Lecture 7: Flow & Media Access Control"

Size: px
Start display at page:

Download "Lecture 7: Flow & Media Access Control""

Transcription

1 Lecture 7: Flow & Media Access Control" CSE 123: Computer Networks Alex C. Snoeren HW 2 due next Wednesday!

2 Lecture 7 Overview" Flow control Go-back-N Sliding window Methods to share physical media: multiple access Fixed partitioning Random access Channelizing mechanisms 2

3 Stop-and-Wait Performance" Lousy performance if xmit 1 pkt << prop. delay How bad? Want to utilize all available bandwidth Need to keep more data in flight How much? Remember the bandwidth-delay product? Also limited by quality of timeout (how long?) 3

4 Pipelined Transmission" Sender Receiver Sender Receiver Data 0 Data 0 Data 1 Data 1 Data 2 Data 3 ACK 0 ACK 2 ACK 3 Data 2 Data 3 ACK 0 Ignored! Keep multiple packets in flight Allows sender to make efficient use of the link Sequence numbers ensure receiver can distinguish frames Duplicate acknowledgements signal loss ACK the highest consecutive frame received Ignore (for now) non-sequential frames 4

5 Go-Back-N" Sender Receiver Sender Receiver Data 0 Data 0 Data 1 Data 1 Data 2 Data 3 ACK 0 Data 2 Data 3 ACK 0 ACK 2 ACK 3 Data 2 Data 4 Retransmit from point of loss upon duplicate ACK Packets between loss event and retransmission are ignored Also go-back-n if a timeout event occurs ACKs are cumulative Acknowledge current frame and all previous ones 5

6 Send Window" T imeout Sender Data 0 Data 1 Data 2 Data 3 Data 4 Data 2 Data 3 Data 4 ACK 0 Receiver Bound on number of outstanding packets Window opens upon receipt of new ACK Window resets entirely upon a timeout Limits amount of waste Still lots of duplicates We can do better with selective retransmission Go-Back-N Example with window size 3 6

7 Sliding Window" Single mechanism that supports: Multiple outstanding packets Reliable delivery In-order delivery Flow control At the core of all modern ARQ protocols Stop-and-Wait is a special case Receive window size of one 7

8 Sliding Window Sender" Sender: Window Size Window bounds outstanding unacked data Implies need for buffering at sender Last ACK applies to in-order data What to do on a timeout? Last ACK Last Sent Go-Back-N: send all unacknowledged data on timeout Selective Repeat: timer per packet, resend as needed 8

9 Sliding Window Receiver" Receiver: Receive Window Receiver buffers too: data may arrive out-of-order or faster than can be consumed flow control Receiver ACK choices: Last Received Largest Accepted Cumulative, Selective (exempt missing frames), Negative 9

10 Deciding When to Retransmit" How do you know when a packet has been lost? Ultimately sender uses timers to decide when to retransmit But how long should the timer be? Too long: inefficient (large delays, poor use of bandwidth) Too short: may retransmit unnecessarily (causing extra traffic) Right timer is based on the round-trip time (RTT) Which can vary greatly for reasons well see later 10

11 Can we shortcut the timeout?" Timeout is long in practice If packets are usually in order then out-of-order ACKs imply that a packet was lost Negative ACK» Receiver requests missing packet Fast retransmit» When sender receives multiple duplicate acknowledgements resends missing packet 11

12 Fast retransmit" Sender Data 0 Data 1 Data 2 Data 3 Data 4 ACK 0 Receiver Don t bother waiting Receipt of duplicate acknowledgement (dupack) indicates loss Retransmit immediately Data 2 Used in TCP Need to be careful if frames can be reordered 12

13 Is ARQ the Only Way?" No. We could use redundancy Send additional data to compensate for lost packets Why not use retransmission? Broadcast media with lots of receivers» If each one ACK/NAK then hard to scale Lots of messages Lots of state» Heterogeneous receivers E.g., variable quality wireless reception Highly lossy or very long delay channels (e.g., satellite) 13

14 Forward Error Correction" Use erasure codes to redundantly encode k data frames into m>k encoded frames Why do it at the frame level? E.g., Reed Solomon Codes, Tornado codes Multicast/broadcast encoded frames speculatively A receiver can reconstruct message from any k frames in the set of m encoded frames 14

15 A Digital Fountain " File Transmission 0 hours 1 hour 2 hours 3 hours User 1 User 2 4 hours 5 hours 15

16 Fixed Partitioning" Need to share media with multiple nodes (n) Multiple simultaneous conversations A simple solution Divide the channel into multiple, separate channels Channels are physically separate Bitrate of the channel is split across channels Nodes can only send/receive on their assigned channel Several different ways to do it Multiple Access madlibs 16

17 Frequency Division (FDMA)" Divide bandwidth of f Hz into n channels each with bandwidth f/n Hz Easy to implement, but unused subchannels go idle Used by traditional analog cell phone service, radio, TV Amplitude Amplitude Frequency Frequency 17

18 Time Division (TDMA)" Divide channel into rounds of n time slots each Assign different hosts to different time slots within a round Unused time slots are idle Used in GSM cell phones & digital cordless phones Example with 1-second rounds n=4 timeslots (250ms each) per round Host # sec 1 sec 1 sec 18

