data CLOSE_WAIT TIMED_WAIT timed wait for 2*max segment lifetime FINbit=1, seq=y ACKbit=1; ACKnum=y+1 can no longer send data LAST_ACK CLOSED CLOSED 44

45 Application Example: 1. Client reads a line of characters (data) from its keyboard and sends the data to the server. 2. The server receives the data and converts characters to uppercase. 3. The server sends the modified data to the client. 4. The client receives the modified data and displays the line on its screen. 45

46 Example: Java client (TCP) import java.io.*; import java.net.*; class TCPClient { Create input stream Create client socket, connect to server Create output stream attached to socket public static void main(string argv[]) throws Exception { String sentence; String modifiedsentence; BufferedReader infromuser = new BufferedReader(new InputStreamReader(System.in)); Socket clientsocket = new Socket("hostname", 6789); DataOutputStream outtoserver = new DataOutputStream(clientSocket.getOutputStream()); 46

47 Example: Java client (TCP), cont. Create input stream attached to socket Send line to server Read line from server BufferedReader infromserver = new BufferedReader(new InputStreamReader(clientSocket.getInputStream())); sentence = infromuser.readline(); outtoserver.writebytes(sentence + '\n'); modifiedsentence = infromserver.readline(); System.out.println("FROM SERVER: " + modifiedsentence); clientsocket.close(); } } 47

48 Example: Java server (TCP) import java.io.*; import java.net.*; class TCPServer { Create welcoming socket at port 6789 Wait, on welcoming socket for contact by client Create input stream, attached to socket public static void main(string argv[]) throws Exception { String clientsentence; String capitalizedsentence; ServerSocket welcomesocket = new ServerSocket(6789); while(true) { Socket connectionsocket = welcomesocket.accept(); BufferedReader infromclient = new BufferedReader(new InputStreamReader(connectionSocket.getInputStream())); 48

49 Example: Java server (TCP), cont Create output stream, attached to socket Read in line from socket DataOutputStream outtoclient = new DataOutputStream(connectionSocket.getOutputStream()); clientsentence = infromclient.readline(); capitalizedsentence = clientsentence.touppercase() + '\n'; Write out line to socket } } } outtoclient.writebytes(capitalizedsentence); End of while loop, loop back and wait for another client connection 49

50 Socket programming using UDP UDP: no connection between client and server no handshaking sender explicitly attaches IP address and port of destination to each packet server must extract IP address, port of sender from received packet application viewpoint UDP provides unreliable transfer of groups of bytes ( datagrams ) between client and server UDP: transmitted data may be received out of order, or lost 50

51 java.net.datagramsocket Constructors DatagramSocket() DatagramSocket(int) // bind to specific port DatagramSocket(int, InetAddress) // specify local address Some methods getlocaladdress() getlocalport() receive(datagrampacket) send(datagrampacket) get/set individual socket options 51

52 java.net.datagrampacket Constructors DatagramPacket(byte[], int) // receiving packets DatagramPacket(byte[], int, InetAddress, int) // sending packets Some methods getaddress() // remote address getport() // remote port getlength() // get packet length getdata() // return data received or to be sent setaddress(inetaddress) // set remote address setdata(byte[]) // set packet data setlength(int) // set packet length setport(int) // set remote port 52

53 Client/server socket interaction: UDP Server (running on hostid) Client create socket, port=x, for incoming request: serversocket = DatagramSocket() read request from serversocket create socket, clientsocket = DatagramSocket() Create, address (hostid, port=x, send datagram request using clientsocket write reply to serversocket specifying client host address, port number read reply from clientsocket close clientsocket 53

54 Example: Java client (UDP) keyboard monitor Output: sends packet (recall that TCP sent byte stream ) Client Process process input stream UDP packet infromuser sendpacket receivepacket client UDP clientsocket socket UDP packet UDP socket Input: receives packet (recall that TCP received byte stream ) to network from network 54

55 Example: Java client (UDP) import java.io.*; import java.net.*; Create input stream Create client socket Translate hostname to IP address using DNS class UDPClient { public static void main(string args[]) throws Exception { BufferedReader infromuser = new BufferedReader(new InputStreamReader(System.in)); DatagramSocket clientsocket = new DatagramSocket(); InetAddress IPAddress = InetAddress.getByName("hostname"); byte[] senddata = new byte[1024]; byte[] receivedata = new byte[1024]; String sentence = infromuser.readline(); senddata = sentence.getbytes(); 55

56 Example: Java client (UDP), cont. Create datagram with data-to-send, length, IP addr, port Send datagram to server Read datagram from server } DatagramPacket sendpacket = new DatagramPacket(sendData, senddata.length, IPAddress, 9876); clientsocket.send(sendpacket); DatagramPacket receivepacket = new DatagramPacket(receiveData, receivedata.length); clientsocket.receive(receivepacket); String modifiedsentence = new String(receivePacket.getData()); System.out.println("FROM SERVER:" + modifiedsentence); clientsocket.close(); } 56

