Predicate Abstraction of Java Programs with Collections. Pavel Parízek, Ondřej Lhoták

Size: px
Start display at page:

Download "Predicate Abstraction of Java Programs with Collections. Pavel Parízek, Ondřej Lhoták"

Transcription

1 Predicate Abstraction of Java Programs with Collections Pavel Parízek, Ondřej Lhoták

2 Predicate abstraction void main() { int i = 0; int x = 1; while (i < 1) { x += i; i++; assert(x > 0); Predicates P_xle0: x <= 0 P_ilt0: i < 0 void main() { bool P_ilt0 = false; bool P_xle0 = false; while (*) { // x += i; if (P_xle0 && P_ilt0) P_xle0 = true; else if (!P_xle0 &&!P_ilt0) P_xle0 = false; else P_xle0 = *; // i++; P_ilt0 = P_ilt0? * : false; if (P_xle0) ERROR; [T. Ball et al. PLDI 2001] [T. Ball et al. EuroSys 2006]

3 Our work: Java programs with collections id2thread.put(1, new ThreadInfo(1,5)); id2thread.put(2, new ThreadInfo(2,18)); id2thread.put(3, new ThreadInfo(3,10)); active.add(2); active.add(3); List<Integer> schedule = new LinkedList(); Iterator<Integer> actit = active.iterator(); while (actit.hasnext()) { int actid = actit.next(); ThreadInfo actth = id2thread.get(actid); for (int i = 0; i < schedule.size(); i++) { int schid = schedule.get(i); ThreadInfo schth = id2thread.get(schid); if (actth.priority > schth.priority) { schedule.add(i, actid); break;

4 Running example: properties id2thread.put(1, new ThreadInfo(1,5)); id2thread.put(2, new ThreadInfo(2,18)); id2thread.put(3, new ThreadInfo(3,10)); active.add(2); active.add(3); List<Integer> schedule = new LinkedList(); Iterator<Integer> actit = active.iterator(); while (actit.hasnext()) { int actid = actit.next(); ThreadInfo actth = id2thread.get(actid); for (int i = 0; i < schedule.size(); i++) { int schid = schedule.get(i); ThreadInfo schth = id2thread.get(schid); if (actth.priority > schth.priority) { schedule.add(i, actid); break; actth!= null schth!= null

5 Running example: properties id2thread.put(1, new ThreadInfo(1,5)); id2thread.put(2, new ThreadInfo(2,18)); id2thread.put(3, new ThreadInfo(3,10)); active.add(2); active.add(3); List<Integer> schedule = new LinkedList(); Iterator<Integer> actit = active.iterator(); while (actit.hasnext()) { int actid = actit.next(); ThreadInfo actth = id2thread.get(actid); ( id active (id, th) id2thread) actth!= null for (int i = 0; i < schedule.size(); i++) { int schid = schedule.get(i); ThreadInfo schth = id2thread.get(schid); if (actth.priority > schth.priority) { schedule.add(i, actid); break;

6 Contribution Predicate language for modeling collection state at the interface level Modeling Java collections with abstract maps Weakest preconditions that capture state changes Optimizations for constructing abstract programs

7 Java collections Views over maps (keys, values) Nested collections (multiple levels) Lists: bounds on index parameters Aliasing between elements Field accesses on stored objects for (String s : m.keyset()) print(s); m.put(2, new LinkedList()); if (i < ll.size()) String s = ll.get(i); s = abc ; set1.add(s); set2.add(s); Data d = m.get( abc ); print(d.count);

8 Abstract maps Map get size containskey containsvalue findkey put putahead remove clear createiterator keysview valuesview Iterator hasmore getcurrent movenext

9 From Java collections to abstract maps Java Our approach Map directly modeled Set<T> map<t, boolean> List<T> map<integer, T>

10 Predicate language id2thread.put(1, new ThreadInfo(1,5)); id2thread.put(2, new ThreadInfo(2,18)); id2thread.put(3, new ThreadInfo(3,10)); active.add(2); active.add(3); mget(map, active, 2) = true List<Integer> schedule = new LinkedList(); Iterator<Integer> actit = active.iterator(); while (actit.hasnext()) { int actid = actit.next(); ThreadInfo actth = id2thread.get(actid); for (int i = 0; i < schedule.size(); i++) { int schid = schedule.get(i); ThreadInfo schth = id2thread.get(schid); morder(mit, active, 3, actit) morder(mit, active, actit, ) msize(msz, schedule) = 0 if (actth.priority > schth.priority) { schedule.add(i, actid); break; mget(map, id2thread, 1) = fread(priority, mget(map, id2thread, 1)) = 5

11 Weakest preconditions Statement Predicate WP(s,p) r = m.get(k) r = e m.put(k,v) mget(map,m,k ) = v it.next() morder(mit,m,it, ) q m : q m = m e = mget(map,q m,k) mget(mupdate(map,m,k,v), m,k ) = v q k : morder(mit,m,it,q k ) morder(mit,m,q k, )

12 Constructing abstract programs id2thread.put(1, new ThreadInfo(1,5)); id2thread.put(2, new ThreadInfo(2,18)); id2thread.put(3, new ThreadInfo(3,10)); active.add(2); active.add(3); List<Integer> schedule = new LinkedList(); Iterator<Integer> actit = active.iterator(); while (actit.hasnext()) { int actid = actit.next(); ThreadInfo actth = id2thread.get(actid); // mget(map,id2thread,1)!= boolean bv1 = false; // mget(map,active,2) = true boolean bv2 = false; // actth = null boolean bv3 = true; for (int i = 0; i < schedule.size(); i++) { int schid = schedule.get(i); ThreadInfo schth = id2thread.get(schid); if (actth.priority > schth.priority) { schedule.add(i, actid); break;... // statement: active.add(2) atomic { bv2 = true;... while (...) { // statement: actth = id2thread.get(actid) if (bv1 &&...) bv3 = false; mget(map, id2thread, 1)!= mget(map, active, 2 = true actth = null // many other predicates // property check if (bv3) assert false : "actth == null";...