19 Code Division (CDMA)" Do nothing to physically separate the channels All stations transmit at same time in same frequency bands One of so-called spread-spectrum techniques Sender modulates their signal on top of unique code Sort of like the way Manchester modulates on top of clock The bit rate of resulting signal much lower than entire channel Receiver applies code filter to extract desired sender All other senders seem like noise with respect to signal Used in newer digital cellular technologies 19

20 Partitioning Visualization" FDMA TDMA power power CDMA power Courtesy Takashi Inoue 20

21 For Next Time" Keep reading 2.6 in P&D Start on Homework 2 Keep going on the project 21

Lecture 7: Flow Control"

Lecture 7: Flow Control Lecture 7: Flow Control" CSE 123: Computer Networks Alex C. Snoeren No class Monday! Lecture 7 Overview" Flow control Go-back-N Sliding window 2 Stop-and-Wait Performance" Lousy performance if xmit 1 pkt

More information

Lecture 7: Sliding Windows. CSE 123: Computer Networks Geoff Voelker (guest lecture)

Lecture 7: Sliding Windows. CSE 123: Computer Networks Geoff Voelker (guest lecture) Lecture 7: Sliding Windows CSE 123: Computer Networks Geoff Voelker (guest lecture) Please turn in HW #1 Thank you From last class: Sequence Numbers Sender Receiver Sender Receiver Timeout Timeout Timeout

More information

CSE 123: Computer Networks Alex C. Snoeren. HW 1 due NOW!

CSE 123: Computer Networks Alex C. Snoeren. HW 1 due NOW! CSE 123: Computer Networks Alex C. Snoeren HW 1 due NOW! Automatic Repeat Request (ARQ) Acknowledgements (ACKs) and timeouts Stop-and-Wait Sliding Window Forward Error Correction 2 Link layer is lossy

More information

Lecture 5: Flow Control. CSE 123: Computer Networks Alex C. Snoeren

Lecture 5: Flow Control. CSE 123: Computer Networks Alex C. Snoeren Lecture 5: Flow Control CSE 123: Computer Networks Alex C. Snoeren Pipelined Transmission Sender Receiver Sender Receiver Ignored! Keep multiple packets in flight Allows sender to make efficient use of

More information

Lecture 4: CRC & Reliable Transmission. Lecture 4 Overview. Checksum review. CRC toward a better EDC. Reliable Transmission

Lecture 4: CRC & Reliable Transmission. Lecture 4 Overview. Checksum review. CRC toward a better EDC. Reliable Transmission 1 Lecture 4: CRC & Reliable Transmission CSE 123: Computer Networks Chris Kanich Quiz 1: Tuesday July 5th Lecture 4: CRC & Reliable Transmission Lecture 4 Overview CRC toward a better EDC Reliable Transmission

More information

Communications Software. CSE 123b. CSE 123b. Spring Lecture 3: Reliable Communications. Stefan Savage. Some slides couresty David Wetherall

Communications Software. CSE 123b. CSE 123b. Spring Lecture 3: Reliable Communications. Stefan Savage. Some slides couresty David Wetherall CSE 123b CSE 123b Communications Software Spring 2002 Lecture 3: Reliable Communications Stefan Savage Some slides couresty David Wetherall Administrativa Home page is up and working http://www-cse.ucsd.edu/classes/sp02/cse123b/

More information

The Transport Layer Reliability

The Transport Layer Reliability The Transport Layer Reliability CS 3, Lecture 7 http://www.cs.rutgers.edu/~sn4/3-s9 Srinivas Narayana (slides heavily adapted from text authors material) Quick recap: Transport Provide logical communication

More information

CS43: Computer Networks Reliable Data Transfer. Kevin Webb Swarthmore College October 5, 2017

CS43: Computer Networks Reliable Data Transfer. Kevin Webb Swarthmore College October 5, 2017 CS43: Computer Networks Reliable Data Transfer Kevin Webb Swarthmore College October 5, 2017 Agenda Today: General principles of reliability Next time: details of one concrete, very popular protocol: TCP

More information

Computer Networking. Reliable Transport. Reliable Transport. Principles of reliable data transfer. Reliable data transfer. Elements of Procedure

Computer Networking. Reliable Transport. Reliable Transport. Principles of reliable data transfer. Reliable data transfer. Elements of Procedure Computer Networking Reliable Transport Prof. Andrzej Duda duda@imag.fr Reliable Transport Reliable data transfer Data are received ordered and error-free Elements of procedure usually means the set of

More information

Reliable Transport : Fundamentals of Computer Networks Bill Nace

Reliable Transport : Fundamentals of Computer Networks Bill Nace Reliable Transport 14-740: Fundamentals of Computer Networks Bill Nace Material from Computer Networking: A Top Down Approach, 6 th edition. J.F. Kurose and K.W. Ross Administration Stuff is due HW #1

More information

CS 43: Computer Networks. 16: Reliable Data Transfer October 8, 2018

CS 43: Computer Networks. 16: Reliable Data Transfer October 8, 2018 CS 43: Computer Networks 16: Reliable Data Transfer October 8, 2018 Reading Quiz Lecture 16 - Slide 2 Last class We are at the transport-layer protocol! provide services to the application layer interact

