Access Mod 70C j Access Mod 70B 10 ICC Unit 20 Access Mod 70A

Size: px
Start display at page:

Download "Access Mod 70C j Access Mod 70B 10 ICC Unit 20 Access Mod 70A"

Transcription

1 (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/ Al 31 July 2014 ( ) P O P C T (51) International Patent Classification: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, H04N 7/10 ( ) OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (21) International Application Number: TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, PCT/US2014/ ZW. (22) International Filing Date: (84) Designated States (unless otherwise indicated, for every 24 January 2014 ( ) kind of regional protection available): ARIPO (BW, GH, (25) Filing Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (26) Publication Language: English TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (30) Priority Data: EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, 61/756, January 2013 ( ) US MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, (72) Inventors; and KM, ML, MR, NE, SN, TD, TG). (71) Applicants : ERGENBRIGHT, Charles [US/US]; 6433 Cardinaux Ln., Holly Springs, North Carolina (US). Declarations under Rule 4.17 : HUBBARD, Sean [US/US]; 720 Glen Reilly Dr., Fay- of inventorship (Rule 4.17(iv)) etteville, North Carolina (US). Published: (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, with international search report (Art. 21(3)) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, before the expiration of the time limit for amending the BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, claims and to be republished in the event of receipt of DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, amendments (Rule 48.2(h)) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (54) Title: METHOD AND SYSTEM FOR MITIGATING THE EFFECTS OF AN ACTIVE SHOOTER Access Mod 70C j Access Mod 70B 10 ICC Unit 20 Access Mod 70A _j_ps_unit 50C j VI_U_nit_30C MSAD 40C ips Unit 50B V I Unit 30B MSAD 40B PS Unit 50A MSAD 0A! j V I Unit 30A [_Door Unit.gOC Door Unit 80B! Door Unit 80A FIG. 1 (57) Abstract: A victim initiated mitigation (VIM) system is capable of mitigating the effects of an Active Shooter in a facility such as a high occupancy facility. The VIM system initiates an immediate automated facility lock-down once activated through the use of o one or more Victim Initiated units. This lock-down imposes immediate environmental control measures on the facility and constrains the shooter's freedom of movement, as well as protects potential victims behind locked doors. Additionally, immediate automated alerts and notifications are sent to first responders and facility/campus occupants, and command and control functionality is provided via an incident command center.

2 TITLE: METHOD AND SYSTEM FOR MITIGATING THE EFFECTS OF A N ACTIVE SHOOTER Priority Claim This application claims priority to U.S. Provisional Patent Application Serial No. 61/756,439, filed on January 24, 201 3, which is herein incorporated by reference in its entirety. Technical Field BACKGROUND [0001 ] This disclosure relates to security systems and, more particularly, to a system for mitigating the effects of an Active Shooter. Description of the Related Art [0002] Since 1909, at least 272 acts of targeted violence have occurred on 2 18 college campuses throughout the United States. Currently, 6,563 university campuses contain a combined population of over 2 1,400,000 people, or what can otherwise be viewed as potential Active Shooter victims. An Active Shooter generally refers to an individual actively engaged in killing or attempting to kill people in a confined populated area typically through the use of firearms, but may also include other types of weapons. The average duration of an Active Shooter incident in high occupancy facilities such as U.S. Institutions of Higher Education (IHEs) is 12.5 minutes. In contrast, the average law enforcement response time is 18 minutes. Current conventional control measures for active shooter incidents have been and remain insufficient to reduce the rate of kill, or improve law enforcement response time to such events. [0003] Current conventional security measures must be augmented or reinforced in some novel way in order to provide an appropriate level of security for students, faculty and staff in American colleges and universities as well as other high occupancy facilities. A high occupancy facility generally refers to a public or private facility containing 100 or greater occupants or supporting a daily transient patron throughput of 100 or greater.

3 [0004] There is no current policy, procedure or conventional system adequate to prevent active shooter scenarios prior to their occurrence or reliably mitigate their effects once these events have started. First responders, when dispatched via standard or emergency notifications, are simply not able to respond to an active shooter scenario quickly enough to prevent injuries or deaths.

4 SUMMARY OF THE EMBODIMENTS [0005] Various embodiments of a method and system for mitigating the effects of an active shooter are disclosed. Broadly speaking, a victim initiated mitigation (VIM) system may mitigate the effects of an active shooter or other aggressor event in a facility such as a high occupancy facility. The VIM system initiates an immediate automated facility lock-down once activated, through the use of one or more victim initiated units. This lock-down may impose immediate environmental control measures on the entire facility and may constrain the shooter's freedom of movement, as well as protect potential victims behind locked doors. Additionally, immediate automated alerts and notifications may be sent to first responders and facility/campus occupants, and command and control functionality is provided via an incident command center. [0006] In one embodiment, a method for mitigating the effects of an aggressor includes detecting an aggressor event such as an active shooter discharging a firearm in a building and activating a victim initiated (VI) unit of a VIM system. The method may also include initiating an aggressor mitigation sequence in response to activation of the V I unit. The aggressor mitigation sequence may include automatically controlling ingress by one or more entry doors of the building. For example, locking down the building by locking all closed doors and releasing all locked doors that may be held open. The aggressor mitigation sequence may also include automatically notifying response personnel of the aggressor event. The aggressor mitigation sequence may further include providing command and control functionality to the response personnel and automatically broadcasting predetermined messages via one or more communications media by, for example, causing the incident command center to begin broadcasting predetermined automated messages. In one implementation, these messages may include automated instructions to response personnel as well as prepared alert messages to other facility personnel. [0007] In another embodiment, the VIM system may include one or more victim initiated (VI) units each configured to automatically initiate an aggressor mitigation sequence in response to being activated. The system may also include an integrated command and control (ICC) unit coupled to the one or more V I units. The ICC unit may

5 be configured to provide command and control functionality to response personnel and to automatically broadcast predetermined messages via one or more communications media in response to initiation of the aggressor mitigation sequence. For example, the ICC unit may selectively control the one or more V I units and provide video from the one or more V I units to response personnel. The VIM system may also include a perimeter security unit that may be configured to automatically control ingress to one or more doors of one or more buildings in response to initiation of the aggressor mitigation sequence.

6 BRIEF DESCRIPTION OF THE DRAWINGS [0008] FIG. 1 is a block diagram of one embodiment of a system for mitigating the effects of an active shooter. [0009] FIG. 2A is a diagram depicting one embodiment of the victim initiation unit of FIG. 1. [001 0] FIG. 2B is a diagram depicting one embodiment of the incident command center of FIG. 1. [001 1] FIG. 2C is a diagram depicting one embodiment of the mobile situational awareness device of FIG. 1. [001 2] FIG. 2D is a diagram depicting one embodiment of the perimeter security unit of FIG. 1. [001 3] FIG. 2E is a diagram depicting one embodiment of the door release unit of FIG. 1. [0014] FIG. 3 is a diagram depicting an operational flow of an activation and mitigation sequence of one embodiment of the system of FIG. 1. [001 5] Specific embodiments are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the drawings and detailed description are not intended to limit the claims to the particular embodiments disclosed, even where only a single embodiment is described with respect to a particular feature. On the contrary, the intention is to cover all modifications, equivalents and alternatives that would be apparent to a person skilled in the art having the benefit of this disclosure. Examples of features provided in the disclosure are intended to be illustrative rather than restrictive unless stated otherwise.

7 [001 6] As used throughout this application, the word "may" is used in a permissive sense (i.e., meaning having the potential to), rather than the mandatory sense (i.e., meaning must). Similarly, the words "include," "including," and "includes" mean including, but not limited to. [001 7] Various units, circuits, or other components may be described as "configured to" perform a task or tasks. In such contexts, "configured to" is a broad recitation of structure generally meaning "having circuitry that" performs the task or tasks during operation. As such, the unit/circuit/component can be configured to perform the task even when the unit/circuit/component is not currently on. In general, the circuitry that forms the structure corresponding to "configured to" may include hardware circuits. Similarly, various units/circuits/components may be described as performing a task or tasks, for convenience in the description. Such descriptions should be interpreted as including the phrase "configured to." Reciting a unit/circuit/component that is configured to perform one or more tasks is expressly intended not to invoke 35 U.S.C. 112, paragraph six, interpretation for that unit/circuit/component. [001 8] The scope of the present disclosure includes any feature or combination of features disclosed herein (either explicitly or implicitly), or any generalization thereof, whether or not it mitigates any or all of the problems addressed herein. Accordingly, new claims may be formulated during prosecution of this application (or an application claiming priority thereto) to any such combination of features. In particular, with reference to the appended claims, features from dependent claims may be combined with those of the independent claims and features from respective independent claims may be combined in any appropriate manner and not merely in the specific combinations enumerated in the appended claims.