57 Example: Java server (UDP) import java.io.*; import java.net.*; Create datagram socket at port 9876 Create space for received datagram Receive datagram class UDPServer { public static void main(string args[]) throws Exception { DatagramSocket serversocket = new DatagramSocket(9876); byte[] receivedata = new byte[1024]; byte[] senddata = new byte[1024]; while(true) { DatagramPacket receivepacket = new DatagramPacket(receiveData, receivedata.length); serversocket.receive(receivepacket); 57

58 Example: Java server (UDP), cont Get IP addr port #, of sender String sentence = new String(receivePacket.getData()); InetAddress IPAddress = receivepacket.getaddress(); int port = receivepacket.getport(); String capitalizedsentence = sentence.touppercase(); senddata = capitalizedsentence.getbytes(); Create datagram to send to client Write out datagram to socket } } DatagramPacket sendpacket = new DatagramPacket(sendData, senddata.length, IPAddress, port); serversocket.send(sendpacket); } End of while loop, loop back and wait for another datagram 58

59 Python network programming Python network applications Python network packages (socket, URLlib, HTTPServer) System-dependent implementations 59

60 Python network programming Python Scripting language No compilation required Language reference: Provides APIs similar to Java socket Low-level socket interface urllib HTTP client SimpleHTTPServer HTTP server 60

61 Python sockets Similar to C and Java Client import socket host = localhost port = 7 s = socket.socket(socket.af_inet, socket.sock_stream) s.connect((host,port)) s.send( some data to echo ) print s.recv(20) s.close 61

62 Socket programming with TCP client must contact server server process must first be running server must have created socket (door) that welcomes client s contact client contacts server by: Creating TCP socket, specifying IP address, port number of server process when client creates socket: client TCP establishes connection to server TCP when contacted by client, server TCP creates new socket for server process to communicate with that particular client allows server to talk with multiple clients source port numbers used to distinguish clients application viewpoint: TCP provides reliable, in-order byte-stream transfer ( pipe ) between client and server 62

63 Client/server socket interaction: TCP server (running on hostid) create socket, port=x, for incoming request: serversocket = socket() client wait for incoming connection request connectionsocket = serversocket.accept() read request from connectionsocket write reply to connectionsocket close connectionsocket TCP connection setup create socket, connect to hostid, port=x clientsocket = socket() send request using clientsocket read reply from clientsocket close clientsocket 63

64 Example app: TCP client create TCP socket for server, remote port No need to attach server name, port Python TCPClient from socket import * servername = servername serverport = clientsocket = socket(af_inet, SOCK_STREAM) clientsocket.connect((servername,serverport)) sentence = raw_input( Input lowercase sentence: ) clientsocket.send(sentence) modifiedsentence = clientsocket.recv(1024) print From Server:, modifiedsentence clientsocket.close() 64

65 Example app: TCP server Python TCPServer create TCP welcoming socket server begins listening for incoming TCP requests loop forever server waits on accept() for incoming requests, new socket created on return from socket import * serverport = serversocket = socket(af_inet,sock_stream) serversocket.bind((,serverport)) serversocket.listen(1) print The server is ready to receive while 1: connectionsocket, addr = serversocket.accept() read bytes from socket (but not address as in UDP) close connection to this client (but not welcoming socket) sentence = connectionsocket.recv(1024) capitalizedsentence = sentence.upper() connectionsocket.send(capitalizedsentence) connectionsocket.close() 65

66 Socket programming with UDP UDP: no connection between client & server no handshaking before sending data sender explicitly attaches IP destination address and port # to each packet rcvr extracts sender IP address and port# from received packet UDP: transmitted data may be lost or received out-of-order Application viewpoint: UDP provides unreliable transfer of groups of bytes ( datagrams ) between client and server 66

67 Client/server socket interaction: UDP server (running on serverip) create socket, port= x: serversocket = socket(af_inet,sock_dgram) read datagram from serversocket write reply to serversocket specifying client address, port number client create socket: clientsocket = socket(af_inet,sock_dgram) Create datagram with server IP and port=x; send datagram via clientsocket read datagram from clientsocket close clientsocket 63

68 Example app: UDP client Python UDPClient include Python s socket library from socket import * servername = hostname serverport = create UDP socket for server get user keyboard input Attach server name, port to message; send into socket read reply characters from socket into string print out received string and close socket clientsocket = socket(socket.af_inet, socket.sock_dgram) message = raw_input( Input lowercase sentence: ) clientsocket.sendto(message,(servername, serverport)) modifiedmessage, serveraddress = clientsocket.recvfrom(2048) print modifiedmessage clientsocket.close() 68

69 Example app: UDP server create UDP socket bind socket to local port number loop forever Read from UDP socket into message, getting client s address (client IP and port) send upper case string back to this client Python UDPServer from socket import * serverport = serversocket = socket(af_inet, SOCK_DGRAM) serversocket.bind(('', serverport)) print The server is ready to receive while 1: message, clientaddress = serversocket.recvfrom(2048) modifiedmessage = message.upper() serversocket.sendto(modifiedmessage, clientaddress) 69