More information

Data Link Layer: Overview, operations

Data Link Layer: Overview, operations Data Link Layer: Overview, operations Chapter 3 1 Outlines 1. Data Link Layer Functions. Data Link Services 3. Framing 4. Error Detection/Correction. Flow Control 6. Medium Access 1 1. Data Link Layer

More information

Lecture 6: Reliable Transmission. CSE 123: Computer Networks Alex Snoeren (guest lecture) Alex Sn

Lecture 6: Reliable Transmission. CSE 123: Computer Networks Alex Snoeren (guest lecture) Alex Sn Lecture 6: Reliable Transmission CSE 123: Computer Networks Alex Snoeren (guest lecture) Alex Sn Lecture 6 Overview Finishing Error Detection Cyclic Remainder Check (CRC) Handling errors Automatic Repeat

More information

Principles of Reliable Data Transfer

Principles of Reliable Data Transfer Principles of Reliable Data Transfer 1 Reliable Delivery Making sure that the packets sent by the sender are correctly and reliably received by the receiver amid network errors, i.e., corrupted/lost packets

More information

Reliable Data Transfer

Reliable Data Transfer Reliable Data Transfer Kai Shen Reliable Data Transfer What is reliable data transfer? guaranteed arrival no error in order delivery Why is it difficult? unreliable underlying communication channel, which

More information

ERROR AND FLOW CONTROL. Lecture: 10 Instructor Mazhar Hussain

ERROR AND FLOW CONTROL. Lecture: 10 Instructor Mazhar Hussain ERROR AND FLOW CONTROL Lecture: 10 Instructor Mazhar Hussain 1 FLOW CONTROL Flow control coordinates the amount of data that can be sent before receiving acknowledgement It is one of the most important

More information

ECE697AA Lecture 3. Today s lecture

ECE697AA Lecture 3. Today s lecture ECE697AA Lecture 3 Transport Layer: TCP and UDP Tilman Wolf Department of Electrical and Computer Engineering 09/09/08 Today s lecture Transport layer User datagram protocol (UDP) Reliable data transfer

More information

Data Link Layer, Part 5 Sliding Window Protocols. Preface

Data Link Layer, Part 5 Sliding Window Protocols. Preface Data Link Layer, Part 5 Sliding Window Protocols These slides are created by Dr. Yih Huang of George Mason University. Students registered in Dr. Huang's courses at GMU can make a single machine-readable

More information

CHANNEL CODING 1. Introduction

CHANNEL CODING 1. Introduction CHANNEL CODING 1. Introduction The fundamental resources at the disposal of a communications engineer are signal power, time and bandwidth. For a given communications environment, these three resources

More information

Data Link Layer. Goals of This Lecture. Engineering Questions. Outline of the Class

Data Link Layer. Goals of This Lecture. Engineering Questions. Outline of the Class Data Link Layer Kuang Chiu Huang TCM NCKU Goals of This Lecture Through the lecture and in-class discussion, students are enabled to describe role and functions of the link layer, and compare different

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Transport Layer Pipelined Reliable Data Transfer Protocols: Go-Back-N and Selective Repeat Sec 3.4.2-3.4.3 Prof. Lina Battestilli Fall 2017 Transport Layer

More information

CSCI-1680 Link Layer Reliability John Jannotti

CSCI-1680 Link Layer Reliability John Jannotti CSCI-1680 Link Layer Reliability John Jannotti Based partly on lecture notes by David Mazières, Phil Levis, Rodrigo Fonseca Roadmap Last time Physical layer: encoding, modulation Link layer framing Today

More information

Link Layer: Retransmissions

Link Layer: Retransmissions Link Layer: Retransmissions Context on Reliability Where in the stack should we place reliability functions? Application Transport Network Link Physical CSE 461 University of Washington 2 Context on Reliability

More information

Link Layer. (continued)

Link Layer. (continued) Link Layer (continued) Where we are in the Course Moving on up to the Link Layer! Application Transport Network Link Physical CSE 461 University of Washington 2 Topics 1. Framing Delimiting start/end of

More information

CSE/EE 461. Sliding Windows and ARQ. Last Time. This Time. We finished up the Network layer Internetworks (IP) Routing (DV/RIP, LS/OSPF)

CSE/EE 461. Sliding Windows and ARQ. Last Time. This Time. We finished up the Network layer Internetworks (IP) Routing (DV/RIP, LS/OSPF) CSE/EE 46 Sliding Windows and ARQ Last Time We finished up the Network layer Internetworks (IP) Routing (DV/RIP, LS/OSPF) It was all about routing: how to provide end-to-end delivery of packets. Application

More information

CSCI-1680 Link Layer Reliability Rodrigo Fonseca

CSCI-1680 Link Layer Reliability Rodrigo Fonseca CSCI-1680 Link Layer Reliability Rodrigo Fonseca Based partly on lecture notes by David Mazières, Phil Levis, John Janno< Last time Physical layer: encoding, modulation Link layer framing Today Getting

More information

ECE 4450:427/527 - Computer Networks Spring 2017

ECE 4450:427/527 - Computer Networks Spring 2017 ECE 4450:427/527 - Computer Networks Spring 2017 Dr. Nghi Tran Department of Electrical & Computer Engineering Lecture 5.4: Multiple Access Protocols Dr. Nghi Tran (ECE-University of Akron) ECE 4450:427/527

More information

Computer Network. Direct Link Networks Reliable Transmission. rev /2/2004 1

Computer Network. Direct Link Networks Reliable Transmission. rev /2/2004 1 Computer Network Direct Link Networks Reliable Transmission rev 1.01 24/2/2004 1 Outline Direct link networks (Ch. 2) Encoding Framing Error detection Reliable delivery Media access control Network Adapter

More information

Error Detection Codes. Error Detection. Two Dimensional Parity. Internet Checksum Algorithm. Cyclic Redundancy Check.