8 DETAILED DESCRIPTION OF THE EMBODIMENTS System Overview [001 9] A victim initiated mitigation (VIM) system generally refers to a system in which a victim or potential victim of an aggressor event such as an Active Shooter, can initiate a combination of immediate mechanical lockdown responses accompanied by a standardized emergency response resulting in the containment and control of Target Areas and Threat Zones, as well as activation of a standardized Emergency Action Plan. It is noted that a target area refers to the primary space defined by the range of the active shooter's capability to injure or kill, while a threat zone refers to a secondary space defined by the active shooter's capability to relocate in order to injure or kill. It is also noted that a victim refers to personnel within the target area and a Potential Victim refers to personnel within the threat zone. [0020] Accordingly, a VIM system such as the VIM system 10 shown in FIG. 1, and described below may initiate an aggressor mitigation sequence that may include immediate automated facility lock-down once activated. This lock-down may impose instantaneous environmental control measures on the entire facility or a portion thereof and may severely constrain the shooter's freedom of movement, as well as protect potential victims behind locked doors by utilizing a simultaneous building lockdown and mass alert system. An active shooter Threat may be contained immediately via automated lock down of the Threat Zone and is controlled by denying freedom of movement to the perpetrator(s). While Emergency Response Teams will maintain complete access to the facility, all other movement will be limited to egress only. The sequence may also include immediately establishing communication between an Incident Command Center and the target area. All concerned individuals such as students, staff and faculty, for example, may be alerted and given initial guidance via prepared messages delivered through numerous networked communication devices. All first responders may also be substantially simultaneously or concurrently alerted by the system. Development of an Immediate Action Plan may be assisted by real-time audio and/or video of the target area. These automated actions will give first responders the time needed to react to the incident while immediately reducing the Rate of Kill. In some implementations, non-lethal immobilization techniques may be used to subdue, control, or otherwise immobilize the active shooter. The immobilization

9 techniques may be activated either automatically or selectively by personnel such as an incident command center operator/dispatcher. [0021 ] Turning to FIG. 1, one embodiment of a VIM system is shown. The VIM system 10 includes one or more victim initiation (VI) units 30A-30C that are coupled to an incident command center (ICC) 20. The V I units 30A-30C are also coupled to one or more mobile situational awareness devices (MSAD) 40A-40C, and to one or more perimeter security (PS) units 50A-50C, which are in turn coupled to one or more access modules 70A-70C, and to one or more door units 80A-80C. As shown, the V I units 30A-C, the ICC 20, the MSADs 40A-C, the PS Units 50A-C, and the door units 80A-C are communicatively coupled together. In various embodiments, the coupling may be a wired connection, a wireless connection, or a combination as desired. It is noted that components having reference designators with both a number and letter may be referred to solely by their respective numbers where appropriate. It is further noted that while there are some units labeled A-C, it is contemplated that there may be any number of such units in other embodiments. Victim Initiated Unit [0022] Each V I unit 30 represents a monitoring and activation hub from which a victim or potential victim may report an aggressor event such as an active shooter, and which may initiate an aggressor mitigation sequence. In addition, in some embodiments a properly configured V I unit 30 may automatically detect events such as shots fired from a firearm, and automatically initiate an aggressor mitigation sequence. In one embodiment, a V I unit 30 may be capable of initiating two way communications with the ICC unit 20 and a simultaneous facility lock-down, once activated. The V I unit 30 may send live audio and video signals to the ICC unit 20. As described further below, the ICC unit 20 receives video and audio generated from the activated V I unit 30 and may responsively perform a number of actions such as, for example, communicate automated and personal voice messages to a selected V I unit 30 or broadcast messages to all V I units 30. In various embodiments, the V I unit 30 may communicate wirelessly or via wireline communication links to other system components. The communication may be an encrypted secure link in some embodiments. As described further below, activation of a given V I unit 30 may result in an immediate lock-down of all facility doors via the PS units 50 and the door units 80.

10 [0023] In various implementations, a V I unit 30 may be positioned in locations throughout a facility. For example, on a large campus with multiple buildings, each with multiple lecture halls and classrooms a V I unit 30 may be positioned in each room, or in each hallway, or both, or in selected areas as desired. In smaller facilities, a single V I unit 30 may suffice in each building. The system is scalable to accommodate as many or as few V I units 30 as may be necessary to provide adequate coverage. [0024] Accordingly, in one embodiment, each V I unit 30 may include a durable enclosure for secure installation in various locations. In addition, as described further below the V I unit 30 may include a camera, a microphone, a speaker and a communication unit. More particularly, in one embodiment the camera may be representative of a high-speed, high-resolution panoramic camera that captures live video/still pictures. The camera can be remotely controlled from the ICC unit 20 or an MSAD unit 40. For example, the camera may be panned, tilted, zoomed or otherwise controlled from a remote location. The microphone may capture live audio inputs, and in one embodiment may monitor the ambient background in conjunction with shot recognition software for detection of shots fired. [0025] In some embodiments, the V I unit 30 may also include a fingerprint enabled call button with a protective shield, which when pressed activates the V I unit 30. The call button may also capture biometric data such as the fingerprint. In addition the V I unit 30 may also include a standard keypad that serves as a secondary activation mechanism and/ or a manual override. [0026] In one embodiment, the V I unit 30 may include a non-lethal immobilization (NLI) unit (shown in FIG. 2A). In such embodiments, upon activation, the NLI unit may emit one of a variety of forms of NLI to immobilize and /or control an aggressor. For example, there are currently available and known methods to immobilize personnel in a particular area using such mechanisms as sound waves and light emitting devices, among others. In various embodiments, the NLI unit may be activated either through remote manual initiation by personnel through the ICC 20, or the NLI unit may be activated automatically such as in the instance of the shot recognition software detecting shots fired. These immobilization and control measures may immobilize the

11 entire room or area until an organized response force can respond. As described further below, activation of an access point by an access module will deactivate the NLI unit prior to response personnel entering the area. [0027] In FIG. 2A, a diagram depicting one embodiment of the V I unit of FIG. 1 is shown. Referring now to FIG. 2A, the V I unit 30 includes a processor 3 1 coupled to a memory 34 and to an input/output (I/O) unit 33. The I/O unit 33 is coupled to a communication unit 32, an audio/visual (A/V) unit 36, and an NLI unit 37, and to user input such as a keypad or fingerprint sensor (not shown). The A/V unit 36 is also coupled to a microphone 38 and to a speaker 39. [0028] In one embodiment, the processor 3 1 may be representative of any type of general purpose processing device capable of executing program instructions. The processor 3 1 may also include digital signal processing capabilities in some embodiments. The memory 34 may be representative of any type of memory, and may include portions of volatile memory, and non-volatile memory for storing program instructions for execution by the processor 3 1, and may therefore be considered as a non-transitory computer readable storage medium. The memory 34 may be programmed locally or remotely via the network. The I/O unit 33 may facilitate routing of messages and packets between the processor 3 1 and the communication unit 32, A/V unit 36 and the NLI unit 37. The communication unit 32 may include a transceiver (not shown) for transmitting and receiving communications to/from other system components. The communication link between components may be wired via a wireline such as a high-speed Ethernet link for example, or the link may be a wireless link using any of a variety of radio transmission protocols through antenna 230. The A/V unit 36 may process audio input from the microphone and provide audio output to the speaker. Likewise the A/V unit 36 may also receive and process video input from the camera 35, and provide that processed video to the communication unit 32 to be sent to the ICC 20. As described above the NLI unit 37 may generate non-lethal immobilization outputs once activated. The V I unit 30 may be powered via AC power through the building power, and may also include battery (not shown) for power backup use when the AC power has been removed.