70 Java: Running Socket Programs Set-up IPs and ports in programs Compile both server and client programs to the respective machine (or localhost) javac TCPServer.java javac TCPClient.java If no error TCPServer.class and TCPClient.class are created First run server: java TCPServer Then run client/s: java TCPClient Type your message on client 70

71 Python: Running Socket Programs Open both server and client programs to the respective machine (or localhost) using IDLE Python (2 different IDLE on localhost) UDPServer.py UDPClient.py Set-up IPs and ports in programs First run server Then run client/s Type your message on client 71

72 Packet Capturing: Wireshark packet analyzer packet capture (pcap) copy of all Ethernet frames sent/receive d application (www browser, client) application OS Transport (TCP/UDP) Network (IP) Link (Ethernet) Physical 72

73 Eg: TCPServer Captured packets 73

74 74

75 75

76 76

77 Eg: UDPServer Captured packets 77

78 78

79 79

Chapter 2: outline. 2.1 principles of network applications. 2.6 P2P applications 2.7 socket programming with UDP and TCP

Chapter 2: outline. 2.1 principles of network applications. 2.6 P2P applications 2.7 socket programming with UDP and TCP Chapter 2: outline 2.1 principles of network applications app architectures app requirements 2.2 Web and HTTP 2.3 FTP 2.4 electronic mail SMTP, POP3, IMAP 2.5 DNS 2.6 P2P applications 2.7 socket programming

More information

Chapter 2 Application Layer

Chapter 2 Application Layer Chapter 2 Application Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and

More information

Chapter II: Application Layer

Chapter II: Application Layer Chapter II: Application Layer UG3 Computer Communications & Networks (COMN) Myungjin Lee myungjin.lee@ed.ac.uk Slides copyright of Kurose and Ross Internet hourglass Here 2 Some network apps e-mail web

More information

Communication in Distributed Systems: Sockets Programming. Operating Systems

Communication in Distributed Systems: Sockets Programming. Operating Systems Communication in Distributed Systems: Sockets Programming Operating Systems TCP/IP layers Layers Message Application Transport Internet Network interface Messages (UDP) or Streams (TCP) UDP or TCP packets

More information

Chapter 2 Application Layer

Chapter 2 Application Layer Internet and Intranet Protocols and Applications Lecture 4: Application Layer 3: Socket Programming Spring 2006 Arthur Goldberg Computer Science Department New York University artg@cs.nyu.edu Chapter 2

More information

Chapter 2 outline. 2.1 Principles of app layer protocols

Chapter 2 outline. 2.1 Principles of app layer protocols Chapter 2 outline 2.1 Principles of app layer protocols clients and servers app requirements 2.2 Web and HTTP 2.3 FTP 2.4 Electronic Mail SMTP, POP3, IMAP 2.5 DNS 2.6 Socket programming with TCP 2.7 Socket

More information

Introduction to Sockets 9/25/14

Introduction to Sockets 9/25/14 Introduction to Sockets 9/25/14 81 Remote communication Inter-process communication is at the heart of all distributed systems Using the network protocol stack on a node is the only way to communicate

More information

Lecture 3. Java Socket Programming. TCP, UDP and URL

Lecture 3. Java Socket Programming. TCP, UDP and URL Lecture 3 TCP, UDP and URL 1 Java Sockets Programming The package java.net provides support for sockets programming (and more). Typically you import everything defined in this package with: import java.net.*;

More information

CSCD 330 Network Programming Spring 2018

CSCD 330 Network Programming Spring 2018 CSCD 330 Network Programming Spring 2018 Lecture 6 Application Layer Socket Programming in Java Reading for Java Client/Server see Relevant Links Some Material in these slides from J.F Kurose and K.W.

More information

Computer Communication Networks Socket Programming

Computer Communication Networks Socket Programming Computer Communication Networks Socket Programming ICEN/ICSI 416 Fall 2018 Prof. Aveek Dutta 1 Application Programming Interface Interface exported by the network Since most network protocols are implemented

More information

Client/Server Computing & Socket Programming

Client/Server Computing & Socket Programming CPSC 852 Intering Client/Server Computing & Socket Programming Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu http://www.cs.clemson.edu/~mweigle/courses/cpsc852

More information

CSCD 330 Network Programming Spring 2018

CSCD 330 Network Programming Spring 2018 CSCD 330 Network Programming Spring 2018 Lecture 7 Application Layer Socket Programming in Java Reading: Chapter 2, Java links Relevant Links page Some Material in these slides from J.F Kurose and K.W.

More information

CSCD 330 Network Programming Winter 2019

CSCD 330 Network Programming Winter 2019 CSCD 330 Network Programming Winter 2019 Lecture 7 Application Layer Socket Programming in Java Reading: Chapter 2, Java links Relevant Links page Some Material in these slides from J.F Kurose and K.W.