Error Detection Codes. Error Detection. Two Dimensional Parity. Internet Checksum Algorithm. Cyclic Redundancy Check. Error Detection Two types Error Detection Codes (e.g. CRC, Parity, Checksums) Error Correction Codes (e.g. Hamming, Reed Solomon) Basic Idea Add redundant information to determine if errors have been introduced

More information

Direct Link Networks (II)

Direct Link Networks (II) Direct Link Networks (II) Computer Networking Lecture 03 HKU SPACE Community College January 30, 2012 HKU SPACE CC CN Lecture 03 1/25 Outline Reliable Link Service Stop-and-Wait Sliding Window Media Access

More information

Networking Link Layer

Networking Link Layer Networking Link Layer ECE 650 Systems Programming & Engineering Duke University, Spring 2018 (Link Layer Protocol material based on CS 356 slides) TCP/IP Model 2 Layer 1 & 2 Layer 1: Physical Layer Encoding

More information

Data Link Control Protocols

Data Link Control Protocols Protocols : Introduction to Data Communications Sirindhorn International Institute of Technology Thammasat University Prepared by Steven Gordon on 23 May 2012 Y12S1L07, Steve/Courses/2012/s1/its323/lectures/datalink.tex,

More information

CS 43: Computer Networks. 27: Media Access Contd. December 3, 2018

CS 43: Computer Networks. 27: Media Access Contd. December 3, 2018 CS 43: Computer Networks 27: Media Access Contd. December 3, 2018 Last Class The link layer provides lots of functionality: addressing, framing, media access, error checking could be used independently

More information

TCP over wireless links

TCP over wireless links CSc 450/550 Computer Communications & Networks TCP over wireless links Jianping Pan (stand-in for Dr. Wu) 1/31/06 CSc 450/550 1 TCP over wireless links TCP a quick review on how TCP works Wireless links

More information

CSCD 330 Network Programming

CSCD 330 Network Programming CSCD 330 Network Programming Lecture 10 Transport Layer Continued Spring 2018 Reading: Chapter 3 Some Material in these slides from J.F Kurose and K.W. Ross All material copyright 1996-2007 1 Last Time.

More information

Communication Networks

Communication Networks Communication Networks Prof. Laurent Vanbever Exercises week 4 Reliable Transport Reliable versus Unreliable Transport In the lecture, you have learned how a reliable transport protocol can be built on

More information

Data Communications. Automatic Repeat Request Medium Access Control

Data Communications. Automatic Repeat Request Medium Access Control Data Communications Automatic Repeat Request Medium Access Control Handling Error Cases Automatic Repeat request(arq), also known as Automatic Repeat Query, is an error-control method ARQ uses acknowledgements

More information

EECS 122, Lecture 19. Reliable Delivery. An Example. Improving over Stop & Wait. Picture of Go-back-n/Sliding Window. Send Window Maintenance

EECS 122, Lecture 19. Reliable Delivery. An Example. Improving over Stop & Wait. Picture of Go-back-n/Sliding Window. Send Window Maintenance EECS 122, Lecture 19 Today s Topics: More on Reliable Delivery Round-Trip Timing Flow Control Intro to Congestion Control Kevin Fall, kfall@cs cs.berkeley.eduedu Reliable Delivery Stop and Wait simple

More information

Impact of transmission errors on TCP performance. Outline. Random Errors

Impact of transmission errors on TCP performance. Outline. Random Errors Impact of transmission errors on TCP performance 1 Outline Impact of transmission errors on TCP performance Approaches to improve TCP performance Classification Discussion of selected approaches 2 Random

More information

ELEN Network Fundamentals Lecture 15

ELEN Network Fundamentals Lecture 15 ELEN 4017 Network Fundamentals Lecture 15 Purpose of lecture Chapter 3: Transport Layer Reliable data transfer Developing a reliable protocol Reliability implies: No data is corrupted (flipped bits) Data

More information

CRC. Implementation. Error control. Software schemes. Packet errors. Types of packet errors

CRC. Implementation. Error control. Software schemes. Packet errors. Types of packet errors CRC Implementation Error control An Engineering Approach to Computer Networking Detects all single bit errors almost all 2-bit errors any odd number of errors all bursts up to M, where generator length

More information

Lecture 10: Transpor Layer Principles of Reliable Data Transfer

Lecture 10: Transpor Layer Principles of Reliable Data Transfer Lecture 10: Transpor Layer Principles of Reliable Data Transfer COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition: 1996-2016,

