CS 140. Lab 1 - Threads

Size: px
Start display at page:

Download "CS 140. Lab 1 - Threads"

Transcription

1 CS 140 Lab 1 - Threads

2 setup lab 1 git general

3 setup lab 1 git general

4 Getting started with pintos

5 Get the Source set your path set path = ( /usr/class/cs140/`uname -m`/bin $path ).cshrc file pintos already working on cluster machines corn, cardinal, myth, get pintos src code git clone or zcat /usr/class/cs140/pintos/pintos.tar.gz tar x threads userprog vm filesys devices lib lib/kernel lib/user tests examples misc utils

6 Building Pintos cd threads make will create a build directory Makefile - describes how to build the kernel and add source files kernel.o - object file for kernel; contains debug info kernel.bin - memory image of the kernel; bascially kernel.o without debug info loader.bin - assembly that reads the kernel from disk into memory and starts it up

7 Running Pintos run individual tests pintos run alarm-multiple run a test run all tests make check which test to run

8 setup lab 1 git general

9 Lab 1 : threads two dirs : threads and devices devices/timer.c threads/fixed-point.h threads/synch.c threads/thread.c threads/thread.h read existing code Pintos already implements thread creation and thread completion, a simple scheduler to switch between threads, and synchronization primitives (semaphores, locks, condition variables, and optimization barriers).

10 Alarm clock timer_sleep(num_ticks) current version busy_waits what you need to do: put thread to sleep for num_ticks it gets put in ready queue TIMER_FREQ ticks per sec specified in devices/timer.h don t change this tests will fail timer_msleep(), timer_usleep(), timer_nsleep() call timer_sleep() and do not need to be modified

11 Priority Scheduling implement scheduler current scheduler just does round robin RULES thread with highest priority is always running unless it is blocked highest priority waiting thread should be awoken first

12 Priority Scheduling PRI_MIN -> 0 PRI_MAX -> 63 PRI_DEFAULT -> 31 can find these in threads/thread.h

13 Priority Scheduling Scenario 1 ready running blocked C 4 A 3 D 1 B F 10 G H 0

14 Priority Scheduling Scenario 1 tries to acquire lock ready running blocked C 4 A 3 D 1 B F 10 G H 0

15 Priority Scheduling Scenario 1 tries to acquire lock ready running blocked C 4 A 3 D 1 B F 10 G H 0

16 Priority Scheduling Scenario 1 tries to acquire lock ready running blocked C 4 A 3 D 1 B F 10 G H 0

17 Priority Scheduling Scenario 1 tries to acquire lock ready running blocked C 4 A 3 D 1 B CF 10 4 G F 10 H 0

18 Priority Scheduling Scenario ready running blocked C 4 A 3 D 1 B F 10 G H 0

19 Priority Scheduling Scenario unlocks lock G and H were waiting on ready running blocked C 4 A 3 D 1 B F 10 G H 0

20 Priority Scheduling Scenario unlocks lock G and H were waiting on ready running blocked C 4 A 3 D 1 B F 10 G H 0

21 Priority Scheduling Scenario unlocks lock G and H were waiting on ready running blocked C 4 A 3 D 1 B F 10 HF 10 0 G H 0

22 Priority Scheduling Scenario 3: Priority Inversion ready running blocked A 1 C 3 B

23 Priority Scheduling Scenario 3: Priority Inversion ready running blocked A 1 B C 3 tries to acquire lock that A holds

24 Priority Scheduling Scenario 3: Priority Inversion ready running blocked A 1 CB 3 C 3 B What can we do?

25 DONATE

26 Priority Scheduling Donation ready running blocked A 1 B C 3

27 Priority Scheduling Donation ready running blocked A 3 B A 3 1 C 3 B

28 Priority Scheduling Donation ready running blocked A CA 3 1 C 3 B

29 Priority Scheduling Donation multiple donation a thread is holding two locks that higher priority threads are waiting on respectively nested donation a high priority thread is waiting on a lower priority thread to release a lock which in turn is waiting on an even lower priority thread to release a lock A 1 B C 3 both waiting on the same lock or both waiting on a different lock A 1 B C 3 C is waiting for B to release his lock. Donates to B B runs and then gets blocked on a lock that A holds B donates to A

30 Priority Scheduler void thread_set_priority (int new_priority) Sets the current thread's priority to new_priority. If the current thread no longer has the highest priority, yields. int thread_get_priority (void) Returns the current thread's priority. In the presence of priority donation, returns the higher (donated) priority.

31 Advanced Scheduler no priority donation -mlfqs kernel option. You must write your code to allow us to choose a scheduling algorithm policy at Pintos startup time. parse_options() The priority argument to thread_create() should be ignored, as well as any calls to thread_set_priority() thread_get_priority() should return the thread's current priority as set by the scheduler.

32 Advanced Scheduler 4.4BSD Scheduler multilevel feedback queue maintains several queues of ready-to-run threads each queue holds threads with a different priority pick from highest priority queue if many threads are in highest priority queue they run in round robin order update data after a certain number of ticks updates need to happen before any ordinary kernel thread has a chance to run, so that there is no chance that a kernel thread could see a newly increased timer_ticks() value but old scheduler data values

33 Advanced Scheduler 4.4BSD Scheduler - Niceness Thread priority is dynamically determined by the scheduler using a formula Niceness 0 -> does not affect thread priority >0 -> decreases the priority of a thread and causes it to give up some CPU time it would otherwise receive ( max of 0) <0 -> tends to take away CPU time from other threads ( min of -0) The initial thread starts with a nice value of zero Other threads start with a nice value inherited from their parent thread.