More information

Computer Networking Introduction

Computer Networking Introduction Computer Networking Introduction Halgurd S. Maghdid Software Engineering Department Koya University-Koya, Kurdistan-Iraq Lecture No.6 Chapter 2: outline 2.1 principles of network applications app architectures

More information

CPSC 441 UDP Socket Programming. Department of Computer Science University of Calgary

CPSC 441 UDP Socket Programming. Department of Computer Science University of Calgary CPSC 441 UDP Socket Programming Department of Computer Science University of Calgary Socket programming using UDP (vs TCP) UDP: no connection between client and server vno handshaking vsender explicitly

More information

We will cover in this order: 2.1, 2.7, 2.5, 2.4, 2.2

We will cover in this order: 2.1, 2.7, 2.5, 2.4, 2.2 CSE 422 Notes, Set 2 These slides contain materials provided with the text: Computer Networking: A Top Down Approach,5 th edition, by Jim Kurose and Keith Ross, Addison-Wesley, April 2009. Additional figures

More information

Lecture 05: Application Layer (Part 02) FTP, Peer-to-Peer, . Dr. Anis Koubaa

Lecture 05: Application Layer (Part 02) FTP, Peer-to-Peer,  . Dr. Anis Koubaa NET 331 Computer Networks Lecture 05: Application Layer (Part 02) FTP, Peer-to-Peer, Email Dr. Anis Koubaa Reformatted slides from textbook Computer Networking a top-down appraoch, Fifth Edition by Kurose

More information

Goal and A sample Network App

Goal and A sample Network App Application Layer Goal and A sample Network App Write programs that run on different end systems and communicate over a network. e.g., Web: Web server software communicates with browser software Little

More information

CS 355. Computer Networking. Wei Lu, Ph.D., P.Eng.

CS 355. Computer Networking. Wei Lu, Ph.D., P.Eng. CS 355 Computer Networking Wei Lu, Ph.D., P.Eng. Chapter 2: Application Layer Overview: Principles of network applications? Introduction to Wireshark Web and HTTP FTP Electronic Mail: SMTP, POP3, IMAP

More information

CS 3516: Advanced Computer Networks

CS 3516: Advanced Computer Networks Welcome to CS 3516: Advanced Computer Networks Prof. Yanhua Li Time: 9:00am 9:50am, T, R, and F Location: Fuller 320 Fall 2017 A-term 1 Some slides are originally from the course materials of the textbook

More information

Distributed Systems. Networking Slides courtesy Kurose & Ross

Distributed Systems. Networking Slides courtesy Kurose & Ross Distributed Systems Networking Slides courtesy Kurose & Ross Agenda Computer networks, primarily from an application perspective Protocol layering Client-server architecture End-to-end principle TCP Socket

More information

Introduction to the Application Layer. Computer Networks Term B14

Introduction to the Application Layer. Computer Networks Term B14 Introduction to the Application Layer Computer Networks Term B14 Intro to Application Layer Outline Current Application Layer Protocols Creating an Application Application Architectures Client-Server P2P

More information

Layer 4 - Transport Layer. What do we need a Transport Layer for? Transport Protocols in the TCP/IP Reference Model. The Transport Layer TCP and UDP

Layer 4 - Transport Layer. What do we need a Transport Layer for? Transport Protocols in the TCP/IP Reference Model. The Transport Layer TCP and UDP Layer 4 - Transport Layer Core of the protocol hierarchy: Network-independent, reliable and economical data transfer Tasks of the transport layer: Connection-oriented or connectionless data transfer Addressing

More information

Layer 4 - Transport Layer

Layer 4 - Transport Layer Layer 4 - Transport Layer Core of the protocol hierarchy: Network-independent, reliable and economical data transfer Tasks of the transport layer: Connection-oriented or connectionless data transfer Addressing

More information

Application Programming Interfaces

Application Programming Interfaces Application Programming Interfaces The TCP/IP protocol suite provides only the protocols that can be used by processes to communicate across a network. Though standarized, how these protocols are implemented

More information

CPSC 441 Tutorial - 11 UDP Socket Programming Department of Computer Science University of Calgary

CPSC 441 Tutorial - 11 UDP Socket Programming Department of Computer Science University of Calgary CPSC 441 Tutorial - 11 UDP Programming Department of Computer Science University of Calgary TCP Vs UDP Input: receives packet (TCP receives byte stream ) Output: sends packet (TCP sends byte stream ) What

More information

Chapter 2: outline. 2.6 P2P applications 2.7 socket programming with UDP and TCP

Chapter 2: outline. 2.6 P2P applications 2.7 socket programming with UDP and TCP Chapter 2: outline 2.1 principles of network applications app architectures app requirements 2.2 Web and HTTP 2.3 FTP 2.4 electronic mail SMTP, POP3, IMAP 2.5 DNS 2.6 P2P applications 2.7 socket programming