12 [0029] It is noted that in one embodiment one microphone may be used to capture live audio during an activation and a secondary microphone (not shown) may be used to monitor ambient background in conjunction with shot recognition software. However, in other embodiments, a single microphone may be used and the A/V unit 36 may switch between uses as desired. Incident Command Center [0030] Referring back to FIG. 1, the ICC 20 may be representative of a command center console and display device. As such, the ICC 20 may be networked with and may communicate with all other components of the VIM system 10 via the encrypted communication network and allows the ICC user or dispatcher to effectively perform command and control during an aggressor event such as an Active Shooter scenario. One embodiment of an ICC 20 is shown in FIG. 2B. [0031 ] During operation, software instructions stored in the ICC 20 may generate an ICC homepage that may include a detailed satellite image of the entire campus (if multiple facilities are monitored) or a comprehensive schematic of the entire facility (if only one facility is being monitored), or both in selective manner. This homepage may be modified as desired to reflect the specific facility being monitored. When a networked V I unit 30 is activated, the pinpoint location and live video input from the activated V I unit 30 may be superimposed on or otherwise displayed on the ICC display and live two-way audio communication may be established with the activated V I unit 30. The ICC dispatcher may take control of the camera of the activated V I unit 30. In addition, the dispatcher may take control of other cameras in other non-activated V I units 30. Live video feeds from each camera may also be displayed on the ICC 20. However, in one embodiment, the video feed of the activated V I unit 20 may remain on top and in view at all times as long as the dispatcher maintains two-way communication with that V I unit 30. If the dispatcher initiates two-way communication with another V I unit 30, then the video feed from that selected V I unit 30 will stay on top. [0032] A number of drop-down menus may be made available to the dispatcher on the ICC display so that if the dispatcher determines the nature of the emergency, additional functionality may become available. The menus may include emergency categories such as Active Shooter, Hostage Scenario, Natural Disaster, Bomb, Fire,

13 and Chemical Spill, for example. By selecting the appropriate emergency category, preplanned automated notification messages including an accurate pinpoint location of the incident may be transmitted to all local emergency response agencies. [0033] Appropriate predetermined or preplanned and automated alerts may also be sent to all networked computers as well as all cell phones and other communication devices that may be registered to the VIM system 10. Appropriate preplanned and automated emergency notification messages may also be transmitted to local radio and television stations with appropriate authentication required for immediate broadcast. The ICC display may be divided into zones for campus settings. [0034] The pre-planned alerts may be programmed into the ICC 20 as desired. In one embodiment, the pre-planned alerts may be automatically and dynamically customized to deliver specific instructions to individual facility occupants based on the location of the activated V I unit compared to the work location, class schedule, or cellular enabled location of each facility occupant. These specific instructions may assist facility occupants with survivability instructions and crowd control measures that may facilitate exit traffic and prevent facility occupants from entering the facility or campus who are not already on site. In addition, dynamically customized specific instructions may be automatically sent to response personnel based on changing threat environments detected via the activated and non-activated V I units 30. [0035] When appropriate, the ICC 20 may initiate a remote lock-down of additional facilities by zone or individual facility, or remotely unlock doors of selected buildings. Detailed floor plans of all facilities monitored may be stored in the ICC 20. Floor plans may be utilized to create automated responder approach routes which can be transmitted to the MSAD units 40 as described in greater detail below. [0036] In FIG. 2B, one embodiment of an incident command center (ICC) unit is shown. Referring now to FIG. 2B, the ICC 20 includes a processor 2 1 coupled to a memory 24 and to an input/output (I/O) unit 23. The I/O unit 23 is coupled to a display unit 25, a communication unit 22, and an audio/visual (A/V) unit 26. The A/V unit 26 is further coupled to a microphone 28 and a speaker 29.

14 [0037] In various embodiments, the processor 2 1 may be a general purpose processor capable of executing program instructions stored in the memory 24. The memory 24 may be representative of any type of memory, and may include portions of volatile memory, and non-volatile memory for storing program instructions for execution by the processor 2 1, and may therefore be considered as a non-transitory computer readable storage medium. The memory 24 may be programmed locally or remotely via the network. The processor 2 1 may send commands via the I/O unit 23 to the communication unit 22 and the A/V unit 26. In one embodiment, the various components within ICC 20 may be manufactured on a single integrated circuit such as a system on a chip (SOC), for example. In one embodiment, the display unit 25 may be representative of a flat panel touch style display. In addition, in various embodiments, the display unit 25 may also include a graphic processor and associated memory (both not shown) for rendering graphics for the display. For example, in one embodiment, the ICC 20 may be implemented as an integrated computing device such as a tablet, notebook, ipad or similar device. However, it is contemplated that in other embodiments the ICC 20 may be implemented as a traditional computer system with a separate monitor, keyboard and mouse, or other user interface device. The communication unit 22 may include a transceiver (not shown) for transmitting and receiving communications to/from other system components. The communication link between components may be wired via a wireline such as a high-speed Ethernet link for example, or the link may be a wireless link using any of a variety of radio transmission protocols and antenna 220. [0038] It is further noted that in yet other embodiments, the ICC 20 functionality may be implemented as a distributed function in which the ICC may be implemented using one of the MSAD units, or other mobile device. In such embodiments, a software module located on the mobile devices may be configured to selectively activate thereby causing that mobile unit to become an ICC. If necessary, the ICC functionality may be transferred to another mobile device as desired. Mobile Situational Awareness Device [0039] Referring back to FIG. 1, the MSAD 40 may be implemented as a hand-held mobile unit that may allow first responders the ability to view live video and remotely manipulate the camera in the threat area. The MSAD 40 may also allow the responders

15 to establish two way communications shooter via the V I Unit 30 that may be nearest the shooter. with any V I unit 30, and in particular the active [0040] In one embodiment, the MSADs 40 are mobile communication platforms that may transmit and receive live video/audio, and/or still pictures. Each MSAD 40 may monitor and/or communicate with all networked V I units 30 via the encrypted wireless network. [0041 ] More particularly, a given MSAD 40 may initiate two way communications with and may remotely control the camera of any networked V I unit 30 using, for example, pan, tilt, and zoom commands. Each MSAD 40 may also store detailed schematics and floor plans of all facilities, compare those plans to MSAD current location, and suggest approach routes to the Target Area. Each MSAD 40 may transmit its current location to the ICC 20 at predetermined intervals. Location information may be derived using GPS and /or terrestrial location information. Each MSAD 40 may provide menu options which enable the response team to request additional assets. The MSAD 40 may store current contact information for all applicable emergency service agencies and which may be categorized by capability. [0042] In FIG. 2C, one embodiment of an MSAD 20 of FIG. 1 is shown. Referring now to FIG. 2C, the MSAD 20 includes a processor 4 1 coupled to a memory 44 and to an input/output (I/O) unit 43. The I/O unit 43 is coupled to a display unit 45, a communication unit 42, and an audio/visual (A/V) unit 46. The A/V unit 46 is further coupled to a microphone 48 and a speaker 49. [0043] In various embodiments, the processor 4 1 may be a general purpose processor capable of executing program instructions stored in the memory 44 to implement the various operational features described above. The memory 44 may be representative of any type of memory, and may include portions of volatile memory, and non-volatile memory for storing program instructions for execution by the processor 4 1, and may therefore be considered as a non-transitory computer readable storage medium. The memory 44 may be programmed locally or remotely via the network. The processor 4 1 may send commands via the I/O unit 43 to the communication unit 42 and the A/V unit 46. In one embodiment, the various components within MSAD 40 may be

16 manufactured on a single integrated circuit such as a system on a chip (SOC), for example. In one embodiment, the display unit 45 may be representative of a flat panel touch style display. In addition, in various embodiments, the display unit 45 may also include a graphic processor and associated memory (both not shown) for rendering graphics for the display. For example, in one embodiment, the MSAD 40 may be implemented as an integrated computing device such as a tablet, notebook, ipod, mobile cellular telephone, or similar device. As such, the MSAD 40 may provide re a l time situational information to responders. Perimeter Security Unit [0044] Referring back to FIG. 1, the perimeter security (PS) units 50 may be configured to control ingress and egress of a building in conjunction with the door units 80. The PS units 50 may communicate with the ICC 20 and each networked V I unit 30 to facilitate a lock down of a building. In one embodiment, upon activation of a V I unit 30, the activated V I unit 30 may send a command to one or more PS units 30 to release any open doors in the building and/or to lock all doors once closed. As such, the PS unit 50 may subsequently send signals to the door units 80 to release and lock the doors. It is noted that some doors may be locked and held open via the electromagnetic style door release units 80. In such embodiments, the PS unit 50 may simply release the door and it will lock upon closing. In other embodiments, doors may be left closed but unlocked to retain building heating and cooling. In such cases, the PS units 50 may send signals to the door units 80 which may lock the already closed doors. In one embodiment, the door locks may be mechanical electromagnetic plate locks, while in other embodiments the door locks may be implemented using solenoid style deadbolts, or other electronic style locking mechanisms. [0045] All doors equipped with these releases would be fire code compliant and would only lock to prevent ingress. Egress from rooms or facilities would not be limited by this lock down procedure. Activation of the electromagnetic door releases and initiation of the facility lock down can be accomplished through the activation of a V I unit 30, or remotely from the ICC 20 as described above. In FIG. 2D, one embodiment of the PS unit 50 of FIG. 1 is shown and in FIG. 2E one embodiment of the door lock/release unit 80 of FIG. 1 is shown.