More information

CMSC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala. October 11, 2018

CMSC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala. October 11, 2018 CMSC 417 Computer Networks Prof. Ashok K Agrawala 2018 Ashok Agrawala Message, Segment, Packet, and Frame host host HTTP HTTP message HTTP TCP TCP segment TCP router router IP IP packet IP IP packet IP

More information

16.682: Communication Systems Engineering. Lecture 17. ARQ Protocols

16.682: Communication Systems Engineering. Lecture 17. ARQ Protocols 16.682: Communication Systems Engineering Lecture 17 ARQ Protocols Eytan Modiano Automatic repeat request (ARQ) Break large files into packets FILE PKT H PKT H PKT H Check received packets for errors Use

More information

CMPE 257: Wireless and Mobile Networking

CMPE 257: Wireless and Mobile Networking CMPE 257: Wireless and Mobile Networking Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 10 CMPE 257 Spring'15 1 Student Presentations Schedule May 21: Sam and Anuj May 26: Larissa

More information

CSE 461: Introduction to Computer Communication Networks. Chunjong Park

CSE 461: Introduction to Computer Communication Networks. Chunjong Park CSE 461: Introduction to Computer Communication Networks Chunjong Park Reliable Data Transfer A sends a packet to B Ideally, the packet should arrive at B But A does not know whether B receives it How

More information

Announcements. No book chapter for this topic! Slides are posted online as usual Homework: Will be posted online Due 12/6

Announcements. No book chapter for this topic! Slides are posted online as usual Homework: Will be posted online Due 12/6 Announcements No book chapter for this topic! Slides are posted online as usual Homework: Will be posted online Due 12/6 Copyright c 2002 2017 UMaine Computer Science Department 1 / 33 1 COS 140: Foundations

More information

No book chapter for this topic! Slides are posted online as usual Homework: Will be posted online Due 12/6

No book chapter for this topic! Slides are posted online as usual Homework: Will be posted online Due 12/6 Announcements No book chapter for this topic! Slides are posted online as usual Homework: Will be posted online Due 12/6 Copyright c 2002 2017 UMaine School of Computing and Information S 1 / 33 COS 140:

More information

6.033 Lecture 12 3/16/09. Last time: network layer -- how to deliver a packet across a network of multiple links

6.033 Lecture 12 3/16/09. Last time: network layer -- how to deliver a packet across a network of multiple links 6.033 Lecture 12 3/16/09 Sam Madden End to End Layer Last time: network layer -- how to deliver a packet across a network of multiple links Recall that network layer is best effort, meaning: - packets

More information

STEVEN R. BAGLEY PACKETS

STEVEN R. BAGLEY PACKETS STEVEN R. BAGLEY PACKETS INTRODUCTION Talked about how data is split into packets Allows it to be multiplexed onto the network with data from other machines But exactly how is it split into packets and

More information

Basic Reliable Transport Protocols

Basic Reliable Transport Protocols Basic Reliable Transport Protocols Do not be alarmed by the length of this guide. There are a lot of pictures. You ve seen in lecture that most of the networks we re dealing with are best-effort : they

More information

Networked Systems and Services, Fall 2017 Reliability with TCP

Networked Systems and Services, Fall 2017 Reliability with TCP Networked Systems and Services, Fall 2017 Reliability with TCP Jussi Kangasharju Markku Kojo Lea Kutvonen 4. Transmission Control Protocol (TCP) RFC 793 + more than hundred other RFCs TCP Loss Recovery

More information

ECE 435 Network Engineering Lecture 10

ECE 435 Network Engineering Lecture 10 ECE 435 Network Engineering Lecture 10 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 28 September 2017 Announcements HW#4 was due HW#5 will be posted. midterm/fall break You

More information

Mobile Transport Layer Lesson 10 Timeout Freezing, Selective Retransmission, Transaction Oriented TCP and Explicit Notification Methods

Mobile Transport Layer Lesson 10 Timeout Freezing, Selective Retransmission, Transaction Oriented TCP and Explicit Notification Methods Mobile Transport Layer Lesson 10 Timeout Freezing, Selective Retransmission, Transaction Oriented TCP and Explicit Notification Methods 1 Timeout freezing of transmission (TFT) Used in situations where

More information

Chapter 11 Data Link Control 11.1

Chapter 11 Data Link Control 11.1 Chapter 11 Data Link Control 11.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 11-1 FRAMING The data link layer needs to pack bits into frames, so that each

More information

Improving Reliable Transport and Handoff Performance in Cellular Wireless Networks

Improving Reliable Transport and Handoff Performance in Cellular Wireless Networks Improving Reliable Transport and Handoff Performance in Cellular Wireless Networks H. Balakrishnan, S. Seshan, and R. H. Katz ACM Wireless Networks Vol. 1, No. 4, pp. 469-482 Dec. 1995 P. 1 Introduction

More information

The Data Link Layer Chapter 3

The Data Link Layer Chapter 3 The Data Link Layer Chapter 3 Data Link Layer Design Issues Error Detection and Correction Elementary Data Link Protocols Sliding Window Protocols Example Data Link Protocols Revised: August 2011 & February

More information

The flow of data must not be allowed to overwhelm the receiver

The flow of data must not be allowed to overwhelm the receiver Data Link Layer: Flow Control and Error Control Lecture8 Flow Control Flow and Error Control Flow control refers to a set of procedures used to restrict the amount of data that the sender can send before