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 4

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 4 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 4 1 Lab schedule confirmation Mondays, 12:00-2:00pm Tuesdays, 11:00am-1:00pm Wednesdays, 4:00-6:00pm

More information

Chapter 2 Application Layer. Lecture 4: principles of network applications. Computer Networking: A Top Down Approach

Chapter 2 Application Layer. Lecture 4: principles of network applications. Computer Networking: A Top Down Approach Chapter 2 Application Layer Lecture 4: principles of network applications Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Application Layer 2-1 Chapter

More information

CMSC 322 Computer Networks Applications and End-To- End

CMSC 322 Computer Networks Applications and End-To- End CMSC 322 Computer Networks Applications and End-To- End Professor Doug Szajda CMSC 332: Computer Networks Announcements Project 2 has been posted and is due Monday, February 8 (No extension!) Homework

More information

Process Communication COMPUTER NETWORKING Part 2

Process Communication COMPUTER NETWORKING Part 2 Process Communication COMPUTER NETWORKING Part 2 Client-server paradigm and Socket Programming ch 18 Thanks to the authors of the textbook [USP] and [KR] for providing the base slides. I made several changes/additions.

More information

Distributed Systems. Remote Procedure Calls

Distributed Systems. Remote Procedure Calls Distributed Systems Remote Procedure Calls Today s Agenda Last time: Computer networks, primarily from an application perspective Protocol layering Client-server architecture End-to-end principle Today:

More information

Client/Server Computing & Socket Programming

Client/Server Computing & Socket Programming COMP 431 Internet Services & Protocols Client/Server Computing & Socket Programming Jasleen Kaur January 29, 2019 Application-Layer Protocols Overview Application-layer protocols define:» The types of

More information

Computer Networks. 2.Application Layer. László Böszörményi Computer Networks Application Layer - 1

Computer Networks. 2.Application Layer. László Böszörményi Computer Networks Application Layer - 1 Computer Networks 2.Application Layer László Böszörményi Computer Networks Application Layer - 1 Applications + App Layer Protocols Applications, app. processes E.g., E-mail, WWW, DNS, P2P file sharing,

More information

Foundations of Telematics

Foundations of Telematics Foundations of Telematics Chapter 2 Application Layer Principles of network applications Important application protocols Using sockets Acknowledgement: These slides have been prepared by J.F. Kurose and

More information

CSC 4900 Computer Networks: End-to-End Design

CSC 4900 Computer Networks: End-to-End Design CSC 4900 Computer Networks: End-to-End Design Professor Henry Carter Fall 2017 Villanova University Department of Computing Sciences Review In the last two lectures, we discussed the fundamentals of networking

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

Computer Networks Unit II Transport layer (2012 pattern)

Computer Networks Unit II Transport layer (2012 pattern) Computer Networks Unit II Transport layer (2012 pattern) By Prof. B.A.Khivsara Assistant Prof. Department of Computer Engg. SNJB s KBJ COE, Chandwad Introduction 1-1 Chapter 2: ROAD MAP Transport Layer

More information

Chapter 2: Application Layer. Chapter 2 Application Layer. Some network apps. Application architectures. Chapter 2: Application layer

Chapter 2: Application Layer. Chapter 2 Application Layer. Some network apps. Application architectures. Chapter 2: Application layer Chapter 2 Application Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009. Chapter 2: Application Layer Our goals: conceptual, implementation

More information

Lecture 11. Transport Layer (cont d) Transport Layer 1

Lecture 11. Transport Layer (cont d) Transport Layer 1 Lecture 11 Transport Layer (cont d) Transport Layer 1 Agenda The Transport Layer (continue) Connection-oriented Transport (TCP) Flow Control Connection Management Congestion Control Introduction to the

More information

Protocol Layers, Security Sec: Application Layer: Sec 2.1 Prof Lina Battestilli Fall 2017

Protocol Layers, Security Sec: Application Layer: Sec 2.1 Prof Lina Battestilli Fall 2017 CSC 401 Data and Computer Communications Networks Protocol Layers, Security Sec:1.5-1.6 Application Layer: Sec 2.1 Prof Lina Battestilli Fall 2017 Outline Computer Networks and the Internet (Ch 1) 1.1

More information

Chapter 2. Application Layer. Chapter 2: Application Layer. Application layer - Overview. Some network apps. Creating a network appication

Chapter 2. Application Layer. Chapter 2: Application Layer. Application layer - Overview. Some network apps. Creating a network appication Mobile network Chapter 2 The Yanmin Zhu Department of Computer Science and Engineering Global ISP Home network Regional ISP Institutional network CSE Department 1 CSE Department 2 Application layer - Overview

More information

JAVA SOCKET PROGRAMMING

JAVA SOCKET PROGRAMMING JAVA SOCKET PROGRAMMING WHAT IS A SOCKET? Socket The combination of an IP address and a port number. (RFC 793 original TCP specification) The name of the Berkeley-derived application programming interfaces