17 [0046] Referring now to FIG. 2D, the PS unit 50 includes a processor 5 1 coupled to a memory 54 and to an input/output (I/O) unit 53. The I/O unit 53 is coupled to a communication unit 52. [0047] In various embodiments, the processor 5 1 may be a general purpose processor capable of executing program instructions stored in the memory 54 to implement the various operational features described above. The memory 54 may be representative of any type of memory, and may include portions of volatile memory, and non-volatile memory for storing program instructions for execution by the processor 5 1, and may therefore be considered as a non-transitory computer readable storage medium. The memory 54 may be programmed locally or remotely via the network. The processor 5 1 may send commands via the I/O unit 53 to the communication unit 52 and the A/V unit 46. In one embodiment, the various components within PS unit 50 may be manufactured on a single integrated circuit such as a system on a chip (SOC), for example. [0048] Referring to FIG. 2E, the door unit 80 includes a controller 8 1 coupled to a door release unit 84, a door lock unit 83, and a communication unit 82. [0049] In one embodiment, the controller 8 1 may be a general purpose microcontroller capable of executing program instructions stored in an embedded memory (not shown) to implement the various operational features described above. The embedded memory of the controller 8 1 may be considered as a non-transitory computer readable storage medium. The controller 8 1 may be programmed locally or remotely via the network. The controller 8 1 may send commands to the communication unit 82. The door unit 80 may receive commands from the PS unit 50 wirelessly or through a wireline network. In one embodiment, the door release unit 84 may represent the magnetic door release described above. Similarly, the door lock unit 83 may represent the door lock mechanism described above. In addition, each door lock unit may also include an RF sensor which may be used as an access point to unlock the door once activated by a properly coded access module. [0050] It is noted that in some embodiments, the door units 8o may be used in a stand-alone configuration in which the ICC 20, V I units 30, and/or the MSADs 40 may

18 communicate directly with the door units 80 to lock and unlock doors. In such an embodiment, the door unit 80 may receive commands from the wirelessly or through a wireline network without PS units 50. Access modules [0051 ] Referring back to FIG. 1, access modules 70 allow responders access to the locked down buildings. In one embodiment, an access module may be implemented using a key fob having a radio frequency identification (RFID) module within the fob. When the fob is brought within a predetermined distance of an access point of the building, the doors associated with the access point may unlock, and any non-lethal immobilization may be disarmed and/or deactivated for the area near the entry point. Alternatively, the access module 70 may be implemented as an access card with an RFID module or other type of access mechanism such as a bar code or magnetic strip as desired. It is noted that an access point may refer to any type of receiver configured to detect and authenticate a given access module. For example, an access point may be implemented as a proximity reader which may detect the presence of an RFID enabled access module or other short range RF access module. [0052] In another embodiment, each MSAD 40 may be configured to as an access module to access a locked down facility. The MSAD 40 may be programmed with specific access codes for access into facilities using, for example, bump, near field communication, or dedicated short range communication technologies. In further embodiments, each MSAD 40 may include application software that allows the MSAD 40 to access any door remotely, using for example, cellular, Wi-Fi, or WiMAX technologies rather than using short range RF technologies. In such embodiments, each MSAD 40 may be programmed with building door access codes to activate an access point. Once a building is selected by a responder, the MSAD 40 may be used to unlock a door, and disarm any active non-lethal immobilization activities in the immediate vicinity of the ingress door. [0053] Turning to FIG. 3, a diagram depicting an operational flow of an activation and mitigation sequence of one embodiment of the system of FIG. 1 is shown. Referring collectively to FIG. 1 through FIG. 3 and beginning in block 300, each V I unit 30 in conjunction with an ICC unit 20 may monitor designated buildings and areas. It is noted

19 that the software of the VIM system 10, may be modified to track and update situational data as required by the operating facility. Each V I unit 30 may also be utilized as Public Announcement devices and room monitoring devices. If no aggressor event is detected (block 305), the system continues to monitor. [0054] However, if an aggressor event is detected, an aggressor mitigation sequence is initiated. In one embodiment, initiating of the sequence begins upon activation of a V I unit 30 (block 3 10). In one embodiment, the aggressor event may be detected by a person, and as such the person may manually activate the V I unit 30. For example, when a threat is identified by a potential victim, they would depress a call button on the closest V I unit 30. The initiation of this call via the V I unit 30 results in an immediate facility lock-down of selected interior and/or exterior doors of the affected building and establishment of two-way communication with the ICC 20. Alternatively, a given V I unit 30 may be activated automatically by, for example, shot recognition software being executed by the V I unit 30. This may happen in an instance where shots were fired prior to a V I unit 30 being activated manually. In either case, once activated, the V I unit 30 initiates a lockdown of the affected building or buildings (block 3 15). [0055] In one embodiment, if the VIM system includes non-lethal immobilization components such as NLI 37 of FIG. 2A for example (block 335), and non-lethal immobilization is authorized (block 340), non-lethal immobilization tactics may be deployed (block 345). In one embodiment, non-lethal counter measures may be automatically deployed if the system is configured to do so. More particularly, in conjunction with the shot recognition software detecting shots fired, the non-lethal counter measures may be automatically deployed. In other embodiments, non-lethal counter measures may only be deployed by an operator of the ICC 20 upon positive confirmation of the attack, where or not shot recognition software detects shots fired. [0056] In addition, the activated V I unit 30 notifies the ICC 20, which may initiate activation of a notification protocol (block 320). In one embodiment, the ICC 20 may begin broadcasting automated preplanned messages to facility and other personnel as desired (block 325). For example, the ICC 20 may initiate alerts to all emergency response personnel with pinpoint incident location and event description. The ICC 20 may also initiate mass notifications via networked media devices to all facility/campus

20 occupants/patrons. The dispatcher that is monitoring the ICC 20 may begin coordinating response personnel using real time video and audio feds from the activated V I unit 20 (block 330). In addition, the dispatcher may also begin lockdown of selected additional buildings via the ICC 20 as the situation changes. The additional lockdown may be performed concurrently or subsequent to the notification of personnel as described in block 320. After receiving the alert from the ICC 20, emergency response personnel are guided to the pinpoint location of the incident via MSADs 40 and are able to gain further situational awareness of the event through remote manipulation of the camera of selected V I units 30, live video/audio from the target area, and dynamically customized messages from the ICC 20. Once on scene, emergency responders are able to enter the Threat Area with assigned access modules. [0057] It is noted that although the operations described in the embodiment of FIG. 3 are shown in a particular order, it is contemplated that in other embodiments the operations may be performed in a different order. For example, some operations may be performed concurrently or in parallel with other operations rather than serially. Alternatively, some operations may be performed before or after other operations that are shown in FIG. 3. Lastly, there may be additional operations that are not shown, and some operations may be omitted, depending on implementation. [0058] The VIM system 10 described above may allow a potential victim or other facility occupants to immediately initiate an alert and accompanying control measures. This combination of alert and control may effectively improve victim survivability and reduce the incident rate of kill. The VIM system 10 may also allow potential victims to make their own decisions with regard to their survivability. More particularly, if they believe that it is best to remain behind a locked door for the duration of the incident, they have that capability. Alternatively, if they decide that it is best to evacuate the facility, they also have that capability since building egress is allowed. [0059] The VIM system 10 may contain a threat immediately through a lock down of a threat building and the VIM system 10 may further contain additional threats or the same threat through a selective lock down of other buildings by the ICC 20. The situation may be controlled as an aggressor's movements are constrained. Emergency response personnel may have complete access to all areas of the facility. Two way

21 communication is established immediately between ICC 20 and the Target Area. All facility occupants may also be alerted and given initial guidance via prepared messages. The ICC 20 may alert emergency response personnel immediately and simultaneously. The ICC may also communicate with all responding agencies. The increased control provided by the immediate containment of the situation may limit an aggressor's actions. Additionally, the two way communication between the ICC 20 and the Target Area as well as real time video of the Target Area will assist in the development of an immediate action plan. [0060] Although the embodiments above have been described in considerable detail, numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such variations and modifications.

22 What is claimed is: 1. A method comprising: detecting an aggressor event in a building; activating a victim initiated (VI) unit of a V I system; and initiating an aggressor mitigation sequence in response to activation of the V I unit; wherein the aggressor mitigation sequence includes: automatically controlling ingress by one or more entry doors of the building; automatically notifying response personnel of the aggressor event; providing command and control functionality to the response personnel; and automatically broadcasting predetermined messages via one or more communications media. 2. The method of claim 1, wherein controlling ingress includes closing pre-locked doors of the building. 3. The method of claim 1, wherein controlling ingress includes locking closed doors of the building. 4. The method of claim 1, wherein the aggressor event includes an active shooter discharging a firearm. 5. The method of claim 4, wherein detecting an aggressor event in a building includes the V I unit detecting the discharging of a firearm and automatically initiating the aggressor mitigation sequence.