34 Advanced Scheduler 4.4BSD Scheduler - Niceness int thread_get_nice (void) Returns the current thread's nice value. void thread_set_nice (int new_nice) Sets the current thread's nice value to new_nice and recalculates the thread's priority based on the new value. If the running thread no longer has the highest priority, yields.

35 Advanced Scheduler 4.4BSD Scheduler - Calculate Priority priorities range from 0 to 63 calculated every 4rth tick for every thread where recent_cpu has changed recalculated priority

36 Advanced Scheduler int thread_get_recent_cpu (void) Returns 100 times the current thread's recent_cpu value, rounded to the nearest integer. int thread_get_load_avg (void) Returns 100 times the current system load average, rounded to the nearest integer. pay attention to when you should update these values

37 Advanced Scheduler Fixed-Point Real Arithmetic priority, nice, and ready_threads are integers, but recent_cpu and load_avg are real numbers Pintos does not support floating-point arithmetic in the kernel, because it would complicate and slow the kernel. So you get to do it. YAY! detailed explanation here: html#sec137a

38 setup lab 1 git general

39 Git Setup $ git init $ git add. //for each group member $ fs sa. <sunet_id> all $ git clone <full path> //i.e. /afs/ir.stanford.edu/users/d/i/diakite/140

40 Git Basic Commands git add git push git log git commit git status git pull git stash

41 Git slightly more advanced git diff ( --cached) git branch git checkout git reset git merge git rebase -i gitk git show git cherry-pick git commit --ammend

42 setup lab 1 git general

43 Things to note are interrupts off if yes there is no concurrency are you updating things at the right time smart design decisions write clean code

44 General tips start early meet as a group and integrate often use source control (git) think about design before you start coding multithreaded so run multiple times

45 General tips jitter pintus -j seed introduce interrupts at regular intervals with seed Do not rush your design doc 50 % of credit look at the template get acquainted with tools early; i.e. backtrace and gdb

46 Due : Friday, January 4

47 That s It

48 Fun Stuff can modify your tests/tests.pm to get colors for your use Term::ANSIColor qw(:constants); $Term::ANSIColor::AUTORESET = 1; if ($verdict eq 'PASS') { print STDOUT GREEN "pass $test\n"; } else { print STDOUT RED "FAIL $test\n"; }

CS140 Discussion Section 1 April 2014

CS140 Discussion Section 1 April 2014 CS140 Discussion Section 1 April 2014 Outline For Today Project Advice / Info Jumpstarting Project 1 Using Pintos Alarm Clock Priority Scheduling & Priority Donation Advanced Scheduler Semaphores 50% of

More information

cs 140 project 1: threads 9 January 2015

cs 140 project 1: threads 9 January 2015 cs 140 project 1: threads 9 January 2015 git The basics: git clone git add git commit git branch git merge git stash git pull git push git rebase git Some guidelines & ideas: Write helpful commit and stash

More information

CSE 421/521 - Operating Systems Fall Lecture - VII CPU Scheduling - II. University at Buffalo

CSE 421/521 - Operating Systems Fall Lecture - VII CPU Scheduling - II. University at Buffalo CSE 421/521 - Operating Systems Fall 2014 Lecture - VII CPU Scheduling - II Tevfik Koşar University at Buffalo September 16 th, 2014 1 Roadmap CPU Scheduling Comparison of CPU Scheduling Algorithms Estimating

More information

Pintos: Threads Project. Slides by: Vijay Kumar Updated by Godmar Back Presented by: Min Li

Pintos: Threads Project. Slides by: Vijay Kumar Updated by Godmar Back Presented by: Min Li Pintos: Threads Project Slides by: Vijay Kumar Updated by Godmar Back Presented by: Min Li Introduction to Pintos Simple OS for the 80x86 architecture Capable of running on real hardware We use bochs,

More information

Project-1 Discussion

Project-1 Discussion CSE 421/521 - Operating Systems Fall 2014 Lecture - VI Project-1 Discussion Tevfik Koşar University at Buffalo September 11 th, 2014 1 Pintos Projects 1. Threads

More information

Project 1: Threads. Jin-Soo Kim ( Computer Systems Laboratory Sungkyunkwan University

Project 1: Threads. Jin-Soo Kim ( Computer Systems Laboratory Sungkyunkwan University Project 1: Threads Jin-Soo Kim ( jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu # of addr spaces: Pintos Kernel (1) The current Pintos kernel There is only

More information

Outline. TDDC47 Lesson 1: Pintos labs Assignments 0, 1, 2. Administration. A new kind of complexity. The Pintos boot process

Outline. TDDC47 Lesson 1: Pintos labs Assignments 0, 1, 2. Administration. A new kind of complexity. The Pintos boot process TDDC47 Lesson 1: Pintos labs Assignments 0, 1, 2 Jordi Cucurull, Mikael Asplund 2010 Administration Introduction to Pintos Scheduler Interrupts Synchronisation General description of labs Lab 1 Lab 2 Outline

More information

CS 162 Project 1: Threads

CS 162 Project 1: Threads CS 162 Design Document Due: Friday, February 19, 2016 Code Due: Friday, March 4, 2016 Final Report Due: Monday, March 7, 2016 Contents 1 Your task 3 1.1 Task 1: Efficient Alarm Clock..................................

More information

Section 7: Scheduling and Fairness

Section 7: Scheduling and Fairness March 1-2, 2018 Contents 1 Warmup 2 2 Vocabulary 2 3 Problems 3 3.1 Scheduling............................................. 3 3.2 Simple Priority Scheduler.................................... 4 3.2.1 Fairness..........................................