More information

Part 2: Application Layer

Part 2: Application Layer Part 2: Application Layer Our goals: conceptual, implementation aspects of network application protocols client-server paradigm service models learn about protocols by examining popular application-level

More information

CS 3516: Advanced Computer Networks

CS 3516: Advanced Computer Networks Welcome to CS 3516: Adanced Computer Networks Prof. Yanhua Li Time: 9:00am 9:50am M, T, R, and F Location: AK219 Fall 2018 A-term 1 Some slides are originally from the course materials of the textbook

More information

Chapter 2: Application Layer last updated 22/09/03

Chapter 2: Application Layer last updated 22/09/03 Chapter 2: Application Layer last updated 22/09/03 Chapter goals: conceptual + implementation aspects of network application protocols client server paradigm service models learn about protocols by examining

More information

Chapter 2 Application Layer

Chapter 2 Application Layer Chapter 2 Application Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and

More information

Chapter 2 Application Layer

Chapter 2 Application Layer Chapter 2 Application Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and

More information

The Application Layer: Sockets Wrap-Up

The Application Layer: Sockets Wrap-Up The Application Layer: Sockets Wrap-Up CSC 249 February 8, 2018 slides mostly from J.F Kurose and K.W. Ross,copyright 1996-2012 1 Socket Overview q Examples with socket-api programming q Differences between

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 6

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 6 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 6 1 Midterm room for overflow students The students who used my registration code to enroll

More information

Chapter 2 Application Layer

Chapter 2 Application Layer CSB051 Computer Networks 電腦網路 Chapter 2 Application Layer 吳俊興國立高雄大學資訊工程學系 Chapter 2: Outline 2.1 Principles of network applications 2.2 Web and HTTP 2.3 FTP 2.4 Electronic Mail SMTP, POP3, IMAP 2.5 DNS

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

TCP and UDP Socket Programming in JAVA TCP Socket Programming 1. Write code for Client and save in GreetingClient.java

TCP and UDP Socket Programming in JAVA TCP Socket Programming 1. Write code for Client and save in GreetingClient.java TCP Socket Programming 1. Write code for Client and save in GreetingClient.java // File Name GreetingClient.java public class GreetingClient public static void main(string [] args) String servername =

More information

Chapter 2: Application layer

Chapter 2: Application layer Chapter 2 Application Layer A note on the use of these ppt slides: Were making these slides freely available to all (faculty, students, readers). Theyre in PowerPoint form so you can add, modify, and delete

More information

Chapter 2: outline. 2.1 principles of network applications app architectures app requirements

Chapter 2: outline. 2.1 principles of network applications app architectures app requirements Chapter 2: outline 2.1 principles of network applications app architectures app requirements 2.2 Web and HTTP 2.3 FTP 2.4 electronic mail SMTP, POP3, IMAP 2.5 DNS 2.6 P2P applications 2.7 socket programming

More information

Chapter 2 Application Layer. 2: Application Layer 1

Chapter 2 Application Layer. 2: Application Layer 1 Chapter 2 Application Layer 2: Application Layer 1 Chapter 2: Application layer 2.1 Principles of network applications 2.2 Web and HTTP 2.3 FTP 2.4 Electronic Mail SMTP, POP3, IMAP 2.5 DNS 2.6 P2P applications

More information

Chapter 2 Application Layer

Chapter 2 Application Layer Chapter 2 Application Layer Computer Networking: A Top Down Approach, 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007. All material copyright 1996-2007 J.F Kurose and K.W. Ross, All Rights

More information

Chapter 2 Application Layer

Chapter 2 Application Layer Chapter 2 Application Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and

More information

Chapter 2 Application Layer

Chapter 2 Application Layer Chapter 2 Application Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and

More information

Chapter 2 Application Layer

Chapter 2 Application Layer Chapter 2 Application Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and

More information

Chapter 2 Application Layer

Chapter 2 Application Layer Chapter 2 Application Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and

More information

Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ

Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ Chapter 2 Application Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.

More information

Unit 1 Java Networking

Unit 1 Java Networking Q1. What is Server Socket? Discuss the difference between the Socket and ServerSocket class. The ServerSocket class (java.net) can be used to create a server socket. This object is used to establish communication

More information

Chapter 2: Application layer. Chapter 2 Application Layer. Some network apps. Chapter 2: Application Layer. Chapter 2: Application layer

Chapter 2: Application layer. Chapter 2 Application Layer. Some network apps. Chapter 2: Application Layer. Chapter 2: Application layer Chapter 2 Application Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and

More information

Chapter 2: Application layer. Chapter 2 Application Layer. Chapter 2: Application Layer. Some network apps

Chapter 2: Application layer. Chapter 2 Application Layer. Chapter 2: Application Layer. Some network apps Chapter 2 Application Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and

More information

Chapter 2 Application Layer

Chapter 2 Application Layer Chapter 2 Application Layer Prof. Yuh-Shyan Chen Department of Computer Science and Information Engineering National Taipei University March 2007 Computer Networking: A Top Down Approach Featuring the

