Advanced Computer Architecture (CS620)

Size: px
Start display at page:

Download "Advanced Computer Architecture (CS620)"

Transcription

1 Advanced Computer Architecture (CS620) Background: Good understanding of computer organization (eg.cs220), basic computer architecture (eg.cs221) and knowledge of probability, statistics and modeling (eg.cs433). Text for CS620: Hennessy and Patterson s Computer Architecture, A Quantitative Approach, 4 th Edition Topics Measuring performance/cost/power Instruction level parallelism, dynamic and static Memory hierarchy Multiprocessors Storage systems and networks 1

2 Organizational Issues Course materials adapted from several existing advanced computer architecture courses at various universities (primarily Utah, UCBerkeley, UPenn). Class syllabus, note and announcements to be posted to Blackboard. Currently available on shared folder: Grades: Paper Reviews + Participation 25%. Homework. 25%. Midterm and Final. 50% No tolerance for cheating. 2

3 Lecture 1: Computing Trends, Metrics Topics: (Sections , ) Technology trends Performance summaries Performance equations 3

4 Historical Microprocessor Performance Source: H&P textbook 4

5 Points to Note The 52% growth per year is because of faster clock speeds and architectural innovations (led to 25x higher speed) Clock speed increases have dropped to 1% per year in recent years The 22% growth includes the parallelization from multiple cores Moore s Law: transistors on a chip double every months 5

6 Clock Speed Increases Source: H&P textbook 6

7 Processor Technology Trends Transistor density increases by 35% per year and die size increases by 10-20% per year more cores! Transistor speed improves linearly with size (complex equation involving voltages, resistances, capacitances) can lead to clock speed improvements! The power wall: it is not possible to consistently run at higher frequencies without hitting power/thermal limits (Turbo Mode can cause occasional frequency boosts) Wire delays do not scale down at the same rate as logic delays 7

8 Recent Microprocessor Trends Transistors: 1.43x / year Cores: x Performance: 1.15x Frequency: 1.05x Power: 1.04x Source: Micron University Symp. 8

9 What Helps Performance? Note: no increase in clock speed In a clock cycle, can do more work -- since transistors are faster, transistors are more energy-efficient, and there s more of them Better architectures: finding more parallelism in one thread, better branch prediction, better cache policies, better memory organizations, more thread-level parallelism, etc. Core design is undergoing little change, but more cores available per chip; most future innovations will likely be in multi-threaded prog models and memory hierarchies 9

10 Where Are We Headed? Modern trends: Clock speed improvements are slowing power constraints Difficult to further optimize a single core for performance Multi-cores: each new processor generation will accommodate more cores Need better programming models and efficient execution for multi-threaded applications Need better memory hierarchies Need greater energy efficiency 10

11 Modern Processor Today Intel Core i7 Clock frequency: GHz 45nm and 32nm products Cores: 4 6 Power: W Two threads per core 3-level cache, 12 MB L3 cache Price: $300 - $

12 Power Consumption Trends Dyn power a activity x capacitance x voltage 2 x frequency Capacitance per transistor and voltage are decreasing, but number of transistors is increasing at a faster rate; hence clock frequency must be kept steady Leakage power is also rising; is a function of transistor count, leakage current, and supply voltage Power consumption is already between W in high-performance processors today Energy = power x time = (dynpower + lkgpower) x time 12

13 Power Vs. Energy Energy is the ultimate metric: it tells us the true cost of performing a fixed task Power (energy/time) poses constraints; can only work fast enough to max out the power delivery or cooling solution If processor A consumes 1.2x the power of processor B, but finishes the task in 30% less time, its relative energy is 1.2 X 0.7 = 0.84; Proc-A is better, assuming that 1.2x power can be supported by the system 13

14 Reducing Power and Energy Can gate off transistors that are inactive (reduces leakage) Design for typical case and throttle down when activity exceeds a threshold DFS: Dynamic frequency scaling -- only reduces frequency and dynamic power, but hurts energy DVFS: Dynamic voltage and frequency scaling can reduce voltage and frequency by (say) 10%; can slow a program by (say) 8%, but reduce dynamic power by 27%, reduce total power by (say) 23%, reduce total energy by 17% (Note: voltage drop slow transistor freq drop) 14