More information

Last Class: CPU Scheduling! Adjusting Priorities in MLFQ!

Last Class: CPU Scheduling! Adjusting Priorities in MLFQ! Last Class: CPU Scheduling! Scheduling Algorithms: FCFS Round Robin SJF Multilevel Feedback Queues Lottery Scheduling Review questions: How does each work? Advantages? Disadvantages? Lecture 7, page 1

More information

CS Computer Systems. Project 1: Threads in Pintos

CS Computer Systems. Project 1: Threads in Pintos CS 5600 Computer Systems Project 1: Threads in Pintos Getting Started With Pintos What does Pintos Include? Threads in Pintos Project 1 2 What is Pintos? Pintos is a teaching operating system from Stanford

More information

CSCI 350 Pintos Intro. Mark Redekopp

CSCI 350 Pintos Intro. Mark Redekopp 1 CSCI 350 Pintos Intro Mark Redekopp 2 Resources Pintos Resources https://web.stanford.edu/class/cs140/projects/pintos/pintos.html#sec_top Skip Stanford related setup in section 1.1 and 1.1.1 http://bits.usc.edu/cs350/assignments/pintos_guide_2016_11_13.pdf

More information

GIT Princípy tvorby softvéru, FMFI UK Jana Kostičová,

GIT Princípy tvorby softvéru, FMFI UK Jana Kostičová, GIT Princípy tvorby softvéru, FMFI UK Jana Kostičová, 25.4.2016 Basic features Distributed version control Developed in 2005, originally for Linux kernel development Free, GNU General Public License version

More information

Friday, September 23, Pintos

Friday, September 23, Pintos Pintos Kernel structure UNIX-like Monolithic Unithreading, multiprogramming No virtual memory Bare-bones file system Preemptible Threads New thread == new context Sort of a miniprogram Runs until return

More information

Implementing Mutual Exclusion. Sarah Diesburg Operating Systems CS 3430

Implementing Mutual Exclusion. Sarah Diesburg Operating Systems CS 3430 Implementing Mutual Exclusion Sarah Diesburg Operating Systems CS 3430 From the Previous Lecture The too much milk example shows that writing concurrent programs directly with load and store instructions

More information

Threads and Too Much Milk! CS439: Principles of Computer Systems January 31, 2018

Threads and Too Much Milk! CS439: Principles of Computer Systems January 31, 2018 Threads and Too Much Milk! CS439: Principles of Computer Systems January 31, 2018 Last Time CPU Scheduling discussed the possible policies the scheduler may use to choose the next process (or thread!)

More information

OPERATING SYSTEMS ASSIGNMENT 2 SIGNALS, USER LEVEL THREADS AND SYNCHRONIZATION

OPERATING SYSTEMS ASSIGNMENT 2 SIGNALS, USER LEVEL THREADS AND SYNCHRONIZATION OPERATING SYSTEMS ASSIGNMENT 2 SIGNALS, USER LEVEL THREADS AND SYNCHRONIZATION Responsible TAs: Vadim Levit & Benny Lutati Introduction In this assignment we will extend xv6 to support a simple signal

More information

Today: Synchronization. Recap: Synchronization

Today: Synchronization. Recap: Synchronization Today: Synchronization Synchronization Mutual exclusion Critical sections Example: Too Much Milk Locks Synchronization primitives are required to ensure that only one thread executes in a critical section

More information

Section 1: Tools. Contents CS162. January 19, Make More details about Make Git Commands to know... 3

Section 1: Tools. Contents CS162. January 19, Make More details about Make Git Commands to know... 3 CS162 January 19, 2017 Contents 1 Make 2 1.1 More details about Make.................................... 2 2 Git 3 2.1 Commands to know....................................... 3 3 GDB: The GNU Debugger

More information

Distributed Version Control (with Git)

Distributed Version Control (with Git) Distributed Version Control (with Git) Introduction and Tutorial fhlug 24. 03. 2011 Why Distributed? No single point of failure Automatic backups Fast local operations (log, diff, checkout, ) Authenticity

More information

CPU Scheduling. Operating Systems (Fall/Winter 2018) Yajin Zhou ( Zhejiang University

CPU Scheduling. Operating Systems (Fall/Winter 2018) Yajin Zhou (  Zhejiang University Operating Systems (Fall/Winter 2018) CPU Scheduling Yajin Zhou (http://yajin.org) Zhejiang University Acknowledgement: some pages are based on the slides from Zhi Wang(fsu). Review Motivation to use threads

More information

Midterm Exam #1 February 28, 2018 CS162 Operating Systems

Midterm Exam #1 February 28, 2018 CS162 Operating Systems University of California, Berkeley College of Engineering Computer Science Division EECS Spring 2018 Anthony D. Joseph and Jonathan Ragan-Kelley Midterm Exam #1 February 28, 2018 CS162 Operating Systems

More information

ECE 550D Fundamentals of Computer Systems and Engineering. Fall 2017

ECE 550D Fundamentals of Computer Systems and Engineering. Fall 2017 ECE 550D Fundamentals of Computer Systems and Engineering Fall 2017 The Operating System (OS) Prof. John Board Duke University Slides are derived from work by Profs. Tyler Bletsch and Andrew Hilton (Duke)

More information

Lecture #7: Implementing Mutual Exclusion

Lecture #7: Implementing Mutual Exclusion Lecture #7: Implementing Mutual Exclusion Review -- 1 min Solution #3 to too much milk works, but it is really unsatisfactory: 1) Really complicated even for this simple example, hard to convince yourself