More information

Chapter 2 Application Layer

Chapter 2 Application Layer Chapter 2 Application Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009. All material copyright 1996-2009 J.F Kurose and K.W. Ross, All Rights

More information

Chapter 2 Application Layer

Chapter 2 Application Layer Chapter 2 Application Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009. All material copyright 1996-2009 J.F Kurose and K.W. Ross, All Rights

More information

Chapter 2: Application layer. Chapter 2 Application Layer. Chapter 2: Application Layer. Some network apps

Chapter 2: Application layer. Chapter 2 Application Layer. Chapter 2: Application Layer. Some network apps Chapter 2 Application Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009. Chapter 2: Application layer 2.1 Principles of network applications

More information

A note on the use of these ppt slides:

A note on the use of these ppt slides: Chapter 2 Application Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and

More information

Review of Previous Lecture

Review of Previous Lecture Review of Previous Lecture Network access and physical media Internet structure and ISPs Delay & loss in packet-switched networks Protocol layers, service models Some slides are in courtesy of J. Kurose

More information

COMP 211 Chapter 2 Application Layer

COMP 211 Chapter 2 Application Layer COMP 211 Chapter 2 Application Layer All material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith Ross Pearson/Addison

More information

Chapter 2 Application Layer

Chapter 2 Application Layer Chapter 2 Application Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and

More information

ENEE 457: Computer Systems Security 11/07/16. Lecture 18 Computer Networking Basics

ENEE 457: Computer Systems Security 11/07/16. Lecture 18 Computer Networking Basics ENEE 457: Computer Systems Security 11/07/16 Lecture 18 Computer Networking Basics Charalampos (Babis) Papamanthou Department of Electrical and Computer Engineering University of Maryland, College Park

More information

Data Communications & Networks. Session 2 Main Theme Application Layer. Dr. Jean-Claude Franchitti

Data Communications & Networks. Session 2 Main Theme Application Layer. Dr. Jean-Claude Franchitti Data Communications & Networks Session 2 Main Theme Application Layer Dr. Jean-Claude Franchitti New York University Computer Science Department Courant Institute of Mathematical Sciences Adapted from

More information

Data Communications & Networks. Session 2 Main Theme Application Layer. Dr. Jean-Claude Franchitti

Data Communications & Networks. Session 2 Main Theme Application Layer. Dr. Jean-Claude Franchitti Data Communications & Networks Session 2 Main Theme Application Layer Dr. Jean-Claude Franchitti New York University Computer Science Department Courant Institute of Mathematical Sciences Adapted from

More information

Chapter 2: Application Layer. Chapter 2: application layer. outline. Some network apps. Client-server architecture. Application architectures

Chapter 2: Application Layer. Chapter 2: application layer. outline. Some network apps. Client-server architecture. Application architectures Chapter 2: Application Layer Chapter 2: layer outline 2.1 principles of s 2.2 Web and HTTP 2.3 electronic, POP3, IMAP 2.4 socket programming with UDP and TCP our goals: conceptual, implementation aspects

More information

10 minutes survey (anonymous)

10 minutes survey (anonymous) 10 minutes survey (anonymous) v Comments/Suggestions to my lecture/lab/ homework/exam v If you like this course, which part do you like? v If you don t like it, which part do you not like? Thanks! Transport

More information

EECS 3214: Computer Network Protocols and Applications

EECS 3214: Computer Network Protocols and Applications EECS 3214: Computer Network Protocols and Applications Suprakash Datta Course page: http://www.eecs.yorku.ca/course/3214 Office: LAS 3043 Email: datta [at] cse.yorku.ca These slides are adapted from Jim

More information

COMP 3331/9331: Computer Networks and Applications

COMP 3331/9331: Computer Networks and Applications COMP 3331/9331: Computer Networks and Applications http://www.cse.unsw.edu.au/~cs3331 Week 3 Application Layer: DNS, P2P and Socket Programming Reading Guide: Chapter 2 - Sections 2.5 2.7 Announcements

More information

Chapter 2 Application Layer

Chapter 2 Application Layer Chapter 2 Application Layer A note on the use of these ppt slides: The notes used in this course are substantially based on powerpoint slides developed and copyrighted by J.F. Kurose and K.W. Ross, 2007

More information

Chapter 2 APPLICATIONS

Chapter 2 APPLICATIONS Chapter 2 APPLICATIONS Distributed Computing Group Computer Networks Summer 2006 Overview Learn specific application layer protocols http, ftp, smtp, pop, dns, etc. How to program network applications?