15 Other Technology Trends DRAM density increases by 40-60% per year, latency has reduced by 33% in 10 years (the memory wall!), bandwidth improves twice as fast as latency decreases Disk density improves by 100% every year, latency improvement similar to DRAM Emergence of NVRAM technologies that can provide a bridge between DRAM and hard disk drives 15

16 Measuring Performance Two primary metrics: wall clock time (response time for a program) and throughput (jobs performed in unit time) To optimize throughput, must ensure that there is minimal waste of resources Performance is measured with benchmark suites: a collection of programs that are likely relevant to the user SPEC CPU 2006: cpu-oriented programs (for desktops) SPECweb, TPC: throughput-oriented (for servers) EEMBC: for embedded processors/workloads 16

17 Summarizing Performance Consider 25 programs from a benchmark set how do we capture the behavior of all 25 programs with a single number? P1 P2 P3 Sys-A Sys-B Sys-C Total (average) execution time Total (average) weighted execution time or Average of normalized execution times Geometric mean of normalized execution times 17

18 AM Example We fixed a reference machine X and ran 4 programs A, B, C, D on it such that each program ran for 1 second The exact same workload (the four programs execute the same number of instructions that they did on machine X) is run on a new machine Y and the execution times for each program are 0.8, 1.1, 0.5, 2 With AM of normalized execution times, we can conclude that Y is 1.1 times slower than X perhaps, not for all workloads, but definitely for one specific workload (where all programs run on the ref-machine for an equal #cycles) With GM, you may find inconsistencies 18

19 GM Example Computer-A Computer-B Computer-C P1 1 sec 10 secs 20 secs P secs 100 secs 20 secs Conclusion with GMs: (i) A=B (ii) C is ~1.6 times faster For (i) to be true, P1 must occur 100 times for every occurrence of P2 With the above assumption, (ii) is no longer true Hence, GM can lead to inconsistencies 19

20 Summarizing Performance GM: does not require a reference machine, but does not predict performance very well So we multiplied execution times and determined that sys-a is 1.2x faster but on what workload? AM: does predict performance for a specific workload, but that workload was determined by executing programs on a reference machine Every year or so, the reference machine will have to be updated 20

21 Normalized Execution Times Advantage of GM: no reference machine required Disadvantage of GM: does not represent any real entity and may not accurately predict performance Disadvantage of AM of normalized: need weights (which may change over time) Advantage: can represent a real workload 21

22 CPU Performance Equation Clock cycle time = 1 / clock speed CPU time = clock cycle time x cycles per instruction x number of instructions Influencing factors for each: clock cycle time: technology and pipeline CPI: architecture and instruction set design instruction count: instruction set design and compiler CPI (cycles per instruction) or IPC (instructions per cycle) can not be accurately estimated analytically 22

23 Lecture 1: System Metrics and Pipelining Today s topics: (Sections ) Power/Energy examples Performance summaries Measuring cost and dependability 23

24 Reducing Power and Energy Can gate off transistors that are inactive (reduces leakage) Design for typical case and throttle down when activity exceeds a threshold DFS: Dynamic frequency scaling -- only reduces frequency and dynamic power, but hurts energy DVFS: Dynamic voltage and frequency scaling can reduce voltage and frequency by (say) 10%; can slow a program by (say) 8%, but reduce dynamic power by 27%, reduce total power by (say) 23%, reduce total energy by 17% (Note: voltage drop slow transistor freq drop) 24

25 DVFS Example 25

26 Other Technology Trends DRAM density increases by 40-60% per year, latency has reduced by 33% in 10 years (the memory wall!), bandwidth improves twice as fast as latency decreases Disk density improves by 100% every year, latency improvement similar to DRAM Emergence of NVRAM technologies that can provide a bridge between DRAM and hard disk drives 26

27 Measuring Performance Two primary metrics: wall clock time (response time for a program) and throughput (jobs performed in unit time) To optimize throughput, must ensure that there is minimal waste of resources Performance is measured with benchmark suites: a collection of programs that are likely relevant to the user SPEC CPU 2006: cpu-oriented programs (for desktops) SPECweb, TPC: throughput-oriented (for servers) EEMBC: for embedded processors/workloads 27