More information

Interrupts and Time. Real-Time Systems, Lecture 5. Martina Maggio 28 January Lund University, Department of Automatic Control

Interrupts and Time. Real-Time Systems, Lecture 5. Martina Maggio 28 January Lund University, Department of Automatic Control Interrupts and Time Real-Time Systems, Lecture 5 Martina Maggio 28 January 2016 Lund University, Department of Automatic Control Content [Real-Time Control System: Chapter 5] 1. Interrupts 2. Clock Interrupts

More information

Interrupts and Time. Interrupts. Content. Real-Time Systems, Lecture 5. External Communication. Interrupts. Interrupts

Interrupts and Time. Interrupts. Content. Real-Time Systems, Lecture 5. External Communication. Interrupts. Interrupts Content Interrupts and Time Real-Time Systems, Lecture 5 [Real-Time Control System: Chapter 5] 1. Interrupts 2. Clock Interrupts Martina Maggio 25 January 2017 Lund University, Department of Automatic

More information

Introduction to Supercomputing

Introduction to Supercomputing Introduction to Supercomputing TMA4280 Introduction to development tools 0.1 Development tools During this course, only the make tool, compilers, and the GIT tool will be used for the sake of simplicity:

More information

EE458 - Embedded Systems Lecture 8 Semaphores

EE458 - Embedded Systems Lecture 8 Semaphores EE458 - Embedded Systems Lecture 8 Semaphores Outline Introduction to Semaphores Binary and Counting Semaphores Mutexes Typical Applications RTEMS Semaphores References RTC: Chapter 6 CUG: Chapter 9 1

More information

CS 140 Project 2: User Programs. Fall 2015

CS 140 Project 2: User Programs. Fall 2015 CS 140 Project 2: User Programs Fall 2015 Important Dates Project 1: DUE TODAY (Friday, October 9 th ) at 12pm Project 2 will be due Friday, October 23 rd at 12pm 2 weeks Start early J 2 Overview Project

More information

Suggested Solutions (Midterm Exam October 27, 2005)

Suggested Solutions (Midterm Exam October 27, 2005) Suggested Solutions (Midterm Exam October 27, 2005) 1 Short Questions (4 points) Answer the following questions (True or False). Use exactly one sentence to describe why you choose your answer. Without

More information

Common Git Commands. Git Crash Course. Teon Banek April 7, Teon Banek (TakeLab) Common Git Commands TakeLab 1 / 18

Common Git Commands. Git Crash Course. Teon Banek April 7, Teon Banek (TakeLab) Common Git Commands TakeLab 1 / 18 Common Git Commands Git Crash Course Teon Banek theongugl@gmail.com April 7, 2016 Teon Banek (TakeLab) Common Git Commands TakeLab 1 / 18 Outline 1 Introduction About Git Setup 2 Basic Usage Trees Branches

More information

Revision Control. An Introduction Using Git 1/15

Revision Control. An Introduction Using Git 1/15 Revision Control An Introduction Using Git 1/15 Overview 1. What is revision control? 2. 30,000 foot view 3. Software - git and gitk 4. Setting up your own repository on onyx 2/15 What is version control?

More information

Lab 4 File System. CS140 February 27, Slides adapted from previous quarters

Lab 4 File System. CS140 February 27, Slides adapted from previous quarters Lab 4 File System CS140 February 27, 2015 Slides adapted from previous quarters Logistics Lab 3 was due at noon today Lab 4 is due Friday, March 13 Overview Motivation Suggested Order of Implementation

More information

CMPSCI 377: Operating Systems Exam 1: Processes, Threads, CPU Scheduling and Synchronization. October 9, 2002

CMPSCI 377: Operating Systems Exam 1: Processes, Threads, CPU Scheduling and Synchronization. October 9, 2002 Name: Student Id: General instructions: CMPSCI 377: Operating Systems Exam 1: Processes, Threads, CPU Scheduling and Synchronization October 9, 2002 This examination booklet has 10 pages. Do not forget

More information

3 Threadsafe Bounded List Wrapper Library Monitor

3 Threadsafe Bounded List Wrapper Library Monitor CS 453: Operating Systems Project 4 (100/110 points) Thread-safe Monitor Library Due Date (on class home page) 1 Introduction In this project, we will create a thread-safe bounded version of the linked-list

More information

Outline The three W s Overview of gits structure Using git Final stuff. Git. A fast distributed revision control system

Outline The three W s Overview of gits structure Using git Final stuff. Git. A fast distributed revision control system Git A fast distributed revision control system Nils Moschüring PhD Student (LMU) 1 The three W s What? Why? Workflow and nomenclature 2 Overview of gits structure Structure Branches 3 Using git Setting

More information

LLVM Summer School, Paris 2017

LLVM Summer School, Paris 2017 LLVM Summer School, Paris 2017 David Chisnall June 12 & 13 Setting up You may either use the VMs provided on the lab machines or your own computer for the exercises. If you are using your own machine,

More information

Threads and Too Much Milk! CS439: Principles of Computer Systems February 6, 2019

Threads and Too Much Milk! CS439: Principles of Computer Systems February 6, 2019 Threads and Too Much Milk! CS439: Principles of Computer Systems February 6, 2019 Bringing It Together OS has three hats: What are they? Processes help with one? two? three? of those hats OS protects itself