13 Algorithm foreach stmt method do foreach up predicatesupdatedby(stmt) do wp = weakestprecondition(stmt, up); inpreds = influencingpredicates(stmt, up, wp); foreach cb cubes(inpreds) do newpredvalue <- callsmt( cb wp ); generateoutputcode(up, cb, newpredvalue); // code: if (cb) up = newpredvalue end for end for end for

14 Optimizations Selecting relevant predicates Statement: id2thread.put(1, new ThreadInfo) Updated predicate: mget(map,id2thread,1) = Conflicting literals Example: mget(map,id2thread,1) = mget(map,id2thread,1) = actth Example: morder(mit,active,2, ) morder(mit,active,3, )

15 J2BP Java program WALA J2BP Yices ASM abstract program JPF Web:

16 Benchmarks Programs created by Dillig et al. [POPL 2011] Examples from our paper Size: lines of Java code Properties: equal lists, valid content of nested sets, list elements not aliased, correct size of nested lists,...

17 Results Program Predicates J2BP time SMT calls List copy s 2086 Map copy s 1114 Reverse map s 3854 Set of map keys s 312 Map of lists s List of sets s Multimap s 2566 Map values s 6224 List elements s 8456 List of key-value pairs s 3324 Relationship between keys and values 6 9 s 198 Thread scheduling s 782 Rendering image s Processing results of a cycling race s Simple data-flow analysis s 11344

18 Results Program Predicates J2BP time SMT calls List copy s 2086 Map copy s 1114 Reverse map s 3854 Set of map keys s 312 Map of lists s List of sets s Multimap s 2566 Map values s 6224 List elements s 8456 List of key-value pairs s 3324 Relationship between keys and values 6 9 s 198 Thread scheduling s 782 Rendering image s Processing results of a cycling race s Simple data-flow analysis s 11344

19 Summary Contribution Verification technique based on predicate abstraction for Java programs with collections Key aspects: path-sensitive, inter-procedural Next steps Automated inference of necessary predicates Better performance and scalability Integration with CEGAR-based verification frameworks Long term future Using our predicate language in other program verification and bug finding techniques symbolic execution, interpolation based model checking

20 Conclusion Goal: verifying properties of Java program with collections Required information about collections state Modeling collections at the interface level J2BP:

Software Model Checking. Xiangyu Zhang

Software Model Checking. Xiangyu Zhang Software Model Checking Xiangyu Zhang Symbolic Software Model Checking CS510 S o f t w a r e E n g i n e e r i n g Symbolic analysis explicitly explores individual paths, encodes and resolves path conditions

More information

CSE 143. Computer Programming II

CSE 143. Computer Programming II Adam Blank Lecture 15 Spring 2015 CSE 143 Computer Programming II CSE 143: Computer Programming II More Interfaces & Iterators Today s Goals 1 We begin with ArrayIntList & LinkedIntList. Our goals are:

More information

Program Analysis and Code Verification

Program Analysis and Code Verification Program Analysis and Code Verification http://d3s.mff.cuni.cz Pavel Parízek CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics Language Lectures: English Labs: English Homework: Czech/English

More information

Simplifying Loop Invariant Generation Using Splitter Predicates. Rahul Sharma Işil Dillig, Thomas Dillig, and Alex Aiken Stanford University

Simplifying Loop Invariant Generation Using Splitter Predicates. Rahul Sharma Işil Dillig, Thomas Dillig, and Alex Aiken Stanford University Simplifying Loop Invariant Generation Using Splitter Predicates Rahul Sharma Işil Dillig, Thomas Dillig, and Alex Aiken Stanford University Loops and Loop Invariants Loop Head x = 0; while( x

More information

ITI Introduction to Computing II

ITI Introduction to Computing II ITI 1121. Introduction to Computing II Marcel Turcotte School of Information Technology and Engineering Iterator (part II) Inner class Implementation: fail-fast Version of March 20, 2011 Abstract These

More information

Decision Making in C

Decision Making in C Decision Making in C Decision making structures require that the programmer specify one or more conditions to be evaluated or tested by the program, along with a statement or statements to be executed

More information

Hybrid POR with Under-Approximate Dynamic Points-To and Determinacy Information

Hybrid POR with Under-Approximate Dynamic Points-To and Determinacy Information Hybrid POR with Under-Approximate Dynamic Points-To and Determinacy Information http://d3s.mff.cuni.cz Pavel Parízek CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics P. Parízek Hybrid POR

More information

Java PathFinder. Pavel Parízek. CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics

Java PathFinder. Pavel Parízek.  CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics Java PathFinder http://d3s.mff.cuni.cz Pavel Parízek CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics Java PathFinder (JPF) Verification framework for Java programs Explicit state space

More information

CS 510/13. Predicate Abstraction

CS 510/13. Predicate Abstraction CS 50/3 Predicate Abstraction Predicate Abstraction Extract a finite state model from an infinite state system Used to prove assertions or safety properties Successfully applied for verification of C programs

More information

Outline. iterator review iterator implementation the Java foreach statement testing

Outline. iterator review iterator implementation the Java foreach statement testing Outline iterator review iterator implementation the Java foreach statement testing review: Iterator methods a Java iterator only provides two or three operations: E next(), which returns the next element,

More information

COL106: Data Structures and Algorithms. Ragesh Jaiswal, IIT Delhi

COL106: Data Structures and Algorithms. Ragesh Jaiswal, IIT Delhi Stack and Queue How do we implement a Queue using Array? : A collection of nodes with linear ordering defined on them. Each node holds an element and points to the next node in the order. The first node

More information

Symbolic Execution, Dynamic Analysis

Symbolic Execution, Dynamic Analysis Symbolic Execution, Dynamic Analysis http://d3s.mff.cuni.cz Pavel Parízek CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics Symbolic execution Pavel Parízek Symbolic Execution, Dynamic Analysis

More information

Symbolic PathFinder, Pex, RoadRunner

Symbolic PathFinder, Pex, RoadRunner Symbolic PathFinder, Pex, RoadRunner http://d3s.mff.cuni.cz Pavel Parízek CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics Pavel Parízek Symbolic Execution, Dynamic Analysis 2 JPF extensions

More information

CMSC 202. Containers

CMSC 202. Containers CMSC 202 Containers Container Definition A container is a data structure whose purpose is to hold objects. Most languages support several ways to hold objects. Arrays are compiler-supported containers.

More information

ITI Introduction to Computing II

ITI Introduction to Computing II ITI 1121. Introduction to Computing II Iterator 1 (part I) Marcel Turcotte School of Electrical Engineering and Computer Science Version of March 26, 2013 Abstract These lecture notes are meant to be looked

More information

ITI Introduction to Computing II

ITI Introduction to Computing II ITI 1121. Introduction to Computing II Iterator 1 (part I) Marcel Turcotte School of Electrical Engineering and Computer Science Version of March 26, 2013 Abstract These lecture notes are meant to be looked

More information

No model may be available. Software Abstractions. Recap on Model Checking. Model Checking for SW Verif. More on the big picture. Abst -> MC -> Refine

No model may be available. Software Abstractions. Recap on Model Checking. Model Checking for SW Verif. More on the big picture. Abst -> MC -> Refine No model may be available Programmer Software Abstractions Tests Coverage Code Abhik Roychoudhury CS 5219 National University of Singapore Testing Debug Today s lecture Abstract model (Boolean pgm.) Desirable

More information

Code Contracts. Pavel Parízek. CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics

Code Contracts. Pavel Parízek.   CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics Code Contracts http://d3s.mff.cuni.cz Pavel Parízek CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics Pavel Parízek Code Contracts 2 Assertions Typically used as internal checks in the program

More information

Computing Approximate Happens-Before Order with Static and Dynamic Analysis

Computing Approximate Happens-Before Order with Static and Dynamic Analysis Department of Distributed and Dependable Systems Technical report no. D3S-TR-2013-06 May 7, 2018 Computing Approximate Happens-Before Order with Static and Dynamic Analysis Pavel Parízek, Pavel Jančík

More information

More on Verification and Model Checking

More on Verification and Model Checking More on Verification and Model Checking Wednesday Oct 07, 2015 Philipp Rümmer Uppsala University Philipp.Ruemmer@it.uu.se 1/60 Course fair! 2/60 Exam st October 21, 8:00 13:00 If you want to participate,

More information

ITI Introduction to Computing II

ITI Introduction to Computing II ITI 1121. Introduction to Computing II Iterator 1 (part I) Marcel Turcotte School of Electrical Engineering and Computer Science Version of March 24, 2013 Abstract These lecture notes are meant to be looked

More information

Hybrid Analysis for Partial Order Reduction of Programs with Arrays

Hybrid Analysis for Partial Order Reduction of Programs with Arrays Hybrid Analysis for Partial Order Reduction of Programs with Arrays Pavel Parízek Charles University in Prague, Faculty of Mathematics and Physics, Department of Distributed and Dependable Systems Abstract.