More information

COMPUTER NETWORKS CHAP 2 : APPLICATION LAYER

COMPUTER NETWORKS CHAP 2 : APPLICATION LAYER COMPUTER NETWORKS CHAP 2 : APPLICATION LAYER 0210 8 h 12 h 22 Sep 2011 Chapter 2: Application layer 2 2.1 Principles of network applications 2.2 Web and HTTP 2.3 FTP 2.4 Electronic Mail SMTP, POP3, IMAP

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith Ross Pearson/Addison Wesley

More information

Computer Networks and Applications. Application Layer ( , DNS, P2P, Socket Programming)

Computer Networks and Applications. Application Layer ( , DNS, P2P, Socket Programming) Computer Networks and Applications COMP 3331/COMP 9331 Week 3 Application Layer (Email, DNS, P2P, Socket Programming) Reading Guide: Chapter 2, Sections 2.4 2.7 Announcements v Lab for Week 3 Socket Programming

More information

Client/Server Computing

Client/Server Computing CS 312 Internet Concepts Client/Server Computing Dr. Michele Weigle Department of Computer Science Old Dominion University mweigle@cs.odu.edu http://www.cs.odu.edu/~mweigle/cs312-f11 1 Applications and

More information

CSE 4/589 Midterm Review. Hengtong Zhang SUNY Buffalo 10/30/2018

CSE 4/589 Midterm Review. Hengtong Zhang SUNY Buffalo 10/30/2018 CSE 4/589 Midterm Review Hengtong Zhang SUNY Buffalo 10/30/2018 Chapter 1 overview: what s the Internet? what s a protocol? network edge; hosts, access net, physical media network core: packet/circuit

More information

CSCI Computer Networks Spring 2017

CSCI Computer Networks Spring 2017 source: computer-networks-webdesign.com CSCI 6760 - Computer Networks Spring 2017 Instructor: Prof. Roberto Perdisci perdisci@cs.uga.edu These slides are adapted from the textbook slides by J.F. Kurose

More information

Computer Networks. Application Layer

Computer Networks. Application Layer Computer Networks Application Layer By: Mohammad Nassiri Bu-Ali Sina University, Hamedan Fall 2009 Chapter 2: Application layer!! 2.1 Principles of network applications!! 2.2 Web and HTTP!! 2.3 FTP!! 2.4

More information

SE322 Software Design and Architecture

SE322 Software Design and Architecture SE322 Software Design and Architecture Middleware Lecture 1 June 30 th, 2011 Pree Thiengburanathum pree.t@cmu.ac.th SE322, Middleware, Pree T. 1 Middleware References Middleware Architecture with Patterns

More information

CS 4390 Computer Networks. Pointers to Corresponding Section of Textbook

CS 4390 Computer Networks. Pointers to Corresponding Section of Textbook CS 4390 Computer Networks UT D application transport network data link physical Session 10 Transmission Control Protocol (TCP) An Overview Adapted from Computer Networking a Top-Down Approach 1996-2012

More information

Chapter 2 Application Layer

Chapter 2 Application Layer Chapter 2 Application Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and

More information

Chapter 2: Application layer. Computer Networks. Application Layer. Chapter 2: Application Layer. Some network apps. Bu-Ali Sina University, Hamedan

Chapter 2: Application layer. Computer Networks. Application Layer. Chapter 2: Application Layer. Some network apps. Bu-Ali Sina University, Hamedan Computer Networks Chapter 2: Application layer Application Layer By: Mohammad Nassiri!! 2.1 Principles of network applications!! 2.2 Web and HTTP!! 2.3 FTP!! 2.4 Electronic Mail!! SMTP, POP3, IMAP!! 2.5

More information

Chapter III: Transport Layer

Chapter III: Transport Layer Chapter III: Transport Layer UG3 Computer Communications & Networks (COMN) Mahesh Marina mahesh@ed.ac.uk Slides thanks to Myungjin Lee and copyright of Kurose and Ross TCP: Overview RFCs: 793,1122,1323,

More information

55:134/22C:178 Computer Communications Lecture Note Set 2 Summer 2004

55:134/22C:178 Computer Communications Lecture Note Set 2 Summer 2004 Chapter 2 Application Layer Note: These slides are adapted, with permission, from copyrighted material developed by the authors of Computer Networks, a Top-Down Approach All material copyright 1996-2002

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Transport Layer Connection Oriented Transport: TCP Sec 3.5 Prof. Lina Battestilli Fall 2017 Transport Layer Chapter 3 Outline 3.1 Transport-layer Services

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

Chapter 3 outline. 3.5 connection-oriented transport: TCP segment structure reliable data transfer flow control connection management

Chapter 3 outline. 3.5 connection-oriented transport: TCP segment structure reliable data transfer flow control connection management Chapter 3 outline 3.1 transport-layer services 3.2 multiplexing and demultiplexing 3.3 connectionless transport: UDP 3.4 principles of reliable data transfer 3.5 connection-oriented transport: TCP segment

More information

Telematics Chapter 8: Transport Layer

Telematics Chapter 8: Transport Layer Telematics Chapter 8: Transport Layer User watching video clip Application Layer Presentation Layer Session Layer Transport Layer Server with video clips Application Layer Presentation Layer Session Layer

More information