More information

김주남, 우병일, 최종은 *, Nick 박주호, 박진영 *, 안세건, 이대현

김주남, 우병일, 최종은 *, Nick 박주호, 박진영 *, 안세건, 이대현 Project Teams Team Name WINOS Prime Megatron Members 고경민 *, 홍종목, 유상훈 이경준, 김종석 *, 이현수 이태훈 *, 선우석, 오동근 닥코딩박재영*, 이경욱, 박병규 5분대기조박지용, 정종균, 김대호 * 김주남, 우병일, 최종은 *, Nick 박주호, 박진영 *, 안세건, 이대현 1 Project 1: Threads

More information

Git. A fast distributed revision control system. Nils Moschüring PhD Student (LMU)

Git. A fast distributed revision control system. Nils Moschüring PhD Student (LMU) Git A fast distributed revision control system Nils Moschüring PhD Student (LMU) Nils Moschüring PhD Student (LMU), Git 1 1 The three W s What? Why? Workflow and nomenclature 2 Overview of gits structure

More information

Git. A Distributed Version Control System. Carlos García Campos

Git. A Distributed Version Control System. Carlos García Campos Git A Distributed Version Control System Carlos García Campos carlosgc@gnome.org Carlos García Campos carlosgc@gnome.org - Git 1 A couple of Quotes For the first 10 years of kernel maintenance, we literally

More information

About SJTUG. SJTU *nix User Group SJTU Joyful Techie User Group

About SJTUG. SJTU *nix User Group SJTU Joyful Techie User Group About SJTUG SJTU *nix User Group SJTU Joyful Techie User Group Homepage - https://sjtug.org/ SJTUG Mirrors - https://mirrors.sjtug.sjtu.edu.cn/ GitHub - https://github.com/sjtug Git Basic Tutorial Zhou

More information

CS 326: Operating Systems. Process Execution. Lecture 5

CS 326: Operating Systems. Process Execution. Lecture 5 CS 326: Operating Systems Process Execution Lecture 5 Today s Schedule Process Creation Threads Limited Direct Execution Basic Scheduling 2/5/18 CS 326: Operating Systems 2 Today s Schedule Process Creation

More information

ProgOS UE. Daniel Prokesch, Denise Ratasich. basierend auf Slides von Benedikt Huber, Roland Kammerer, Bernhard Frömel

ProgOS UE. Daniel Prokesch, Denise Ratasich. basierend auf Slides von Benedikt Huber, Roland Kammerer, Bernhard Frömel 1/50 Daniel Prokesch, Denise Ratasich basierend auf Slides von Benedikt Huber, Roland Kammerer, Bernhard Frömel Institut für Technische Informatik Technische Universität Wien - 182.710 Programmierung von

More information

Project 5: File Systems

Project 5: File Systems Project 5: File Systems by Ben Pfaff USF modifications by Greg Benson Chapter 1: Project 5: File Systems 1 1 Project 5: File Systems In the previous two assignments, you made extensive use of a file system

More information

CSE 410 Final Exam Sample Solution 6/08/10

CSE 410 Final Exam Sample Solution 6/08/10 Question 1. (12 points) (caches) (a) One choice in designing cache memories is to pick a block size. Which of the following do you think would be the most reasonable size for cache blocks on a computer

More information

L25: Modern Compiler Design Exercises

L25: Modern Compiler Design Exercises L25: Modern Compiler Design Exercises David Chisnall Deadlines: October 26 th, November 23 th, November 9 th These simple exercises account for 20% of the course marks. They are intended to provide practice

More information

Operating Systems 16 - CS 323 Assignment #2

Operating Systems 16 - CS 323 Assignment #2 Operating Systems 16 - CS 323 Assignment #2 Scheduler March 18, 2016 1 Objectives 1. Learn about scheduling in the Linux kernel 2. Understand the tradeoffs involved in scheduling 3. Work on the codebase

More information

EECS 482 Introduction to Operating Systems

EECS 482 Introduction to Operating Systems EECS 482 Introduction to Operating Systems Winter 2018 Baris Kasikci Slides by: Harsha V. Madhyastha Recap How to leverage hardware support to implement high-level synchronization primitives? Lock implementation

More information

CPU Scheduling. The scheduling problem: When do we make decision? - Have K jobs ready to run - Have N 1 CPUs - Which jobs to assign to which CPU(s)

CPU Scheduling. The scheduling problem: When do we make decision? - Have K jobs ready to run - Have N 1 CPUs - Which jobs to assign to which CPU(s) 1/32 CPU Scheduling The scheduling problem: - Have K jobs ready to run - Have N 1 CPUs - Which jobs to assign to which CPU(s) When do we make decision? 2/32 CPU Scheduling Scheduling decisions may take

More information

Lecture notes Lectures 1 through 5 (up through lecture 5 slide 63) Book Chapters 1-4

Lecture notes Lectures 1 through 5 (up through lecture 5 slide 63) Book Chapters 1-4 EE445M Midterm Study Guide (Spring 2017) (updated February 25, 2017): Instructions: Open book and open notes. No calculators or any electronic devices (turn cell phones off). Please be sure that your answers

More information

Project 2: User Programs

Project 2: User Programs Project 2: User Programs CS140 - Winter 2010 Slides by Andrew He, adapted from previous CS140 offerings Overview Project 2 is due Thursday, February 4 This project requires an understanding of: How user

More information

1 Textbook scheduling. 2 Priority scheduling. 3 Advanced scheduling topics. - What goals should we have for a scheduling algorithm?