More information

Verification Conditions. Juan Pablo Galeotti, Alessandra Gorla, Andreas Rau Saarland University, Germany

Verification Conditions. Juan Pablo Galeotti, Alessandra Gorla, Andreas Rau Saarland University, Germany Verification Conditions Juan Pablo Galeotti, Alessandra Gorla, Andreas Rau Saarland University, Germany 30% projects (10% each) At least 50% threshold for exam admittance Groups of 2 70% final exam (see

More information

Introduction to Programming Using Java (98-388)

Introduction to Programming Using Java (98-388) Introduction to Programming Using Java (98-388) Understand Java fundamentals Describe the use of main in a Java application Signature of main, why it is static; how to consume an instance of your own class;

More information

Implementation. Learn how to implement the List interface Understand the efficiency trade-offs between the ArrayList and LinkedList implementations

Implementation. Learn how to implement the List interface Understand the efficiency trade-offs between the ArrayList and LinkedList implementations Readings List Implementations Chapter 20.2 Objectives Learn how to implement the List interface Understand the efficiency trade-offs between the ArrayList and LinkedList implementations Additional references:

More information

EECS Mission Critical Systems

EECS Mission Critical Systems EECS 4315 3.0 Mission Critical Systems Midterm 9:00 10:15 on March 1, 2018 Last name: First name: EECS login: Instructions No questions are allowed during the test. If a question is not clear, then write

More information

CMSC 202H. Containers and Iterators

CMSC 202H. Containers and Iterators CMSC 202H Containers and Iterators Container Definition A container is a data structure whose purpose is to hold objects. Most languages support several ways to hold objects Arrays are compiler-supported

More information

Static Program Analysis

Static Program Analysis Static Program Analysis Thomas Noll Software Modeling and Verification Group RWTH Aachen University https://moves.rwth-aachen.de/teaching/ws-1617/spa/ Schedule of Lectures Jan 17/19: Interprocedural DFA

More information

CSC Java Programming, Fall Java Data Types and Control Constructs

CSC Java Programming, Fall Java Data Types and Control Constructs CSC 243 - Java Programming, Fall 2016 Java Data Types and Control Constructs Java Types In general, a type is collection of possible values Main categories of Java types: Primitive/built-in Object/Reference

More information

AP COMPUTER SCIENCE JAVA CONCEPTS IV: RESERVED WORDS

AP COMPUTER SCIENCE JAVA CONCEPTS IV: RESERVED WORDS AP COMPUTER SCIENCE JAVA CONCEPTS IV: RESERVED WORDS PAUL L. BAILEY Abstract. This documents amalgamates various descriptions found on the internet, mostly from Oracle or Wikipedia. Very little of this

More information

Exam 1 CSCI 2600 Principles of Software October 6, 2015

Exam 1 CSCI 2600 Principles of Software October 6, 2015 NAME Exam 1 CSCI 2600 Principles of Software October 6, 2015 - DO NOT OPEN THIS EXAM UNTIL TOLD TO DO SO! - READ THROUGH THE ENTIRE EXAM BEFORE STARTING TO WORK. - YOU ARE ALLOWED ONLY 2 CHEAT PAGES. NO

More information

Software Model Checking. From Programs to Kripke Structures

Software Model Checking. From Programs to Kripke Structures Software Model Checking (in (in C or or Java) Java) Model Model Extraction 1: int x = 2; int y = 2; 2: while (y

More information

Configurable Software Model Checking

Configurable Software Model Checking Configurable Software Model Checking CPAchecker Dirk Beyer Dirk Beyer 1 / 26 Software Verification C Program int main() { int a = foo(); int b = bar(a); } assert(a == b); Verification Tool TRUE i.e., specification

More information

Pierce Ch. 3, 8, 11, 15. Type Systems

Pierce Ch. 3, 8, 11, 15. Type Systems Pierce Ch. 3, 8, 11, 15 Type Systems Goals Define the simple language of expressions A small subset of Lisp, with minor modifications Define the type system of this language Mathematical definition using

More information

DIT960 Datastrukturer

DIT960 Datastrukturer DIT960 Datastrukturer suggested solutions for exam 2017-08-17 1. Assume that n is a non-negative integer, that s is an integer set implemented with a hash table and containing at most n elements, that

More information

CS 2230 CS II: Data structures. Meeting 26: the Set ADT Brandon Myers University of Iowa

CS 2230 CS II: Data structures. Meeting 26: the Set ADT Brandon Myers University of Iowa CS 2230 CS II: Data structures Meeting 26: the Set ADT Brandon Myers University of Iowa Today s learning objectives Interpret code that uses the Set interface Describe how to use a Set for a simple application

More information

Goal. Overflow Checking in Firefox. Sixgill. Sixgill (cont) Verifier Design Questions. Sixgill: Properties 4/8/2010

Goal. Overflow Checking in Firefox. Sixgill. Sixgill (cont) Verifier Design Questions. Sixgill: Properties 4/8/2010 Goal Overflow Checking in Firefox Brian Hackett Can we clean a code base of buffer overflows? Keep it clean? Must prove buffer accesses are in bounds Verification: prove a code base has a property Sixgill

More information

Christoph Csallner, University of Texas at Arlington (UTA)

Christoph Csallner, University of Texas at Arlington (UTA) Christoph Csallner, University of Texas at Arlington (UTA) Joint work with: Nikolai Tillmann (MSR), Yannis Smaragdakis (UMass), Ishtiaque Hussain (UTA), Chengkai Li (UTA) Dynamic symbolic execution Pioneered

More information

Linked List Nodes (reminder)

Linked List Nodes (reminder) Outline linked lists reminders: nodes, implementation, invariants circular linked list doubly-linked lists iterators the Java foreach statement iterator implementation the ListIterator interface Linked

More information

Lecture 10 Design by Contract

Lecture 10 Design by Contract CS 5959 Writing Solid Code Fall 2015 Nov-23 Lecture 10 Design by Contract Zvonimir Rakamarić University of Utah Design by Contract Also called assume-guarantee reasoning Developers annotate software components