More information

Message, Segment, Packet, and Frame Link-layer services Encoding, framing, error detection, transmission control Error correction and flow control

Message, Segment, Packet, and Frame Link-layer services Encoding, framing, error detection, transmission control Error correction and flow control Links EE 122: Intro to Communication Networks Fall 2007 (WF 4-5:30 in Cory 277) Vern Paxson TAs: Lisa Fowler, Daniel Killebrew & Jorge Ortiz http://inst.eecs.berkeley.edu/~ee122/ Announcements Homework

More information

rdt2.0 has a fatal flaw!

rdt2.0 has a fatal flaw! rdt2. has a fatal flaw! rdt2.1:, handles garbled ACK/NAKs what happens if ACK/NAK corrupted? doesn t know what happened at! can t just retransmit: possible duplicate handling duplicates: retransmits current

More information

file:///c:/users/hpguo/dropbox/website/teaching/fall 2017/CS4470/H...

file:///c:/users/hpguo/dropbox/website/teaching/fall 2017/CS4470/H... 1 of 9 11/26/2017, 11:28 AM Homework 3 solutions 1. A window holds bytes 2001 to 5000. The next byte to be sent is 3001. Draw a figure to show the situation of the window after the following two events:

More information

Data Link Layer: Multi Access Protocols

Data Link Layer: Multi Access Protocols Digital Communication in the Modern World Data Link Layer: Multi Access Protocols http://www.cs.huji.ac.il/~com1 com1@cs.huji.ac.il Some of the slides have been borrowed from: Computer Networking: A Top

More information

Physical Layer. Medium Access Links and Protocols. Point-to-Point protocols. Modems: Signaling. Modems Signaling. Srinidhi Varadarajan

Physical Layer. Medium Access Links and Protocols. Point-to-Point protocols. Modems: Signaling. Modems Signaling. Srinidhi Varadarajan P Physical Layer Srinidhi Varadarajan Medium Access Links and Protocols Three types of links : point-to-point (single wire, e.g. PPP, SLIP) broadcast (shared wire or medium; e.g, Ethernet, Wavelan, etc.)

More information

Networked Systems and Services, Fall 2018 Chapter 3

Networked Systems and Services, Fall 2018 Chapter 3 Networked Systems and Services, Fall 2018 Chapter 3 Jussi Kangasharju Markku Kojo Lea Kutvonen 4. Transport Layer Reliability with TCP Transmission Control Protocol (TCP) RFC 793 + more than hundred other

More information

Networked Systems and Services, Fall 2018 Chapter 2. Jussi Kangasharju Markku Kojo Lea Kutvonen

Networked Systems and Services, Fall 2018 Chapter 2. Jussi Kangasharju Markku Kojo Lea Kutvonen Networked Systems and Services, Fall 2018 Chapter 2 Jussi Kangasharju Markku Kojo Lea Kutvonen Outline Physical layer reliability Low level reliability Parities and checksums Cyclic Redundancy Check (CRC)

More information

TCP: Flow and Error Control

TCP: Flow and Error Control 1 TCP: Flow and Error Control Required reading: Kurose 3.5.3, 3.5.4, 3.5.5 CSE 4213, Fall 2006 Instructor: N. Vlajic TCP Stream Delivery 2 TCP Stream Delivery unlike UDP, TCP is a stream-oriented protocol

More information

Reliable Transport I: Concepts and TCP Protocol

Reliable Transport I: Concepts and TCP Protocol Reliable Transport I: Concepts and TCP Protocol Brad Karp UCL Computer Science CS 3035/GZ01 29 th October 2013 Part I: Transport Concepts Layering context Transport goals Transport mechanisms 2 Context:

More information

Chapter 3: Transport Layer Part A

Chapter 3: Transport Layer Part A Chapter 3: Transport Layer Part A Course on Computer Communication and Networks, CTH/GU The slides are adaptation of the slides made available by the authors of the course s main textbook 3: Transport

More information

1-1. Switching Networks (Fall 2010) EE 586 Communication and. November 8, Lecture 30

1-1. Switching Networks (Fall 2010) EE 586 Communication and. November 8, Lecture 30 EE 586 Communication and Switching Networks (Fall 2010) Lecture 30 November 8, 2010 1-1 Announcements Quiz on Wednesday Next Monday hands-on training on Contiki OS Bring your laptop 4-2 Multiple Access

More information

Recap. More TCP. Congestion avoidance. TCP timers. TCP lifeline. Application Presentation Session Transport Network Data Link Physical

Recap. More TCP. Congestion avoidance. TCP timers. TCP lifeline. Application Presentation Session Transport Network Data Link Physical Recap ½ congestion window ½ congestion window More TCP Congestion avoidance TCP timers TCP lifeline Application Presentation Session Transport Network Data Link Physical 1 Congestion Control vs Avoidance

More information

Rdt2.0: channel with packet errors (no loss!)