1 Textbook scheduling. 2 Priority scheduling. 3 Advanced scheduling topics. - What goals should we have for a scheduling algorithm? CPU scheduling Outline CPU 1 P k... CPU 2 1 Textbook scheduling. CPU n 2 Priority scheduling The scheduling problem: - Have k jobs ready to run - Have n 1 CPUs that can run them 3 Advanced scheduling topics

More information

Versioning with git. Moritz August Git/Bash/Python-Course for MPE. Moritz August Versioning with Git

Versioning with git. Moritz August Git/Bash/Python-Course for MPE. Moritz August Versioning with Git Versioning with git Moritz August 13.03.2017 Git/Bash/Python-Course for MPE 1 Agenda What s git and why is it good? The general concept of git It s a graph! What is a commit? The different levels Remote

More information

MARUTHI SCHOOL OF BANKING (MSB)

MARUTHI SCHOOL OF BANKING (MSB) MARUTHI SCHOOL OF BANKING (MSB) SO IT - OPERATING SYSTEM(2017) 1. is mainly responsible for allocating the resources as per process requirement? 1.RAM 2.Compiler 3.Operating Systems 4.Software 2.Which

More information

Timers 1 / 46. Jiffies. Potent and Evil Magic

Timers 1 / 46. Jiffies. Potent and Evil Magic Timers 1 / 46 Jiffies Each timer tick, a variable called jiffies is incremented It is thus (roughly) the number of HZ since system boot A 32-bit counter incremented at 1000 Hz wraps around in about 50

More information

Course Syllabus. Operating Systems

Course Syllabus. Operating Systems Course Syllabus. Introduction - History; Views; Concepts; Structure 2. Process Management - Processes; State + Resources; Threads; Unix implementation of Processes 3. Scheduling Paradigms; Unix; Modeling

More information

Operating Systems Design Fall 2010 Exam 1 Review. Paul Krzyzanowski

Operating Systems Design Fall 2010 Exam 1 Review. Paul Krzyzanowski Operating Systems Design Fall 2010 Exam 1 Review Paul Krzyzanowski pxk@cs.rutgers.edu 1 Question 1 To a programmer, a system call looks just like a function call. Explain the difference in the underlying

More information

Page 1. Challenges" Concurrency" CS162 Operating Systems and Systems Programming Lecture 4. Synchronization, Atomic operations, Locks"

Page 1. Challenges Concurrency CS162 Operating Systems and Systems Programming Lecture 4. Synchronization, Atomic operations, Locks CS162 Operating Systems and Systems Programming Lecture 4 Synchronization, Atomic operations, Locks" January 30, 2012 Anthony D Joseph and Ion Stoica http://insteecsberkeleyedu/~cs162 Space Shuttle Example"

More information

CS370 Operating Systems Midterm Review

CS370 Operating Systems Midterm Review CS370 Operating Systems Midterm Review Yashwant K Malaiya Fall 2015 Slides based on Text by Silberschatz, Galvin, Gagne 1 1 What is an Operating System? An OS is a program that acts an intermediary between

More information

There are 13 total numbered pages, 7 Questions.

There are 13 total numbered pages, 7 Questions. UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, April, 2017 Third Year Materials ECE344H1 - Operating Systems Calculator Type: 4 Exam Type: A Examiner D. Yuan Please

More information

CSC Operating Systems Spring Lecture - XII Midterm Review. Tevfik Ko!ar. Louisiana State University. March 4 th, 2008.

CSC Operating Systems Spring Lecture - XII Midterm Review. Tevfik Ko!ar. Louisiana State University. March 4 th, 2008. CSC 4103 - Operating Systems Spring 2008 Lecture - XII Midterm Review Tevfik Ko!ar Louisiana State University March 4 th, 2008 1 I/O Structure After I/O starts, control returns to user program only upon

More information

Beyond git add/commit/push

Beyond git add/commit/push add Working dir commit Staging area push Local Remote Based on original version made by Alexis López @aa_lopez About us @tuxtor @edivargas jorgevargas.mx github.com/tuxtor Review traditionals commands

More information

Lecture 4: Memory Management & The Programming Interface

Lecture 4: Memory Management & The Programming Interface CS 422/522 Design & Implementation of Operating Systems Lecture 4: Memory Management & The Programming Interface Zhong Shao Dept. of Computer Science Yale University Acknowledgement: some slides are taken

More information

Operating Systems, Assignment 2 Threads and Synchronization

Operating Systems, Assignment 2 Threads and Synchronization Operating Systems, Assignment 2 Threads and Synchronization Responsible TA's: Zohar and Matan Assignment overview The assignment consists of the following parts: 1) Kernel-level threads package 2) Synchronization

More information

Introduction to Pintos

Introduction to Pintos Introduction to Pintos Prof. Jin-Soo Kim ( jinsookim@skku.edu) TAs Jong-Sung Lee (leitia@csl.skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Welcome to Pintos! What is

More information

Chapter 10: Case Studies. So what happens in a real operating system?