28 Summarizing Performance Consider 25 programs from a benchmark set how do we capture the behavior of all 25 programs with a single number? P1 P2 P3 Sys-A Sys-B Sys-C Total (average) execution time Total (average) weighted execution time or Average of normalized execution times Geometric mean of normalized execution times 28

29 AM Example 29

30 AM Example We fixed a reference machine X and ran 4 programs A, B, C, D on it such that each program ran for 1 second The exact same workload (the four programs execute the same number of instructions that they did on machine X) is run on a new machine Y and the execution times for each program are 0.8, 1.1, 0.5, 2 With AM of normalized execution times, we can conclude that Y is 1.1 times slower than X perhaps, not for all workloads, but definitely for one specific workload (where all programs run on the ref-machine for an equal #cycles) With GM, you may find inconsistencies 30

31 GM Example Computer-A Computer-B Computer-C P1 1 sec 10 secs 20 secs P secs 100 secs 20 secs Conclusion with GMs: (i) A=B (ii) C is ~1.6 times faster For (i) to be true, P1 must occur 100 times for every occurrence of P2 With the above assumption, (ii) is no longer true Hence, GM can lead to inconsistencies 31

32 Summarizing Performance GM: does not require a reference machine, but does not predict performance very well So we multiplied execution times and determined that sys-a is 1.2x faster but on what workload? AM: does predict performance for a specific workload, but that workload was determined by executing programs on a reference machine Every year or so, the reference machine will have to be updated 32

33 Normalized Execution Times Advantage of GM: no reference machine required Disadvantage of GM: does not represent any real entity and may not accurately predict performance Disadvantage of AM of normalized: need weights (which may change over time) Advantage: can represent a real workload 33

34 CPU Performance Equation Clock cycle time = 1 / clock speed CPU time = clock cycle time x cycles per instruction x number of instructions Influencing factors for each: clock cycle time: technology and pipeline CPI: architecture and instruction set design instruction count: instruction set design and compiler CPI (cycles per instruction) or IPC (instructions per cycle) can not be accurately estimated analytically 34

35 Measuring System CPI Assume that an architectural innovation only affects CPI For 3 programs, base CPIs: 1.2, 1.8, 2.5 CPIs for proposed model: 1.4, 1.9, 2.3 What is the best way to summarize performance with a single number? AM, HM, or GM of CPIs? 35

36 Example AM of CPI for base case = 1.2 cyc cyc cyc /3 instr instr instr 5.5 cycles is execution time if each program ran for one instruction therefore, AM of CPI defines a workload where every program runs for an equal #instrs HM of CPI = 1 / AM of IPC ; defines a workload where every program runs for an equal number of cycles GM of CPI: warm fuzzy number, not necessarily representing any workload 36

37 Speedup Vs. Percentage Speedup is a ratio Improvement, Increase, Decrease usually refer to percentage relative to the baseline A program ran in 100 seconds on my old laptop and in 70 seconds on my new laptop What is the speedup? What is the percentage increase in performance? What is the reduction in execution time? 37

38 Wafers and Dies An entire wafer is produced and chopped into dies that undergo testing and packaging 38

39 Integrated Circuit Cost Cost of an integrated circuit = (cost of die + cost of packaging and testing) / final test yield Cost of die = cost of wafer / (dies per wafer x die yield) Dies/wafer = wafer area / die area - p wafer diam / die diag Die yield = wafer yield x (1 + (defect rate x die area) / a) -a Thus, die yield depends on die area and complexity arising from multiple manufacturing steps (a ~ 4.0) 39

40 Integrated Circuit Cost Examples Bottomline: cost decreases dramatically if the chip area is smaller, if the chip has fewer manufacturing steps (less complex), if the chip is produced in high volume (10% lower cost if volume doubles) A 30 cm diameter wafer cost $5-6K in 2001 Such a wafer yields about 366 good 1 cm 2 dies and 1014 good 0.49 cm 2 dies (note the effect of area and yield) Die sizes: Alpha cm 2, Itanium 3.0 cm 2, embedded processors are between cm 2 40