23 6. The method of claim 1, wherein the aggressor mitigation sequence further includes response personnel selectively deploying non-lethal immobilization measures to an area of the building associated with the aggressor event. 7 The method of claim 1, wherein the aggressor mitigation sequence further includes deploying non-lethal immobilization measures automatically and without user intervention, to an area of the building associated with the aggressor event. 8. The method of claim 1, wherein automatically notifying response personnel of the aggressor event includes the activated V I unit sending activation signals to an incident command center (ICC) that is monitored by the response personnel. 9. The method of claim 8, wherein providing command and control functionality to the response personnel includes the V I unit transmitting real-time video and audio signals to the ICC. 10. The method of claim 9, wherein providing command and control functionality to the response personnel further includes the response personnel selectively controlling one or more V I units, displaying the video from each selected V I unit, and selectively controlling ingress to additional buildings. 11. A system comprising: one or more victim initiated (VI) units each configured to automatically initiate an aggressor mitigation sequence in response to being activated; an incident command and control (ICC) unit coupled to the one or more V I units, wherein the ICC unit is configured to provide command and control functionality to response personnel and to automatically broadcast predetermined messages via one or more communications media in response to initiation of the aggressor mitigation sequence; and

24 a perimeter security unit coupled to the V I unit and the ICC unit and configured to automatically control ingress to one or more doors of one or more buildings in response to initiation of the aggressor mitigation sequence. 12. The system of claim 11, wherein the PS unit is configured to close pre-locked doors and to lock closed doors of the building. 13. The system of claim 11, wherein the aggressor event includes an active shooter discharging a firearm. 14. The system of claim 13, wherein the V I unit is configured to detect the discharging of a firearm and automatically initiate the aggressor mitigation sequence. 15. The system of claim 11, wherein the ICC unit is configured to: receive from an activated V I unit real-time video and audio signals, selectively control one or more V I units, display the video from each selected V I unit, and selectively control ingress to doors of additional buildings.

25

26

27

28 INTERNATIONAL SEARCH REPORT International application No. PCT/US 1 /12978 A. CLASSIFICATION O F SUBJECT MATTER IPC(8) - H04N 7/1 0 ( ) USPC - 725/33. According to International Patent Classification (IPC) or to both national classification and IPC B FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) USPC: 725/33 IPC(8): H04N 7/10 ( ) Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched USPC: 725/33; 340/506; 455/404.2; 379/48 (Keyword limited; terms below) IPC(8): H04N 7/10 ( ) (Keyword limited; terms below) Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) PatBase; Google (Scholar, Patents, Web) Terms used: terrorist shooting gunman aggressor building detect automatic mitigate lock door alert emergency personnel remote control command camera video C. DOCUMENTS CONSIDERED TO B E RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. US 2012/ A 1 (ABU-HAKIMA et al.), 26 July 2012 ( ), entire document, especially Abstract; para [0052]-[0054], [01 18]-[01 19], [0127], [0359] 1-10, 15 US 8,305,21 1 B 1 (MORRIS et al.), 06 November 2012 ( ), entire document, 1-10, 15 especially Abstract; col 1, In 59 to col 2, In 2; col 2, In 23-42; col 2, In 65 to col 3, In 16; col 7, In 29-52; col 8, In US 2008/ A 1 (REYES et al.), 28 February 2008 ( ), entire document 1-15 Further documents are listed in the continuation o f Box C. Special categories of cited documents: "T" later document published after the international filing date or priority A " document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand to be of particular relevance the principle or theory underlying the invention E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be filing date considered novel or cannot be considered to involve an inventive L" document which may throw doubts on priority claim(s) or which is step when ihe document is taken alone cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be special reason (as specified) considered to involve an inventive step when the document is O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination means being obvious to a person skilled in the art P" document published prior to the international filing date but later than "&" document member of the same patent family Date o f the actual completion o f the international search Date of mailing of the international search report 18 April 2014 ( ) Name and mailing address o f the ISA/US Authorized officer: Mail Stop PCT, Attn: ISA/US, Commissioner for Patents Lee W. Young P.O. Box 1450, Alexandria, Virginia Facsimile No. Form PCT/lSA/210 (second sheet) (July 2009)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date (10) International

More information

WO 2013/ Al. 17 January 2013 ( ) P O P C T

WO 2013/ Al. 17 January 2013 ( ) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International

More information

TMCH Report March February 2017

TMCH Report March February 2017 TMCH Report March 2013 - February 2017 Contents Contents 2 1 Trademark Clearinghouse global reporting 3 1.1 Number of jurisdictions for which a trademark record has been submitted for 3 2 Trademark Clearinghouse

More information

(43) International Publication Date n n / ft * 3 May 2012 ( ) U l / 5 A

(43) International Publication Date n n / ft * 3 May 2012 ( ) U l / 5 A (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International

More information

WO 2017/ Al. 15 June 2017 ( )

WO 2017/ Al. 15 June 2017 ( ) (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International

More information

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, W., Houston, Texas (US).

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, W., Houston, Texas (US). (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International

More information

EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2012/34

EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2012/34 (19) (12) EUROPEAN PATENT APPLICATION (11) EP 2 490 138 A1 (43) Date of publication: 22.08.2012 Bulletin 2012/34 (1) Int Cl.: G06F 17/30 (2006.01) (21) Application number: 1214420.9 (22) Date of filing:

More information

TEPZZ 8_8997A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION

TEPZZ 8_8997A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION (19) TEPZZ 8_8997A_T (11) EP 2 818 997 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 31.12.2014 Bulletin 2015/01 (21) Application number: 13174439.3 (51) Int Cl.: G06F 3/0488 (2013.01)

More information

TEPZZ 6Z8446A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: H04L 9/08 ( ) H04L 9/32 (2006.

TEPZZ 6Z8446A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: H04L 9/08 ( ) H04L 9/32 (2006. (19) TEPZZ 6Z8446A_T (11) EP 2 608 446 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 26.06.2013 Bulletin 2013/26 (1) Int Cl.: H04L 9/08 (2006.01) H04L 9/32 (2006.01) (21) Application number:

More information

(51) Int Cl.: H04L 29/06 ( )

(51) Int Cl.: H04L 29/06 ( ) (19) TEPZZ 94Z96B_T (11) EP 2 9 96 B1 (12) EUROPEAN PATENT SPECIFICATION (4) Date of publication and mention of the grant of the patent: 26.04.17 Bulletin 17/17 (1) Int Cl.: H04L 29/06 (06.01) (21) Application

More information

TEPZZ Z47A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: G06Q 30/00 ( )

TEPZZ Z47A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: G06Q 30/00 ( ) (19) TEPZZ _ _Z47A_T (11) EP 3 131 047 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 1.02.17 Bulletin 17/07 (1) Int Cl.: G06Q /00 (12.01) (21) Application number: 160297.4 (22) Date of

More information

(43) International Publication Date WO 2013/ Al 4 April 2013 ( ) W P O P C T

(43) International Publication Date WO 2013/ Al 4 April 2013 ( ) W P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International

More information

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International

More information

TEPZZ 74_475A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: H04L 29/12 ( )

TEPZZ 74_475A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: H04L 29/12 ( ) (19) TEPZZ 74_47A_T (11) EP 2 741 47 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 11.06.14 Bulletin 14/24 (1) Int Cl.: H04L 29/12 (06.01) (21) Application number: 131968.6 (22) Date of

More information

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date (10) International

More information

EP A1 (19) (11) EP A1. (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC

EP A1 (19) (11) EP A1. (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (19) (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (11) EP 2 493 239 A1 (43) Date of publication: 29.08.2012 Bulletin 2012/35 (21) Application number: 10829523.9 (22) Date

More information

PCT WO 2007/ Al

PCT WO 2007/ Al (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date (10) International

More information

GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, fornia (US).

GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, fornia (US). (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International

More information

TEPZZ 98 _55A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION

TEPZZ 98 _55A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION (19) TEPZZ 98 _A_T (11) EP 2 983 1 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication:.02.16 Bulletin 16/06 (21) Application number: 1180049.7 (1) Int Cl.: G08G /06 (06.01) G08G 7/00 (06.01)

More information

TEPZZ _968ZZA_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: G06K 7/10 ( )

TEPZZ _968ZZA_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: G06K 7/10 ( ) (19) TEPZZ _968ZZA_T (11) EP 3 196 800 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 26.07.17 Bulletin 17/ (1) Int Cl.: G06K 7/ (06.01) (21) Application number: 1719738.8 (22) Date of filing:

More information

Figure 1. (43) International Publication Date WO 2015/ Al 9 July 2015 ( ) W P O P C T. [Continued on nextpage]

Figure 1. (43) International Publication Date WO 2015/ Al 9 July 2015 ( ) W P O P C T. [Continued on nextpage] (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International

More information

ica) Inc., 2355 Dulles Corner Boulevard, 7th Floor, before the expiration of the time limit for amending the

ica) Inc., 2355 Dulles Corner Boulevard, 7th Floor, before the expiration of the time limit for amending the (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International

More information

EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: G06T 15/60 ( )

EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: G06T 15/60 ( ) (19) (12) EUROPEAN PATENT APPLICATION (11) EP 2 234 069 A1 (43) Date of publication: 29.09.2010 Bulletin 2010/39 (51) Int Cl.: G06T 15/60 (2006.01) (21) Application number: 09364002.7 (22) Date of filing:

More information

10 December 2009 ( ) WO 2009/ A2

10 December 2009 ( ) WO 2009/ A2 (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date (10) International

More information

(51) Int Cl.: H04L 12/24 ( ) WU, Qin

(51) Int Cl.: H04L 12/24 ( ) WU, Qin (19) TEPZZ Z 68A_T (11) EP 3 3 68 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 13(4) EPC (43) Date of publication: 09.08.17 Bulletin 17/32 (21) Application number: 182297.9 (22)

More information

EP A1 (19) (11) EP A1. (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC

EP A1 (19) (11) EP A1. (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (19) (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 13(4) EPC (11) EP 2 482 24 A1 (43) Date of publication: 01.08.2012 Bulletin 2012/31 (21) Application number: 818282. (22) Date of

More information

FILE SYSTEM 102 DIRECTORY MODULE 104 SELECTION MODULE. Fig. 1

FILE SYSTEM 102 DIRECTORY MODULE 104 SELECTION MODULE. Fig. 1 (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International

More information

TEPZZ Z7999A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: B05B 15/04 ( )

TEPZZ Z7999A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: B05B 15/04 ( ) (19) TEPZZ Z7999A_T (11) EP 3 7 999 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 23.08.17 Bulletin 17/34 (1) Int Cl.: B0B 1/04 (06.01) (21) Application number: 1617686.1 (22) Date of filing:

More information

Virtual Private Radio via Virtual Private Network - patent application

Virtual Private Radio via Virtual Private Network - patent application From the SelectedWorks of Marc A Sherman February, 2006 Virtual Private Radio via Virtual Private Network - patent application Marc A Sherman Available at: https://works.bepress.com/marc_sherman/2/ UNITED

More information

TEPZZ 78779ZB_T EP B1 (19) (11) EP B1 (12) EUROPEAN PATENT SPECIFICATION

TEPZZ 78779ZB_T EP B1 (19) (11) EP B1 (12) EUROPEAN PATENT SPECIFICATION (19) TEPZZ 78779ZB_T (11) EP 2 787 790 B1 (12) EUROPEAN PATENT SPECIFICATION (4) Date of publication and mention of the grant of the patent: 26.07.17 Bulletin 17/ (21) Application number: 12878644.9 (22)

More information

TEPZZ 57 7 ZA_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2013/13

TEPZZ 57 7 ZA_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2013/13 (19) TEPZZ 57 7 ZA_T (11) EP 2 573 720 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 27.03.2013 Bulletin 2013/13 (51) Int Cl.: G06Q 10/00 (2012.01) (21) Application number: 11182591.5 (22)

More information

30 June 2011 ( ) W / / / / A

30 June 2011 ( ) W / / / / A (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International

More information

EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2008/32

EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2008/32 (19) (12) EUROPEAN PATENT APPLICATION (11) EP 1 93 663 A1 (43) Date of publication: 06.08.08 Bulletin 08/32 (1) Int Cl.: G06F 21/00 (06.01) G06F 3/023 (06.01) (21) Application number: 07124.4 (22) Date

More information

(CN). PCT/CN20 14/ (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,

(CN). PCT/CN20 14/ (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International

More information

TEPZZ 6 8A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION

TEPZZ 6 8A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION (19) TEPZZ 6 8A_T (11) EP 3 121 638 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 2.01.17 Bulletin 17/04 (21) Application number: 1380032.1 (1) Int Cl.: G02B 27/01 (06.01) G06F 11/16 (06.01)

More information

EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: H04L 12/56 ( )

EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: H04L 12/56 ( ) (19) (12) EUROPEAN PATENT APPLICATION (11) EP 1 760 963 A1 (43) Date of publication: 07.03.07 Bulletin 07/ (1) Int Cl.: H04L 12/6 (06.01) (21) Application number: 06018260.7 (22) Date of filing: 31.08.06

More information

Gesture-Based Controls Via Bone Conduction

Gesture-Based Controls Via Bone Conduction ( 9 of 13 ) United States Patent Application 20150128094 Kind Code A1 Baldwin; Christopher ; et al. May 7, 2015 Gesture-Based Controls Via Bone Conduction Abstract Concepts and technologies are disclosed

More information

*EP A2* EP A2 (19) (11) EP A2 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2005/37

*EP A2* EP A2 (19) (11) EP A2 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2005/37 (19) Europäisches Patentamt European Patent Office Office européen des brevets *EP007312A2* (11) EP 1 7 312 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 14.09.0 Bulletin 0/37 (1) Int Cl.

More information

(51) Int Cl.: G06F 21/00 ( ) G11B 20/00 ( ) G06Q 10/00 ( )

(51) Int Cl.: G06F 21/00 ( ) G11B 20/00 ( ) G06Q 10/00 ( ) (19) Europäisches Patentamt European Patent Office Office européen des brevets (12) EUROPEAN PATENT APPLICATION (11) EP 1 724 699 A1 (43) Date of publication: 22.11.2006 Bulletin 2006/47 (21) Application

More information

TEPZZ 99894ZA_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION

TEPZZ 99894ZA_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION (19) TEPZZ 99894ZA_T (11) EP 2 998 9 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 23.03.16 Bulletin 16/12 (21) Application number: 18973.3 (1) Int Cl.: G07C 9/00 (06.01) B62H /00 (06.01)

More information

DNSSEC Workshop. Dan York, Internet Society ICANN 53 June 2015

DNSSEC Workshop. Dan York, Internet Society ICANN 53 June 2015 DNSSEC Workshop Dan York, Internet Society ICANN 53 June 2015 First, a word about our host... 2 Program Committee Steve Crocker, Shinkuro, Inc. Mark Elkins, DNS/ZACR Cath Goulding, Nominet Jean Robert

More information

Lionbridge ondemand for Adobe Experience Manager

Lionbridge ondemand for Adobe Experience Manager Lionbridge ondemand for Adobe Experience Manager Version 1.1.0 Configuration Guide October 24, 2017 Copyright Copyright 2017 Lionbridge Technologies, Inc. All rights reserved. Published in the USA. March,

More information

ALTERNATIVE CHARGE CONTROL SYSTEM FOR MERCHANDISE DISPLAY SECURITY SYSTEM

ALTERNATIVE CHARGE CONTROL SYSTEM FOR MERCHANDISE DISPLAY SECURITY SYSTEM Technical Disclosure Commons InVue Defensive Publications Defensive Publications Series August 11, 2017 ALTERNATIVE CHARGE CONTROL SYSTEM FOR MERCHANDISE DISPLAY SECURITY SYSTEM InVue Security Products

More information

SYSTEM AND METHOD FOR SPEECH RECOGNITION

SYSTEM AND METHOD FOR SPEECH RECOGNITION Technical Disclosure Commons Defensive Publications Series September 06, 2016 SYSTEM AND METHOD FOR SPEECH RECOGNITION Dimitri Kanevsky Tara Sainath Follow this and additional works at: http://www.tdcommons.org/dpubs_series

More information

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International

More information

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1 US 2005O153733A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0153733 A1 Park et al. (43) Pub. Date: Jul. 14, 2005 (54) CALL CONTROL METHOD FOR Publication Classification

More information

WO 2013/ Al. 11 April 2013 ( ) P O P C T

WO 2013/ Al. 11 April 2013 ( ) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International

More information

(43) International Publication Date \ / 0 1 / 1 ' 9 September 2011 ( ) 2 1 VI / A 2

(43) International Publication Date \ / 0 1 / 1 ' 9 September 2011 ( ) 2 1 VI / A 2 (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International

More information

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International

More information

MAWA Forum State of Play. Cooperation Planning & Support Henk Corporaal MAWA Forum Chair

MAWA Forum State of Play. Cooperation Planning & Support Henk Corporaal MAWA Forum Chair MAWA Forum State of Play Cooperation Planning & Support Henk Corporaal MAWA Forum Chair Content Background MAWA Initiative Achievements and Status to date Future Outlook 2 Background MAWA Initiative The

More information

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1 (19) United States US 2006.0062400A1 (12) Patent Application Publication (10) Pub. No.: Chia-Chun (43) Pub. Date: Mar. 23, 2006 (54) BLUETOOTH HEADSET DEVICE CAPABLE OF PROCESSING BOTH AUDIO AND DIGITAL