More information

Lists. CSC212 Lecture 8 D. Thiebaut, Fall 2014

Lists. CSC212 Lecture 8 D. Thiebaut, Fall 2014 Lists CSC212 Lecture 8 D. Thiebaut, Fall 2014 Review List = Organization of Data in a Linear Fashion, where Order is Important Set of actions that can be carried out efficiently on the data. Typical Actions

More information

Sliced Path Prefixes: An Effective Method to Enable Refinement Selection

Sliced Path Prefixes: An Effective Method to Enable Refinement Selection FORTE '15 Sliced Path Prefixes: An Effective Method to Enable Refinement Selection Dirk Beyer, Stefan Löwe, Philipp Wendler SoSy-Lab Software Systems We want Refinement Selection!!! Because straight-forward

More information

Some examples and/or figures were borrowed (with permission) from slides prepared by Prof. H. Roumani. The Collection Framework

Some examples and/or figures were borrowed (with permission) from slides prepared by Prof. H. Roumani. The Collection Framework Some examples and/or figures were borrowed (with permission) from slides prepared by Prof. H. Roumani The Collection Framework Collection: an aggregate that can hold a varying number of elements Interface:

More information

Towards a Software Model Checker for ML. Naoki Kobayashi Tohoku University

Towards a Software Model Checker for ML. Naoki Kobayashi Tohoku University Towards a Software Model Checker for ML Naoki Kobayashi Tohoku University Joint work with: Ryosuke Sato and Hiroshi Unno (Tohoku University) in collaboration with Luke Ong (Oxford), Naoshi Tabuchi and

More information

Deductive Methods, Bounded Model Checking

Deductive Methods, Bounded Model Checking Deductive Methods, Bounded Model Checking http://d3s.mff.cuni.cz Pavel Parízek CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics Deductive methods Pavel Parízek Deductive Methods, Bounded

More information

Decomposition Instead of Self- Composition for Proving the Absence of Timing Channels

Decomposition Instead of Self- Composition for Proving the Absence of Timing Channels Decomposition Instead of Self- Composition for Proving the Absence of Timing Channels PLDI June 20th, 2017 Timos Antonopoulos, Yale Paul Gazzillo, Yale Michael Hicks, UMD Eric Koskinen, Yale Tachio Terauchi,

More information

Exam 1 CSCI 2600 Principles of Software October 6, 2015

Exam 1 CSCI 2600 Principles of Software October 6, 2015 NAME Exam 1 CSCI 2600 Principles of Software October 6, 2015 - DO NOT OPEN THIS EXAM UNTIL TOLD TO DO SO! - READ THROUGH THE ENTIRE EXAM BEFORE STARTING TO WORK. - YOU ARE ALLOWED ONLY 2 CHEAT PAGES. NO

More information

Duet: Static Analysis for Unbounded Parallelism

Duet: Static Analysis for Unbounded Parallelism Duet: Static Analysis for Unbounded Parallelism Azadeh Farzan and Zachary Kincaid University of Toronto Abstract. Duet is a static analysis tool for concurrent programs in which the number of executing

More information

Automatic Testing of Sequential and Concurrent Substitutability

Automatic Testing of Sequential and Concurrent Substitutability Automatic Testing of Sequential and Concurrent Substitutability Michael Pradel and Thomas R. Gross Department of Computer Science ETH Zurich 1 Motivation void bar(foo f) { f.m();... } bar() expects functionality

More information

Verification of Parameterized Concurrent Programs By Modular Reasoning about Data and Control

Verification of Parameterized Concurrent Programs By Modular Reasoning about Data and Control Verification of Parameterized Concurrent Programs By Modular Reasoning about Data and Control Zachary Kincaid Azadeh Farzan University of Toronto January 18, 2013 Z. Kincaid (U. Toronto) Modular Reasoning

More information

The Pointer Assertion Logic Engine

The Pointer Assertion Logic Engine The Pointer Assertion Logic Engine [PLDI 01] Anders Mφller Michael I. Schwartzbach Presented by K. Vikram Cornell University Introduction Pointer manipulation is hard Find bugs, optimize code General Approach

More information

Softwaretechnik. Program verification. Albert-Ludwigs-Universität Freiburg. June 28, Softwaretechnik June 28, / 24

Softwaretechnik. Program verification. Albert-Ludwigs-Universität Freiburg. June 28, Softwaretechnik June 28, / 24 Softwaretechnik Program verification Albert-Ludwigs-Universität Freiburg June 28, 2012 Softwaretechnik June 28, 2012 1 / 24 Road Map Program verification Automatic program verification Programs with loops

More information

Following is the general form of a typical decision making structure found in most of the programming languages:

Following is the general form of a typical decision making structure found in most of the programming languages: Decision Making Decision making structures have one or more conditions to be evaluated or tested by the program, along with a statement or statements that are to be executed if the condition is determined

More information

Formal Verification Techniques for GPU Kernels Lecture 1

Formal Verification Techniques for GPU Kernels Lecture 1 École de Recherche: Semantics and Tools for Low-Level Concurrent Programming ENS Lyon Formal Verification Techniques for GPU Kernels Lecture 1 Alastair Donaldson Imperial College London www.doc.ic.ac.uk/~afd