41 Contribution of IC Costs to Total System Cost Subsystem Cabinet: sheet metal, plastic, power supply, fans, cables, nuts, bolts, manuals, shipping box Fraction of total cost 6% Processor 22% DRAM (128 MB) 5% Video card 5% Motherboard 5% Processor board subtotal 37% Keyboard and mouse 3% Monitor 19% Hard disk (20 GB) 9% DVD drive 6% I/O devices subtotal 37% Software (OS + Office) 20% 41

42 Defining Fault, Error, and Failure A fault produces a latent error; it becomes effective when activated; it leads to failure when the observed actual behavior deviates from the ideal specified behavior Example I : a programming mistake is a fault; the buggy code is the latent error; when the code runs, it is effective; if the buggy code influences program output/behavior, a failure occurs Example II : an alpha particle strikes DRAM (fault); if it changes the memory bit, it produces a latent error; when the value is read, the error becomes effective; if program output deviates, failure occurs 42

43 Defining Reliability and Availability A system toggles between Service accomplishment: service matches specifications Service interruption: services deviates from specs The toggle is caused by failures and restorations Reliability measures continuous service accomplishment and is usually expressed as mean time to failure (MTTF) Availability measures fraction of time that service matches specifications, expressed as MTTF / (MTTF + MTTR) 43

CS/EE 6810: Computer Architecture

CS/EE 6810: Computer Architecture CS/EE 6810: Computer Architecture Class format: Most lectures on YouTube *BEFORE* class Use class time for discussions, clarifications, problem-solving, assignments 1 Introduction Background: CS 3810 or

More information

Lecture: Benchmarks, Pipelining Intro. Topics: Performance equations wrap-up, Intro to pipelining

Lecture: Benchmarks, Pipelining Intro. Topics: Performance equations wrap-up, Intro to pipelining Lecture: Benchmarks, Pipelining Intro Topics: Performance equations wrap-up, Intro to pipelining 1 Measuring Performance Two primary metrics: wall clock time (response time for a program) and throughput

More information

PERFORMANCE METRICS. Mahdi Nazm Bojnordi. CS/ECE 6810: Computer Architecture. Assistant Professor School of Computing University of Utah

PERFORMANCE METRICS. Mahdi Nazm Bojnordi. CS/ECE 6810: Computer Architecture. Assistant Professor School of Computing University of Utah PERFORMANCE METRICS Mahdi Nazm Bojnordi Assistant Professor School of Computing University of Utah CS/ECE 6810: Computer Architecture Overview Announcement Sept. 5 th : Homework 1 release (due on Sept.

More information

Lecture 2: Performance

Lecture 2: Performance Lecture 2: Performance Today s topics: Technology wrap-up Performance trends and equations Reminders: YouTube videos, canvas, and class webpage: http://www.cs.utah.edu/~rajeev/cs3810/ 1 Important Trends

More information

Lecture 1: CS/ECE 3810 Introduction

Lecture 1: CS/ECE 3810 Introduction Lecture 1: CS/ECE 3810 Introduction Today s topics: Why computer organization is important Logistics Modern trends 1 Why Computer Organization 2 Image credits: uber, extremetech, anandtech Why Computer

More information

Transistors and Wires

Transistors and Wires Computer Architecture A Quantitative Approach, Fifth Edition Chapter 1 Fundamentals of Quantitative Design and Analysis Part II These slides are based on the slides provided by the publisher. The slides

More information

Lecture: Branch Prediction

Lecture: Branch Prediction Lecture: Branch Prediction Topics: power/energy basics and DFS/DVFS, branch prediction, bimodal/global/local/tournament predictors, branch target buffer (Section 3.3, notes on class webpage) 1 Power Consumption

More information

ECE 486/586. Computer Architecture. Lecture # 2

ECE 486/586. Computer Architecture. Lecture # 2 ECE 486/586 Computer Architecture Lecture # 2 Spring 2015 Portland State University Recap of Last Lecture Old view of computer architecture: Instruction Set Architecture (ISA) design Real computer architecture:

More information

EECS4201 Computer Architecture

EECS4201 Computer Architecture Computer Architecture A Quantitative Approach, Fifth Edition Chapter 1 Fundamentals of Quantitative Design and Analysis These slides are based on the slides provided by the publisher. The slides will be

More information

Fundamentals of Quantitative Design and Analysis

Fundamentals of Quantitative Design and Analysis Fundamentals of Quantitative Design and Analysis Dr. Jiang Li Adapted from the slides provided by the authors Computer Technology Performance improvements: Improvements in semiconductor technology Feature

More information

Lecture 1: Introduction

Lecture 1: Introduction Contemporary Computer Architecture Instruction set architecture Lecture 1: Introduction CprE 581 Computer Systems Architecture, Fall 2016 Reading: Textbook, Ch. 1.1-1.7 Microarchitecture; examples: Pipeline

More information

Copyright 2012, Elsevier Inc. All rights reserved.

Copyright 2012, Elsevier Inc. All rights reserved. Computer Architecture A Quantitative Approach, Fifth Edition Chapter 1 Fundamentals of Quantitative Design and Analysis 1 Computer Technology Performance improvements: Improvements in semiconductor technology

More information

Computer Architecture A Quantitative Approach, Fifth Edition. Chapter 1. Copyright 2012, Elsevier Inc. All rights reserved. Computer Technology

Computer Architecture A Quantitative Approach, Fifth Edition. Chapter 1. Copyright 2012, Elsevier Inc. All rights reserved. Computer Technology Computer Architecture A Quantitative Approach, Fifth Edition Chapter 1 Fundamentals of Quantitative Design and Analysis 1 Computer Technology Performance improvements: Improvements in semiconductor technology

More information

Lecture 23: Storage Systems. Topics: disk access, bus design, evaluation metrics, RAID (Sections )

Lecture 23: Storage Systems. Topics: disk access, bus design, evaluation metrics, RAID (Sections ) Lecture 23: Storage Systems Topics: disk access, bus design, evaluation metrics, RAID (Sections 7.1-7.9) 1 Role of I/O Activities external to the CPU are typically orders of magnitude slower Example: while

More information

Overview of Today s Lecture: Cost & Price, Performance { 1+ Administrative Matters Finish Lecture1 Cost and Price Add/Drop - See me after class

Overview of Today s Lecture: Cost & Price, Performance { 1+ Administrative Matters Finish Lecture1 Cost and Price Add/Drop - See me after class Overview of Today s Lecture: Cost & Price, Performance EE176-SJSU Computer Architecture and Organization Lecture 2 Administrative Matters Finish Lecture1 Cost and Price Add/Drop - See me after class EE176

More information

EE282 Computer Architecture. Lecture 1: What is Computer Architecture?

EE282 Computer Architecture. Lecture 1: What is Computer Architecture? EE282 Computer Architecture Lecture : What is Computer Architecture? September 27, 200 Marc Tremblay Computer Systems Laboratory Stanford University marctrem@csl.stanford.edu Goals Understand how computer

More information

TDT 4260 lecture 2 spring semester 2015

TDT 4260 lecture 2 spring semester 2015 1 TDT 4260 lecture 2 spring semester 2015 Lasse Natvig, The CARD group Dept. of computer & information science NTNU 2 Lecture overview Chapter 1: Fundamentals of Quantitative Design and Analysis, continued

More information

Lecture 2: Pipelining Basics. Today: chapter 1 wrap-up, basic pipelining implementation (Sections A.1 - A.4)

Lecture 2: Pipelining Basics. Today: chapter 1 wrap-up, basic pipelining implementation (Sections A.1 - A.4) Lecture 2: Pipelining Basics Today: chapter 1 wrap-up, basic pipelining implementation (Sections A.1 - A.4) 1 Defining Fault, Error, and Failure A fault produces a latent error; it becomes effective when

More information

CSE 502 Graduate Computer Architecture

CSE 502 Graduate Computer Architecture Computer Architecture A Quantitative Approach, Fifth Edition CAQA5 Chapter 1 CSE 502 Graduate Computer Architecture Lec 1-3 - Introduction Fundamentals of Quantitative Design and Analysis Larry Wittie