Chapter 10: Case Studies. So what happens in a real operating system? Chapter 10: Case Studies So what happens in a real operating system? Operating systems in the real world Studied mechanisms used by operating systems Processes & scheduling Memory management File systems

More information

Version Control: Gitting Started

Version Control: Gitting Started ting Started Cai Li October 2014 What is Version Control? Version control is a system that records changes to a file or set of files over time so that you can recall specific versions later. Local Version

More information

Processes and Threads

Processes and Threads COS 318: Operating Systems Processes and Threads Kai Li and Andy Bavier Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall13/cos318 Today s Topics u Concurrency

More information

Final Examination. Thursday, December 3, :20PM 620 PM. NAME: Solutions to Selected Problems ID:

Final Examination. Thursday, December 3, :20PM 620 PM. NAME: Solutions to Selected Problems ID: CSE 237B EMBEDDED SOFTWARE, FALL 2009 PROF. RAJESH GUPTA Final Examination Thursday, December 3, 2009 5:20PM 620 PM NAME: Solutions to Selected Problems ID: Problem Max. Points Points 1 20 2 25 3 35 4

More information

EECE.4810/EECE.5730: Operating Systems Spring 2017 Homework 2 Solution

EECE.4810/EECE.5730: Operating Systems Spring 2017 Homework 2 Solution 1. (15 points) A system with two dual-core processors has four processors available for scheduling. A CPU-intensive application (e.g., a program that spends most of its time on computation, not I/O or

More information

Processes. Overview. Processes. Process Creation. Process Creation fork() Processes. CPU scheduling. Pål Halvorsen 21/9-2005

Processes. Overview. Processes. Process Creation. Process Creation fork() Processes. CPU scheduling. Pål Halvorsen 21/9-2005 INF060: Introduction to Operating Systems and Data Communication Operating Systems: Processes & CPU Pål Halvorsen /9-005 Overview Processes primitives for creation and termination states context switches

More information

CS140 Operating Systems and Systems Programming Midterm Exam

CS140 Operating Systems and Systems Programming Midterm Exam CS140 Operating Systems and Systems Programming Midterm Exam October 28 th, 2002 (Total time = 50 minutes, Total Points = 50) Name: (please print) In recognition of and in the spirit of the Stanford University

More information

Scheduling II. Today. Next Time. ! Proportional-share scheduling! Multilevel-feedback queue! Multiprocessor scheduling. !

Scheduling II. Today. Next Time. ! Proportional-share scheduling! Multilevel-feedback queue! Multiprocessor scheduling. ! Scheduling II Today! Proportional-share scheduling! Multilevel-feedback queue! Multiprocessor scheduling Next Time! Memory management Scheduling with multiple goals! What if you want both good turnaround

More information

Scheduling II. q q q q. Proportional-share scheduling Multilevel-feedback queue Multiprocessor scheduling Next Time: Memory management

Scheduling II. q q q q. Proportional-share scheduling Multilevel-feedback queue Multiprocessor scheduling Next Time: Memory management Scheduling II q q q q Proportional-share scheduling Multilevel-feedback queue Multiprocessor scheduling Next Time: Memory management Scheduling with multiple goals What if you want both good turnaround

More information

Final review. From threads to file systems

Final review. From threads to file systems Final review q From threads to file systems Disclaimer Not guaranteed to be everything you need to know, just an overview of second half of the course 2 What s covered by the exam? Lectures from Threads

More information

Systèmes d Exploitation Avancés

Systèmes d Exploitation Avancés Systèmes d Exploitation Avancés Instructor: Pablo Oliveira ISTY Instructor: Pablo Oliveira (ISTY) Systèmes d Exploitation Avancés 1 / 32 Review : Thread package API tid thread create (void (*fn) (void

More information

CS2506 Quick Revision

CS2506 Quick Revision CS2506 Quick Revision OS Structure / Layer Kernel Structure Enter Kernel / Trap Instruction Classification of OS Process Definition Process Context Operations Process Management Child Process Thread Process

More information

Processes and Threads. Processes and Threads. Processes (2) Processes (1)

Processes and Threads. Processes and Threads. Processes (2) Processes (1) Processes and Threads (Topic 2-1) 2 홍성수 Processes and Threads Question: What is a process and why is it useful? Why? With many things happening at once in a system, need some way of separating them all

More information

CPU Scheduling. The scheduling problem: When do we make decision? - Have K jobs ready to run - Have N 1 CPUs - Which jobs to assign to which CPU(s)

CPU Scheduling. The scheduling problem: When do we make decision? - Have K jobs ready to run - Have N 1 CPUs - Which jobs to assign to which CPU(s) CPU Scheduling The scheduling problem: - Have K jobs ready to run - Have N 1 CPUs - Which jobs to assign to which CPU(s) When do we make decision? 1 / 39 CPU Scheduling new admitted interrupt exit terminated

More information

Comp 310 Computer Systems and Organization

Comp 310 Computer Systems and Organization Comp 310 Computer Systems and Organization Lecture #10 Process Management (CPU Scheduling & Synchronization) 1 Prof. Joseph Vybihal Announcements Oct 16 Midterm exam (in class) In class review Oct 14 (½

More information

Lab Exercise Git: A distributed version control system

Lab Exercise Git: A distributed version control system Lunds tekniska högskola Datavetenskap, Nov 21, 2016 EDAF45 Programvaruutveckling i grupp projekt Labb 2 (Git): Labbhandledning Checked on Git versions: 2.7.4 Lab Exercise Git: A distributed version control

More information

a handful of Git workflows for the agilist steven harman twitter: stevenharman

a handful of Git workflows for the agilist steven harman twitter: stevenharman a handful of Git workflows for the agilist steven harman twitter: stevenharman http://stevenharman.net stop worrying and start loving The Git. git is awesome - if you re using it, you know. if not, don

More information

CS355 Hw 4. Interface. Due by the end of day Tuesday, March 20.