Rdt2.0: channel with packet errors (no loss!) Rdt2.0: channel with packet errors (no loss!) What mechanisms do we need to deal with error? Error detection Add checksum bits Feedback Acknowledgements (ACKs): receiver explicitly tells sender that packet

More information

CSCI-1680 Link Layer I Rodrigo Fonseca

CSCI-1680 Link Layer I Rodrigo Fonseca CSCI-1680 Link Layer I Rodrigo Fonseca Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti Last time Physical layer: encoding, modulation Today Link layer framing Getting frames

More information

The Transport Layer Multiplexing, Error Detection, & UDP

The Transport Layer Multiplexing, Error Detection, & UDP CPSC 852 Internetworking The Transport Layer Multiplexing, Error Detection, & UDP Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu http://www.cs.clemson.edu/~mweigle/courses/cpsc852

More information

Overview. TCP congestion control Computer Networking. TCP modern loss recovery. TCP modeling. TCP Congestion Control AIMD

Overview. TCP congestion control Computer Networking. TCP modern loss recovery. TCP modeling. TCP Congestion Control AIMD Overview 15-441 Computer Networking Lecture 9 More TCP & Congestion Control TCP congestion control TCP modern loss recovery TCP modeling Lecture 9: 09-25-2002 2 TCP Congestion Control Changes to TCP motivated

More information

Lecture 11: Transport Layer Reliable Data Transfer and TCP

Lecture 11: Transport Layer Reliable Data Transfer and TCP Lecture 11: Transport Layer Reliable Data Transfer and TCP COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition: 1996-2016,

More information

Goals of Today s Lecture. Adaptors Communicating

Goals of Today s Lecture. Adaptors Communicating Goals of Today s Lecture EE 122: Link Layer Ion Stoica TAs: Junda Liu, DK Moon, David Zats http://inst.eecs.berkeley.edu/~ee122/ (Materials with thanks to Vern Paxson, Jennifer Rexford, and colleagues

More information

Chapter 3. The Data Link Layer. Wesam A. Hatamleh

Chapter 3. The Data Link Layer. Wesam A. Hatamleh Chapter 3 The Data Link Layer The Data Link Layer Data Link Layer Design Issues Error Detection and Correction Elementary Data Link Protocols Sliding Window Protocols Example Data Link Protocols The Data

More information

Sliding Window Protocols, Connection Management, and TCP Reliability

Sliding Window Protocols, Connection Management, and TCP Reliability 1 Sliding Window Protocols, Connection Management, and TCP Reliability 2 Outline Review Sliding window protocols Go-back-n Selective repeat Connection management for reliability TCP reliability Overview

More information

UNIT IV -- TRANSPORT LAYER

UNIT IV -- TRANSPORT LAYER UNIT IV -- TRANSPORT LAYER TABLE OF CONTENTS 4.1. Transport layer. 02 4.2. Reliable delivery service. 03 4.3. Congestion control. 05 4.4. Connection establishment.. 07 4.5. Flow control 09 4.6. Transmission

More information

Links Reading: Chapter 2. Goals of Todayʼs Lecture. Message, Segment, Packet, and Frame

Links Reading: Chapter 2. Goals of Todayʼs Lecture. Message, Segment, Packet, and Frame Links Reading: Chapter 2 CS 375: Computer Networks Thomas Bressoud 1 Goals of Todayʼs Lecture Link-layer services Encoding, framing, and error detection Error correction and flow control Sharing a shared

More information

The Data Link Layer Chapter 3

The Data Link Layer Chapter 3 The Data Link Layer Chapter 3 Data Link Layer Design Issues Error Detection and Correction Elementary Data Link Protocols Sliding Window Protocols Example Data Link Protocols Revised: August 2011 The Data

More information

Links. CS125 - mylinks 1 1/22/14

Links. CS125 - mylinks 1 1/22/14 Links 1 Goals of Today s Lecture Link-layer services Encoding, framing, and error detection Error correction and flow control Sharing a shared media Channel partitioning Taking turns Random access Shared

More information

Transport Layer (TCP/UDP)

Transport Layer (TCP/UDP) Transport Layer (TCP/UDP) Where we are in the Course Moving on up to the Transport Layer! Application Transport Network Link Physical CSE 461 University of Washington 2 Three-Way Handshake (3) Suppose

More information

DualRTT: Enhancing TCP Performance During Delay Spikes

DualRTT: Enhancing TCP Performance During Delay Spikes DualRTT: Enhancing TCP Performance During Delay Spikes Ph.D. School of Computer Science University of Oklahoma. Email: atiq@ieee.org Web: www.cs.ou.edu/~atiq Presentation at Tohoku University, Sendai,

More information

DATA LINK LAYER UNIT 7.

DATA LINK LAYER UNIT 7. DATA LINK LAYER UNIT 7 1 Data Link Layer Design Issues: 1. Service provided to network layer. 2. Determining how the bits of the physical layer are grouped into frames (FRAMING). 3. Dealing with transmission

More information

Outline Computer Networking. TCP slow start. TCP modeling. TCP details AIMD. Congestion Avoidance. Lecture 18 TCP Performance Peter Steenkiste

Outline Computer Networking. TCP slow start. TCP modeling. TCP details AIMD. Congestion Avoidance. Lecture 18 TCP Performance Peter Steenkiste Outline 15-441 Computer Networking Lecture 18 TCP Performance Peter Steenkiste Fall 2010 www.cs.cmu.edu/~prs/15-441-f10 TCP congestion avoidance TCP slow start TCP modeling TCP details 2 AIMD Distributed,