More information

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (l J w;~:s~:!~:::.:opcrty ~ llllllllllll~~~~~~~~;~~~~~~~~~~~~~~~~.~~~~~!~~~~~llllllllll (43) International Publication

More information

(JAY VO 120 STA 1. (12) Patent Application Publication (10) Pub. No.: US 2005/ A1. (19) United States PROCESSOR 160 SCHEDULER 170

(JAY VO 120 STA 1. (12) Patent Application Publication (10) Pub. No.: US 2005/ A1. (19) United States PROCESSOR 160 SCHEDULER 170 (19) United States US 2005O141495A1 (12) Patent Application Publication (10) Pub. No.: US 2005/0141495 A1 Lin et al. (43) Pub. Date: Jun. 30, 2005 (54) FILLING THE SPACE-TIME CHANNELS IN SDMA (76) Inventors:

More information

EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: G06F 17/30 ( )

EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: G06F 17/30 ( ) (19) (12) EUROPEAN PATENT APPLICATION (11) EP 2 447 858 A1 (43) Date of publication: 02.05.2012 Bulletin 2012/18 (51) Int Cl.: G06F 17/30 (2006.01) (21) Application number: 11004965.7 (22) Date of filing:

More information

2016 Survey of Internet Carrier Interconnection Agreements

2016 Survey of Internet Carrier Interconnection Agreements 2016 Survey of Internet Carrier Interconnection Agreements Bill Woodcock Marco Frigino Packet Clearing House November 21, 2016 PCH Peering Survey 2011 Five years ago, PCH conducted the first-ever broad

More information

WO 2016/ Al. 21 April 2016 ( ) P O P C T. Figure 2

WO 2016/ Al. 21 April 2016 ( ) P O P C T. Figure 2 (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International

More information

SYSTEM AND METHOD FOR FACILITATING SECURE TRANSACTIONS

SYSTEM AND METHOD FOR FACILITATING SECURE TRANSACTIONS FCOOK.001PR PATENT SYSTEM AND METHOD FOR FACILITATING SECURE TRANSACTIONS BRIEF DESCRIPTION OF THE DRAWINGS [0001] Embodiments of various inventive features will now be described with reference to the

More information

(12) United States Patent (10) Patent No.: US 6,611,682 B1

(12) United States Patent (10) Patent No.: US 6,611,682 B1 USOO661 1682B1 (12) United States Patent (10) Patent No.: Pröjtz (45) Date of Patent: Aug. 26, 2003 (54) MOBILE TELEPHONE APPARATUS AND 6,188.888 B1 * 2/2001 Bartle et al.... 455/417 METHOD FOR CALL DIVERT

More information

Note: Text based on automatic Optical Character Recognition processes. SAMSUNG GALAXY NOTE

Note: Text based on automatic Optical Character Recognition processes. SAMSUNG GALAXY NOTE Note: Text based on automatic Optical Character Recognition processes. SAMSUNG GALAXY NOTE PRIORITY This application is a Continuation of U.S. application Ser. No. 14/540,447, which was filed in the U.S.

More information

TEPZZ _Z_56ZA_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: G06F 17/30 ( )

TEPZZ _Z_56ZA_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: G06F 17/30 ( ) (19) TEPZZ _Z_6ZA_T (11) EP 3 1 60 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 07.12.16 Bulletin 16/49 (1) Int Cl.: G06F 17/ (06.01) (21) Application number: 16176.9 (22) Date of filing:

More information

TEPZZ _9 7A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2017/29

TEPZZ _9 7A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2017/29 (19) TEPZZ _9 7A_T (11) EP 3 193 237 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 19.07.2017 Bulletin 2017/29 (1) Int Cl.: G06F 1/32 (2006.01) (21) Application number: 1714829.0 (22) Date

More information

DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, KE, KG, KM, KN, KP, KR, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, KE, KG, KM, KN, KP, KR, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date (10) International

More information

GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ministration Building, Bantian, Longgang, Shenzhen,

GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ministration Building, Bantian, Longgang, Shenzhen, (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International

More information

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau 1111111111111111 111111 111111111111111 111 111 11111111111111111111

More information

SYSTEMS AND METHODS FOR ROUTING COMMUNICATIONS IN A COMPUTER NETWORK

SYSTEMS AND METHODS FOR ROUTING COMMUNICATIONS IN A COMPUTER NETWORK SYSTEMS AND METHODS FOR ROUTING COMMUNICATIONS IN A COMPUTER NETWORK FIELD OF THE DISCLOSURE (01) The present disclosure relates to systems and methods for routing communications in a computer network.

More information

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1 (19) United States US 2014025631 7A1 (12) Patent Application Publication (10) Pub. No.: US 2014/0256317 A1 ZHAO et al. (43) Pub. Date: (54) (71) (72) (73) (21) (22) (63) (30) METHOD, APPARATUS, AND SYSTEM

More information

TEPZZ 8864Z9A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: B60W 30/14 ( ) B60W 50/00 (2006.

TEPZZ 8864Z9A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: B60W 30/14 ( ) B60W 50/00 (2006. (19) TEPZZ 8864Z9A_T (11) EP 2 886 9 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 24.06. Bulletin /26 (1) Int Cl.: B60W /14 (06.01) B60W 0/00 (06.01) (21) Application number: 106043.7

More information

TEPZZ _4748 A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION

TEPZZ _4748 A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION (19) TEPZZ _4748 A_T (11) EP 3 147 483 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 29.03.17 Bulletin 17/13 (21) Application number: 161896.0 (1) Int Cl.: F02C 9/28 (06.01) F02C 9/46 (06.01)

More information

EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION

EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION (19) (12) EUROPEAN PATENT APPLICATION (11) EP 2 096 724 A1 (43) Date of publication: 02.09.2009 Bulletin 2009/36 (21) Application number: 09153153.3 (51) Int Cl.: H01R 35/04 (2006.01) H01R 24/00 (2006.01)

More information

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1 (19) United States US 2003.0109252A1 (12) Patent Application Publication (10) Pub. No.: US 2003/0109252 A1 Prentice et al. (43) Pub. Date: Jun. 12, 2003 (54) SYSTEM AND METHOD OF CODEC EMPLOYMENT INA CELLULAR

More information

Global Forum 2007 Venice

Global Forum 2007 Venice Global Forum 2007 Venice Broadband Infrastructure for Innovative Applications In Established & Emerging Markets November 5, 2007 Jacquelynn Ruff VP, International Public Policy Verizon Verizon Corporate

More information

Delivering Safety in Education

Delivering Safety in Education HIKVISION: Delivering Safety in Education An Overview of Hikvision s Integrated Security Solutions for Educational Institutions and Campuses Technology that Ensures Student Safety & Security is our No.

More information

TEPZZ Z5_748A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION

TEPZZ Z5_748A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION (19) TEPZZ Z_748A_T (11) EP 3 01 748 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 03.08.16 Bulletin 16/31 (21) Application number: 118.1 (1) Int Cl.: H04L 12/14 (06.01) H04W 48/18 (09.01)

More information

eifu Trauma and Extremities

eifu Trauma and Extremities Electronic Instructions for Use eifu Trauma and Extremities 1 Instructions for use of T&E products are available on the Stryker eifu website 2 Benefits Environmental aspect less paper, possible smaller

More information

TEPZZ 5976 A T EP A2 (19) (11) EP A2 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: G08G 5/00 ( ) H04M 1/725 (2006.

TEPZZ 5976 A T EP A2 (19) (11) EP A2 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: G08G 5/00 ( ) H04M 1/725 (2006. (19) TEPZZ 976 A T (11) EP 2 97 633 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 29.0.13 Bulletin 13/22 (1) Int Cl.: G08G /00 (06.01) H04M 1/72 (06.01) (21) Application number: 12193473.1

More information

(12) United States Patent (10) Patent No.: US 6,655,370 B1. Beckwith (45) Date of Patent: Dec. 2, 2003

(12) United States Patent (10) Patent No.: US 6,655,370 B1. Beckwith (45) Date of Patent: Dec. 2, 2003 USOO665537OB1 (12) United States Patent (10) Patent No.: US 6,655,370 B1 Beckwith (45) Date of Patent: Dec. 2, 2003 (54) FIRECRACKER LAUNCHING DEVICE 3,794,325 * 2/1974 Stender 4,995,371. A 2/1991 Kuizinas...