CS355 Hw 4. Interface. Due by the end of day Tuesday, March 20. Due by the end of day Tuesday, March 20. CS355 Hw 4 User-level Threads You will write a library to support multiple threads within a single Linux process. This is a user-level thread library because the

More information

Native POSIX Thread Library (NPTL) CSE 506 Don Porter

Native POSIX Thread Library (NPTL) CSE 506 Don Porter Native POSIX Thread Library (NPTL) CSE 506 Don Porter Logical Diagram Binary Memory Threads Formats Allocators Today s Lecture Scheduling System Calls threads RCU File System Networking Sync User Kernel

More information

git Version: 2.0b Merge combines trees, and checks out the result Pull does a fetch, then a merge If you only can remember one command:

git Version: 2.0b Merge combines trees, and checks out the result Pull does a fetch, then a merge If you only can remember one command: Merge combines trees, and checks out the result Pull does a fetch, then a merge If you only can remember one command: git --help Get common commands and help git --help How to use git

More information

Introduction to Nachos Scheduling

Introduction to Nachos Scheduling Introduction to Nachos Scheduling Michael Jantz Dr. Prasad Kulkarni 1 Introduction In this lab, we will become acquainted with the Nachos simulator, and make a slight change to its scheduling semantics.

More information

CS140 Operating Systems and Systems Programming

CS140 Operating Systems and Systems Programming CS140 Operating Systems and Systems Programming Midterm Exam July 25th, 2006 Total time = 60 minutes, Total Points = 100 Name: (please print) In recognition of and in the spirit of the Stanford University

More information

EECE.4810/EECE.5730: Operating Systems Spring 2017

EECE.4810/EECE.5730: Operating Systems Spring 2017 EECE.4810/EECE.5730: Operating Systems Spring 2017 Midterm Exam Solution 1. (19 + 6 points) UProcess management Parts (a) and (b) of this problem refer to the following program: int main() { pid_t pid1,

More information

CS 390 Software Engineering Lecture 5 More Git

CS 390 Software Engineering Lecture 5 More Git CS 390 Software Engineering Lecture 5 More Git Reference: Scott Chacon and Ben Straub, Pro Git, published by Apress, available at https://git-scm.com/book/en/v2. Outline Finish local repository Remote

More information

CMSC421: Principles of Operating Systems

CMSC421: Principles of Operating Systems CMSC421: Principles of Operating Systems Nilanjan Banerjee Assistant Professor, University of Maryland Baltimore County nilanb@umbc.edu http://www.csee.umbc.edu/~nilanb/teaching/421/ Principles of Operating

More information

Precept 3: Preemptive Scheduler. COS 318: Fall 2018

Precept 3: Preemptive Scheduler. COS 318: Fall 2018 Precept 3: Preemptive Scheduler COS 318: Fall 2018 Project 3 Schedule Precept: Monday 10/15, 7:30pm (You are here) Design Review: Monday 10/22, 3-7pm Due: Sunday 11/04, 11:55pm Project 3 Overview Goal:

More information

OPERATING SYSTEMS - ASSIGNMENT 2 SYNCHRONIZATION & THREADS

OPERATING SYSTEMS - ASSIGNMENT 2 SYNCHRONIZATION & THREADS OPERATING SYSTEMS - ASSIGNMENT 2 SYNCHRONIZATION & THREADS Introduction In this assignment we will add synchronization tools\methods to the xv6 kernel. We start with a simple binary semaphore and then

More information

Problem Set 2. CS347: Operating Systems

Problem Set 2. CS347: Operating Systems CS347: Operating Systems Problem Set 2 1. Consider a clinic with one doctor and a very large waiting room (of infinite capacity). Any patient entering the clinic will wait in the waiting room until the

More information

CS 571 Operating Systems. Midterm Review. Angelos Stavrou, George Mason University

CS 571 Operating Systems. Midterm Review. Angelos Stavrou, George Mason University CS 571 Operating Systems Midterm Review Angelos Stavrou, George Mason University Class Midterm: Grading 2 Grading Midterm: 25% Theory Part 60% (1h 30m) Programming Part 40% (1h) Theory Part (Closed Books):

More information

Processes. CS 475, Spring 2018 Concurrent & Distributed Systems

Processes. CS 475, Spring 2018 Concurrent & Distributed Systems Processes CS 475, Spring 2018 Concurrent & Distributed Systems Review: Abstractions 2 Review: Concurrency & Parallelism 4 different things: T1 T2 T3 T4 Concurrency: (1 processor) Time T1 T2 T3 T4 T1 T1

More information

Lecture 5: Synchronization w/locks

Lecture 5: Synchronization w/locks Lecture 5: Synchronization w/locks CSE 120: Principles of Operating Systems Alex C. Snoeren Lab 1 Due 10/19 Threads Are Made to Share Global variables and static objects are shared Stored in the static

More information

Computer Science 161

Computer Science 161 Computer Science 161 150 minutes/150 points Fill in your name, logname, and TF s name below. Name Logname The points allocated to each problem correspond to how much time we think the problem should take.

More information

CS 140 Project 4 File Systems Review Session

CS 140 Project 4 File Systems Review Session CS 140 Project 4 File Systems Review Session Prachetaa Due Friday March, 14 Administrivia Course withdrawal deadline today (Feb 28 th ) 5 pm Project 3 due today (Feb 28 th ) Review section for Finals on

More information

CPU Scheduling. The scheduling problem: When do we make decision? - Have K jobs ready to run - Have N 1 CPUs - Which jobs to assign to which CPU(s)

CPU Scheduling. The scheduling problem: When do we make decision? - Have K jobs ready to run - Have N 1 CPUs - Which jobs to assign to which CPU(s) CPU Scheduling The scheduling problem: - Have K jobs ready to run - Have N 1 CPUs - Which jobs to assign to which CPU(s) When do we make decision? 1 / 31 CPU Scheduling new admitted interrupt exit terminated

More information