More information

Verifying Concurrent Programs

Verifying Concurrent Programs Verifying Concurrent Programs Daniel Kroening 8 May 1 June 01 Outline Shared-Variable Concurrency Predicate Abstraction for Concurrent Programs Boolean Programs with Bounded Replication Boolean Programs

More information

Softwaretechnik. Program verification. Software Engineering Albert-Ludwigs-University Freiburg. June 30, 2011

Softwaretechnik. Program verification. Software Engineering Albert-Ludwigs-University Freiburg. June 30, 2011 Softwaretechnik Program verification Software Engineering Albert-Ludwigs-University Freiburg June 30, 2011 (Software Engineering) Softwaretechnik June 30, 2011 1 / 28 Road Map Program verification Automatic

More information

Small Formulas for Large Programs: On-line Constraint Simplification In Scalable Static Analysis

Small Formulas for Large Programs: On-line Constraint Simplification In Scalable Static Analysis Small Formulas for Large Programs: On-line Constraint Simplification In Scalable Static Analysis Isil Dillig, Thomas Dillig, Alex Aiken Stanford University Scalability and Formula Size Many program analysis

More information

Learning Loop Invariants for Program Verification

Learning Loop Invariants for Program Verification Learning Loop Invariants for Program Verification Xujie Si*, Hanjun Dai*, Mukund Raghothaman, Mayur Naik, Le Song University of Pennsylvania Georgia Institute of Technology NeurIPS 2018 Code: https://github.com/pl-ml/code2inv

More information

CSE115 / CSE503 Introduction to Computer Science I. Dr. Carl Alphonce 343 Davis Hall Office hours:

CSE115 / CSE503 Introduction to Computer Science I. Dr. Carl Alphonce 343 Davis Hall Office hours: CSE115 / CSE503 Introduction to Computer Science I Dr. Carl Alphonce 343 Davis Hall alphonce@buffalo.edu Office hours: Thursday 12:00 PM 2:00 PM Friday 8:30 AM 10:30 AM OR request appointment via e-mail

More information

Statements execute in sequence, one after the other, such as the following solution for a quadratic equation:

Statements execute in sequence, one after the other, such as the following solution for a quadratic equation: Control Structures Sequence Statements execute in sequence, one after the other, such as the following solution for a quadratic equation: double desc, x1, x2; desc = b * b 4 * a * c; desc = sqrt(desc);

More information

Semantic Analysis Type Checking

Semantic Analysis Type Checking Semantic Analysis Type Checking Maryam Siahbani CMPT 379 * Slides are modified version of Schwarz s compiler course at Stanford 4/8/2016 1 Type Checking Type errors arise when operations are performed

More information

CS 314 Exam 1 Fall 2017

CS 314 Exam 1 Fall 2017 Points off 1 2 3 4 5A 5B Total off Net Score CS 314 Exam 1 Fall 2017 Your Name Your UTEID Circle your TAs Name: Gilbert Jacob Jorge Joseph Lucas Rebecca Shelby Instructions: 1. There are 5 questions on

More information

CSE 307: Principles of Programming Languages

CSE 307: Principles of Programming Languages CSE 307: Principles of Programming Languages Advanced Topics R. Sekar Topics 1 / 14 1. 2 / 14 Section 1 3 / 14 Semantics of Programs Syntax defines what programs are valid. Semantics defines what the valid

More information

Exam 1 Prep. Dr. Demetrios Glinos University of Central Florida. COP3330 Object Oriented Programming

Exam 1 Prep. Dr. Demetrios Glinos University of Central Florida. COP3330 Object Oriented Programming Exam 1 Prep Dr. Demetrios Glinos University of Central Florida COP3330 Object Oriented Programming Progress Exam 1 is a Timed Webcourses Quiz You can find it from the "Assignments" link on Webcourses choose

More information

Overview of Java 8 Functional Interfaces

Overview of Java 8 Functional Interfaces Overview of Java 8 Functional Interfaces Douglas C. Schmidt d.schmidt@vanderbilt.edu www.dre.vanderbilt.edu/~schmidt Professor of Computer Science Institute for Software Integrated Systems Vanderbilt University

More information

Doubly LinkedList is Symmetrical! LinkedList Efficiency. Monday, April 8, 13. insert insert remove remove remove walk

Doubly LinkedList is Symmetrical! LinkedList Efficiency. Monday, April 8, 13. insert insert remove remove remove walk How Can We Improve the State of Experimental Evaluation in Computer Siene Peter Sweeney IBM Researh, TJ Watson Friday, April 12, 12:00 Kendade 307 1 Doubly LinkedList is Symmetrial! insert insert remove

More information

Having a BLAST with SLAM

Having a BLAST with SLAM Announcements Having a BLAST with SLAM Meetings -, CSCI 7, Fall 00 Moodle problems? Blog problems? Looked at the syllabus on the website? in program analysis Microsoft uses and distributes the Static Driver

More information

CS32 Discussion Week 3

CS32 Discussion Week 3 CS32 Discussion Week 3 Muhao Chen muhaochen@ucla.edu http://yellowstone.cs.ucla.edu/~muhao/ 1 Outline Doubly Linked List Sorted Linked List Reverse a Linked List 2 Doubly Linked List A linked list where

More information

Lecture 4. First order logic is a formal notation for mathematics which involves:

Lecture 4. First order logic is a formal notation for mathematics which involves: 0368.4435 Automatic Software Verification April 14, 2015 Lecture 4 Lecturer: Mooly Sagiv Scribe: Nimrod Busany, Yotam Frank Lesson Plan 1. First order logic recap. 2. The SMT decision problem. 3. Basic

More information

Set<Integer> s = new TreeSet<Integer>(); s.add( 7 ); s.add( 7 ); System.out.println( s.size() );

Set<Integer> s = new TreeSet<Integer>(); s.add( 7 ); s.add( 7 ); System.out.println( s.size() ); Advanced Java Concepts Maps and Sets and Miscellany Exercises and Programs 1. This code a) contains a compiler error. b) contains a runtime error. c) displays 1 d) displays 2 2. This code a) contains a

More information

CS 139 Practice Midterm Questions #2

CS 139 Practice Midterm Questions #2 CS 139 Practice Midterm Questions #2 Spring 2016 Name: 1. Write Java statements to accomplish each of the following. (a) Declares numbers to be an array of int s. (b) Initializes numbers to contain a reference

More information

Program Verification (6EC version only)

Program Verification (6EC version only) Program Verification (6EC version only) Erik Poll Digital Security Radboud University Nijmegen Overview Program Verification using Verification Condition Generators JML a formal specification language

More information

Abstract Interpretation

Abstract Interpretation Abstract Interpretation Ranjit Jhala, UC San Diego April 22, 2013 Fundamental Challenge of Program Analysis How to infer (loop) invariants? Fundamental Challenge of Program Analysis Key issue for any analysis

More information

The Java Memory Model

The Java Memory Model Jeremy Manson 1, William Pugh 1, and Sarita Adve 2 1 University of Maryland 2 University of Illinois at Urbana-Champaign Presented by John Fisher-Ogden November 22, 2005 Outline Introduction Sequential

More information

Maximal Causality Reduction for TSO and PSO. Shiyou Huang Jeff Huang Parasol Lab, Texas A&M University

Maximal Causality Reduction for TSO and PSO. Shiyou Huang Jeff Huang Parasol Lab, Texas A&M University Maximal Causality Reduction for TSO and PSO Shiyou Huang Jeff Huang huangsy@tamu.edu Parasol Lab, Texas A&M University 1 A Real PSO Bug $12 million loss of equipment curpos = new Point(1,2); class Point

More information

Mutual Summaries: Unifying Program Comparison Techniques

Mutual Summaries: Unifying Program Comparison Techniques Mutual Summaries: Unifying Program Comparison Techniques Chris Hawblitzel 1, Ming Kawaguchi 2, Shuvendu K. Lahiri 1, and Henrique Rebêlo 3 1 Microsoft Research, Redmond, WA, USA 2 University of California,

More information

CS 112 Introduction to Computing II. Wayne Snyder Computer Science Department Boston University

CS 112 Introduction to Computing II. Wayne Snyder Computer Science Department Boston University 9/5/6 CS Introduction to Computing II Wayne Snyder Department Boston University Today: Arrays (D and D) Methods Program structure Fields vs local variables Next time: Program structure continued: Classes

More information

3. Logical Values. Our Goal. Boolean Values in Mathematics. The Type bool in C++

3. Logical Values. Our Goal. Boolean Values in Mathematics. The Type bool in C++ 148 Our Goal 149 3. Logical Values Boolean Functions; the Type bool; logical and relational operators; shortcut evaluation int a; std::cin >> a; if (a % 2 == 0) std::cout

More information

CS Advanced Compiler Design Course Project

CS Advanced Compiler Design Course Project CS 744 - Advanced Compiler Design Course Project Timeline: Brief project choice e-mail due May 17 Project proposal due May 31 Progress report e-mail due June 23 Presentations approximately July 19, 21

More information

Tom Ball Sebastian Burckhardt Madan Musuvathi Microsoft Research

Tom Ball Sebastian Burckhardt Madan Musuvathi Microsoft Research Tom Ball (tball@microsoft.com) Sebastian Burckhardt (sburckha@microsoft.com) Madan Musuvathi (madanm@microsoft.com) Microsoft Research P&C Parallelism Concurrency Performance Speedup Responsiveness Correctness

More information

Counterexample Guided Abstraction Refinement in Blast

Counterexample Guided Abstraction Refinement in Blast Counterexample Guided Abstraction Refinement in Blast Reading: Checking Memory Safety with Blast 17-654/17-754 Analysis of Software Artifacts Jonathan Aldrich 1 How would you analyze this? * means something

More information

3. Logical Values. Our Goal. Boolean Values in Mathematics. The Type bool in C++

3. Logical Values. Our Goal. Boolean Values in Mathematics. The Type bool in C++ Our Goal 3. Logical Values Boolean Functions; the Type bool; logical and relational operators; shortcut evaluation int a; std::cin >> a; if (a % 2 == 0) std::cout

More information

3. Logical Values. Boolean Functions; the Type bool; logical and relational operators; shortcut evaluation

3. Logical Values. Boolean Functions; the Type bool; logical and relational operators; shortcut evaluation 140 3. Logical Values Boolean Functions; the Type bool; logical and relational operators; shortcut evaluation Our Goal 141 int a; std::cin >> a; if (a % 2 == 0) std::cout