More information

Whole Home Mesh WiFi System. Quick Installation Guide

Whole Home Mesh WiFi System. Quick Installation Guide Whole Home Mesh WiFi System Quick Installation Guide Package contents nova MW6 x 3 Ethernet cable x 1 Power adapter x 3 Quick installation guide x 1 Know your device LAN port WAN/LAN port DC power jack

More information

(51) Int Cl.: H04N 5/232 ( ) H04N 7/18 ( )

(51) Int Cl.: H04N 5/232 ( ) H04N 7/18 ( ) (19) TEPZZ 879 7_B_T (11) EP 2 879 371 B1 (12) EUROPEAN PATENT SPECIFICATION (4) Date of publication and mention of the grant of the patent: 21.12.16 Bulletin 16/1 (1) Int Cl.: H04N /232 (06.01) H04N 7/18

More information

(12) Patent Application Publication (10) Pub. No.: US 2001/ A1

(12) Patent Application Publication (10) Pub. No.: US 2001/ A1 US 2001 0021659A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2001/0021659 A1 Okamura (43) Pub. Date: Sep. 13, 2001 (54) METHOD AND SYSTEM FOR CONNECTING (30) Foreign Application

More information

(12) Patent Application Publication (10) Pub. No.: US 2008/ A1

(12) Patent Application Publication (10) Pub. No.: US 2008/ A1 (19) United States US 2008.0036860A1 (12) Patent Application Publication (10) Pub. No.: US 2008/003.6860 A1 Addy (43) Pub. Date: Feb. 14, 2008 (54) PTZ PRESETS CONTROL ANALYTIUCS CONFIGURATION (76) Inventor:

More information

TEPZZ _7655_A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION

TEPZZ _7655_A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION (19) TEPZZ _76_A_T (11) EP 3 176 1 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 07.06.2017 Bulletin 2017/23 (21) Application number: 1619703.0 (1) Int Cl.: G01J 1/42 (2006.01) G01J 1/02

More information

2016 Survey of Internet Carrier Interconnection Agreements

2016 Survey of Internet Carrier Interconnection Agreements 2016 Survey of Internet Carrier Interconnection Agreements Bill Woodcock Marco Frigino Packet Clearing House February 6, 2017 PCH Peering Survey 2011 Five years ago, PCH conducted the first-ever broad

More information

EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2012/45

EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2012/45 (19) (12) EUROPEAN PATENT APPLICATION (11) EP 2 521 319 A1 (43) Date of publication: 07.11.2012 Bulletin 2012/45 (51) Int Cl.: H04L 12/40 (2006.01) H04L 1/00 (2006.01) (21) Application number: 11164445.6

More information

US A United States Patent (19) 11 Patent Number: 6,008,921 Brusky et al. (45) Date of Patent: Dec. 28, 1999

US A United States Patent (19) 11 Patent Number: 6,008,921 Brusky et al. (45) Date of Patent: Dec. 28, 1999 US006008.921A United States Patent (19) 11 Patent Number: 6,008,921 Brusky et al. (45) Date of Patent: Dec. 28, 1999 54 METHODS AND APPARATUS FOR 56) References Cited CONVERTING REMOTE CONTROL SIGNALS

More information

October 1, 2017 MPEG-2 Systems Attachment 1 Page 1 of 7. GE Technology Development, Inc. MY A MY MY A.

October 1, 2017 MPEG-2 Systems Attachment 1 Page 1 of 7. GE Technology Development, Inc. MY A MY MY A. October 1, 2017 MPEG-2 Systems Attachment 1 Page 1 of 7 GE Technology Development, Inc. MY 118172-A MY 128994 1 MY 141626-A Thomson Licensing MY 118734-A PH 1-1995-50216 US 7,334,248 October 1, 2017 MPEG-2

More information

I International Bureau (10) International Publication Number (43) International Publication Date

I International Bureau (10) International Publication Number (43) International Publication Date (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International

More information

(73) Assignee: Nokia Networks Oy (FI) Wii: 12: 'We (*) Notice: Subject to any disclaimer, the term of this * cited by examiner

(73) Assignee: Nokia Networks Oy (FI) Wii: 12: 'We (*) Notice: Subject to any disclaimer, the term of this * cited by examiner USOO6246871B1 12) United States Patent 10) Patent No.: US 6,246,871 B1 9 9 Ala-Laurila (45) Date of Patent: Jun. 12, 2001 (54) METHOD AND APPARATUS FOR 5,941,946 8/1999 Baldwin et al.. PROVIDING ACCESS

More information

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1 (19) United States US 20070135182A1 (12) Patent Application Publication (10) Pub. No.: US 2007/0135182 A1 Hanif et al. (43) Pub. Date: (54) CELL PHONE DEVICE (75) Inventors: Sadeque Mohammad Hanif, Tokyo

More information

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0019726A1 Park et al. US 2006OO19726A1 (43) Pub. Date: Jan. 26, 2006 (54) (75) (73) (21) (22) (30) LOCKINGAPPARATUS OF SWING

More information

O * DTI,BUTION STATEME"T A Approved for Public Release Distribution Unlimited DEPARTMENT OF THE NAVY

O * DTI,BUTION STATEMET A Approved for Public Release Distribution Unlimited DEPARTMENT OF THE NAVY DEPARTMENT OF THE NAVY OFFICE OF COUNSEL. NAVAL UNDERSEA WARFARE CENTER DIVISION 1176 HOWELL STREET NEWPORT RI 02841-1708 IN REPLY REFER TO: Attorney Docket No. 82668 Date: 17 May 2005 The below identified

More information

TEPZZ 85 9Z_A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION

TEPZZ 85 9Z_A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION (19) TEPZZ 8 9Z_A_T (11) EP 2 83 901 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 01.04.1 Bulletin 1/14 (21) Application number: 141861.1 (1) Int Cl.: G01P 21/00 (06.01) G01C 2/00 (06.01)

More information

SMF Transient Voltage Suppressor Diode Series

SMF Transient Voltage Suppressor Diode Series SMF Transient Voltage Suppressor Diode Series General Information The SMF series is designed specifically to protect sensitive electronic equipment from voltage transients induced by lightning and other

More information

10 September 2010 ( ) WO 2010/ Al

10 September 2010 ( ) WO 2010/ Al (12) INTERNATIONALAPPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date (10) International

More information

a'^ DATE MAILED 119/lfi/2004

a'^ DATE MAILED 119/lfi/2004 Â UNITED STATES PATENT AND TRADEMARK OFFICE UNITEl> STATES DEPARTMENT OF COMMERCE Unilcd Slalcs Patent and Trademark Office Additss COMNflSSIONEK FOR I'ATEWTS PO Bin l4ul Ali-xiiinlri;~ Viryniiii22313-I450

More information

COMMISSION IMPLEMENTING REGULATION (EU)

COMMISSION IMPLEMENTING REGULATION (EU) 18.8.2012 Official Journal of the European Union L 222/5 COMMISSION IMPLEMENTING REGULATION (EU) No 751/2012 of 16 August 2012 correcting Regulation (EC) No 1235/2008 laying down detailed rules for implementation

More information

Medina (45) Date of Patent: Aug. 18, (54) FOOT CONTROLLED COMPUTER MOUSE 2004/ A1* 11/2004 Koda et al , 183

Medina (45) Date of Patent: Aug. 18, (54) FOOT CONTROLLED COMPUTER MOUSE 2004/ A1* 11/2004 Koda et al , 183 (12) United States Patent US007576729B2 (10) Patent No.: Medina (45) Date of Patent: Aug. 18, 2009 (54) FOOT CONTROLLED COMPUTER MOUSE 2004/022.7741 A1* 11/2004 Koda et al.... 345, 183 WITH FINGER CLICKERS

More information

(12) United States Patent (10) Patent No.: US 7,739,050 B2

(12) United States Patent (10) Patent No.: US 7,739,050 B2 USOO773905OB2 (12) United States Patent (10) Patent No.: US 7,739,050 B2 Tatro (45) Date of Patent: Jun. 15, 2010 (54) SOFTWARE-BASED QUALITY CONTROL (56) References Cited ANALYSIS OF WELL LOG DATA U.S.

More information

SPARE CONNECTORS KTM 2014

SPARE CONNECTORS KTM 2014 SPAREPARTSCATALOG: // ENGINE ART.-NR.: 3208201EN CONTENT CONNECTORS FOR WIRING HARNESS AA-AN CONNECTORS FOR WIRING HARNESS AO-BC CONNECTORS FOR WIRING HARNESS BD-BQ CONNECTORS FOR WIRING HARNESS BR-CD

More information

TEPZZ Z 7 76A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION

TEPZZ Z 7 76A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION (19) TEPZZ Z 7 76A_T (11) EP 3 037 376 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 29.06.16 Bulletin 16/26 (21) Application number: 88.9 (1) Int Cl.: B66C 13/46 (06.01) B66C /06 (06.01)

More information

SURVEY ON APPLICATION NUMBERING SYSTEMS

SURVEY ON APPLICATION NUMBERING SYSTEMS Ref.: Examples and IPO practices page: 7..5.0 SURVEY ON APPLICATION NUMBERING SYSTEMS Editorial note by the International Bureau The following survey presents the information on various aspects of application

More information