More information

Contents. CIS 632 / EEC 687 Mobile Computing. TCP in Fixed Networks. Prof. Chansu Yu

Contents. CIS 632 / EEC 687 Mobile Computing. TCP in Fixed Networks. Prof. Chansu Yu CIS 632 / EEC 687 Mobile Computing TCP in Fixed Networks Prof. Chansu Yu Contents Physical layer issues Communication frequency Signal propagation Modulation and Demodulation Channel access issues Multiple

More information

CSC 4900 Computer Networks: The Link Layer

CSC 4900 Computer Networks: The Link Layer CSC 4900 Computer Networks: The Link Layer Professor Henry Carter Fall 2017 Last Time We talked about intra-as routing protocols: Which routing algorithm is used in RIP? OSPF? What techniques allow OSPF

More information

Question. Reliable Transport: The Prequel. Don t parse my words too carefully. Don t be intimidated. Decisions and Their Principles.

Question. Reliable Transport: The Prequel. Don t parse my words too carefully. Don t be intimidated. Decisions and Their Principles. Question How many people have not yet participated? Reliable Transport: The Prequel EE122 Fall 2012 Scott Shenker http://inst.eecs.berkeley.edu/~ee122/ Materials with thanks to Jennifer Rexford, Ion Stoica,

More information

Lecture 11 Overview. Last Lecture. This Lecture. Next Lecture. Medium Access Control. Flow and error control Source: Sections , 23.

Lecture 11 Overview. Last Lecture. This Lecture. Next Lecture. Medium Access Control. Flow and error control Source: Sections , 23. Last Lecture Lecture 11 Overview Medium Access Control This Lecture Flow and error control Source: Sections 11.1-11.2, 23.2 Next Lecture Local Area Networks 1 Source: Sections 13 Data link layer Logical

More information

NWEN 243. Networked Applications. Layer 4 TCP and UDP

NWEN 243. Networked Applications. Layer 4 TCP and UDP NWEN 243 Networked Applications Layer 4 TCP and UDP 1 About the second lecturer Aaron Chen Office: AM405 Phone: 463 5114 Email: aaron.chen@ecs.vuw.ac.nz Transport layer and application layer protocols

More information

The GBN sender must respond to three types of events:

The GBN sender must respond to three types of events: Go-Back-N (GBN) In a Go-Back-N (GBN) protocol, the sender is allowed to transmit several packets (when available) without waiting for an acknowledgment, but is constrained to have no more than some maximum

More information

Chapter Six. Errors, Error Detection, and Error Control. Data Communications and Computer Networks: A Business User s Approach Seventh Edition

Chapter Six. Errors, Error Detection, and Error Control. Data Communications and Computer Networks: A Business User s Approach Seventh Edition Chapter Six Errors, Error Detection, and Error Control Data Communications and Computer Networks: A Business User s Approach Seventh Edition After reading this chapter, you should be able to: Identify

More information

Lecture 3 The Transport Control Protocol (TCP) Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 3 The Transport Control Protocol (TCP) Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 3 The Transport Control Protocol (TCP) Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it TCP segment structure URG: urgent data (generally not used) ACK: ACK # valid PSH: push

More information

Fast Retransmit. Problem: coarsegrain. timeouts lead to idle periods Fast retransmit: use duplicate ACKs to trigger retransmission

Fast Retransmit. Problem: coarsegrain. timeouts lead to idle periods Fast retransmit: use duplicate ACKs to trigger retransmission Fast Retransmit Problem: coarsegrain TCP timeouts lead to idle periods Fast retransmit: use duplicate ACKs to trigger retransmission Packet 1 Packet 2 Packet 3 Packet 4 Packet 5 Packet 6 Sender Receiver

More information

Announcements Computer Networking. Outline. Transport Protocols. Transport introduction. Error recovery & flow control. Mid-semester grades

Announcements Computer Networking. Outline. Transport Protocols. Transport introduction. Error recovery & flow control. Mid-semester grades Announcements 15-441 Computer Networking Lecture 16 Transport Protocols Mid-semester grades Based on project1 + midterm + HW1 + HW2 42.5% of class If you got a D+,D, D- or F! must meet with Dave or me

More information

CS 640 Introduction to Computer Networks. Role of data link layer. Today s lecture. Lecture16

CS 640 Introduction to Computer Networks. Role of data link layer. Today s lecture. Lecture16 Introduction to Computer Networks Lecture16 Role of data link layer Service offered by layer 1: a stream of bits Service to layer 3: sending & receiving frames To achieve this layer 2 does Framing Error

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

Computer Networks. Sándor Laki ELTE-Ericsson Communication Networks Laboratory

Computer Networks. Sándor Laki ELTE-Ericsson Communication Networks Laboratory Computer Networks Sándor Laki ELTE-Ericsson Communication Networks Laboratory ELTE FI Department Of Information Systems lakis@elte.hu http://lakis.web.elte.hu Based on the slides of Laurent Vanbever. Further

More information

Reliable Transmission

Reliable Transmission Reliable Transmission How to fix corrupted frames. Error correcting codes too expensive Should discard frames (retransmission) Recover from Corrupt s should be done in the Link Level Data Link Networks

More information