More information

User-defined Functions. Conditional Expressions in Scheme

User-defined Functions. Conditional Expressions in Scheme User-defined Functions The list (lambda (args (body s to a function with (args as its argument list and (body as the function body. No quotes are needed for (args or (body. (lambda (x (+ x 1 s to the increment

More information

//instance variables //methods. Foo x = new Foo(); Interface: also a type of objects public interface Bar {

//instance variables //methods. Foo x = new Foo(); Interface: also a type of objects public interface Bar { BASIC CONCEPTS Class: a type of objects public class Foo { //instance variables //methods Foo x = new Foo(); Interface: also a type of objects public interface Bar { //method headers without implementation

More information

COSC 123 Computer Creativity. Java Lists and Arrays. Dr. Ramon Lawrence University of British Columbia Okanagan

COSC 123 Computer Creativity. Java Lists and Arrays. Dr. Ramon Lawrence University of British Columbia Okanagan COSC 123 Computer Creativity Java Lists and Arrays Dr. Ramon Lawrence University of British Columbia Okanagan ramon.lawrence@ubc.ca Objectives 1) Create and use arrays of base types and objects. 2) Create

More information

CS 314 Exam 2 Fall 2017

CS 314 Exam 2 Fall 2017 Points off 1 2 3 4 5 Total off CS 314 Exam 2 Fall 2017 Your Name Your UTEID Circle your TAs Name: Gilbert Jacob Jorge Joseph Lucas Rebecca Shelby Instructions: 1. There are 5 questions on this test. 100

More information

CS 314 Exam 2 Spring

CS 314 Exam 2 Spring Points off 1 2 3 4 5 Total off CS 314 Exam 2 Spring 2017 Your Name Your UTEID Instructions: 1. There are 5 questions on this test. 100 points available. Scores will be scaled to 200 points. 2. You have

More information

Engineering Robust Server Software

Engineering Robust Server Software Engineering Robust Server Software Scalability Lock Free Data Structures Atomics operations work great when they do what you need E.g., increment an int What about more complicated things? E.g., No hardware

More information

Automated Software Testing in the Absence of Specifications

Automated Software Testing in the Absence of Specifications Automated Software Testing in the Absence of Specifications Tao Xie North Carolina State University Department of Computer Science Nov 2005 http://www.csc.ncsu.edu/faculty/xie/ Why Automate Testing? Software

More information

Formal Specification and Verification

Formal Specification and Verification Formal Specification and Verification Introduction to Promela Bernhard Beckert Based on a lecture by Wolfgang Ahrendt and Reiner Hähnle at Chalmers University, Göteborg Formal Specification and Verification:

More information

CSE331 Winter 2014, Midterm Examination February 12, 2014

CSE331 Winter 2014, Midterm Examination February 12, 2014 CSE331 Winter 2014, Midterm Examination February 12, 2014 Please do not turn the page until 10:30. Rules: The exam is closed-book, closed-note, etc. Please stop promptly at 11:20. There are 100 points

More information

JAVA COLLECTION FRAMEWORK & SETS

JAVA COLLECTION FRAMEWORK & SETS JAVA COLLECTION FRAMEWORK & SETS Ch07.4-5 & Ch10.5 Presentation for use with the textbook 1. Data Structures and Algorithms in Java, 6 th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser,

More information

Defining Languages GMU

Defining Languages GMU Defining Languages CS463 @ GMU How do we discuss languages? We might focus on these qualities: readability: how well does a language explicitly and clearly describe its purpose? writability: how expressive

More information

A Verifying Compiler for a Multi-threaded Object-Oriented Language

A Verifying Compiler for a Multi-threaded Object-Oriented Language K. R. M. Leino and W. Schulte / A Verifying Compiler 1 A Verifying Compiler for a Multi-threaded Object-Oriented Language K. Rustan M. Leino and Wolfram Schulte Microsoft Research,Redmond, WA, USA e-mail:

More information

LDetector: A low overhead data race detector for GPU programs

LDetector: A low overhead data race detector for GPU programs LDetector: A low overhead data race detector for GPU programs 1 PENGCHENG LI CHEN DING XIAOYU HU TOLGA SOYATA UNIVERSITY OF ROCHESTER 1 Data races in GPU Introduction & Contribution Impact correctness

More information

The Warhol Language Reference Manual

The Warhol Language Reference Manual The Warhol Language Reference Manual Martina Atabong maa2247 Charvinia Neblett cdn2118 Samuel Nnodim son2105 Catherine Wes ciw2109 Sarina Xie sx2166 Introduction Warhol is a functional and imperative programming

More information

Process Synchronization

Process Synchronization Process Synchronization Concurrent access to shared data may result in data inconsistency Multiple threads in a single process Maintaining data consistency requires mechanisms to ensure the orderly execution

More information

Programming Languages Third Edition

Programming Languages Third Edition Programming Languages Third Edition Chapter 12 Formal Semantics Objectives Become familiar with a sample small language for the purpose of semantic specification Understand operational semantics Understand

More information

Nondeterminism is Unavoidable, but Data Races are Pure Evil

Nondeterminism is Unavoidable, but Data Races are Pure Evil Nondeterminism is Unavoidable, but Data Races are Pure Evil Hans-J. Boehm HP Labs 5 November 2012 1 Low-level nondeterminism is pervasive E.g. Atomically incrementing a global counter is nondeterministic.

More information