More information

Performance COE 403. Computer Architecture Prof. Muhamed Mudawar. Computer Engineering Department King Fahd University of Petroleum and Minerals

Performance COE 403. Computer Architecture Prof. Muhamed Mudawar. Computer Engineering Department King Fahd University of Petroleum and Minerals Performance COE 403 Computer Architecture Prof. Muhamed Mudawar Computer Engineering Department King Fahd University of Petroleum and Minerals What is Performance? How do we measure the performance of

More information

Performance of computer systems

Performance of computer systems Performance of computer systems Many different factors among which: Technology Raw speed of the circuits (clock, switching time) Process technology (how many transistors on a chip) Organization What type

More information

Performance, Power, Die Yield. CS301 Prof Szajda

Performance, Power, Die Yield. CS301 Prof Szajda Performance, Power, Die Yield CS301 Prof Szajda Administrative HW #1 assigned w Due Wednesday, 9/3 at 5:00 pm Performance Metrics (How do we compare two machines?) What to Measure? Which airplane has the

More information

Computer Architecture

Computer Architecture Computer Architecture Architecture The art and science of designing and constructing buildings A style and method of design and construction Design, the way components fit together Computer Architecture

More information

ECE 154A. Architecture. Dmitri Strukov

ECE 154A. Architecture. Dmitri Strukov ECE 154A Introduction to Computer Architecture Dmitri Strukov Lecture 1 Outline Admin What this class is about? Prerequisites ii Simple computer Performance Historical trends Economics 2 Admin Office Hours:

More information

CSCI 402: Computer Architectures. Computer Abstractions and Technology (4) Fengguang Song Department of Computer & Information Science IUPUI.

CSCI 402: Computer Architectures. Computer Abstractions and Technology (4) Fengguang Song Department of Computer & Information Science IUPUI. CSCI 402: Computer Architectures Computer Abstractions and Technology (4) Fengguang Song Department of Computer & Information Science IUPUI Contents 1.7 - End of Chapter 1 Power wall The multicore era

More information

Computer Architecture. What is it?

Computer Architecture. What is it? Computer Architecture Venkatesh Akella EEC 270 Winter 2005 What is it? EEC270 Computer Architecture Basically a story of unprecedented improvement $1K buys you a machine that was 1-5 million dollars a

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 1. Computer Abstractions and Technology

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 1. Computer Abstractions and Technology COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 1 Computer Abstractions and Technology Classes of Computers Personal computers General purpose, variety of software

More information

Outline Marquette University

Outline Marquette University COEN-4710 Computer Hardware Lecture 1 Computer Abstractions and Technology (Ch.1) Cristinel Ababei Department of Electrical and Computer Engineering Credits: Slides adapted primarily from presentations

More information

Computer Architecture. Minas E. Spetsakis Dept. Of Computer Science and Engineering (Class notes based on Hennessy & Patterson)

Computer Architecture. Minas E. Spetsakis Dept. Of Computer Science and Engineering (Class notes based on Hennessy & Patterson) Computer Architecture Minas E. Spetsakis Dept. Of Computer Science and Engineering (Class notes based on Hennessy & Patterson) What is Architecture? Instruction Set Design. Old definition from way back

More information

The Computer Revolution. Classes of Computers. Chapter 1

The Computer Revolution. Classes of Computers. Chapter 1 COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition 1 Chapter 1 Computer Abstractions and Technology 1 The Computer Revolution Progress in computer technology Underpinned by Moore

More information

Introduction to Computer Architecture II

Introduction to Computer Architecture II Introduction to Computer Architecture II ECE 154B Dmitri Strukov Computer systems overview 1 Outline Course information Trends Computing classes Quantitative Principles of Design Dependability 2 Course

More information

Computer Architecture!

Computer Architecture! Informatics 3 Computer Architecture! Dr. Vijay Nagarajan and Prof. Nigel Topham! Institute for Computing Systems Architecture, School of Informatics! University of Edinburgh! General Information! Instructors

More information

DEPARTMENT OF ECE IV YEAR ECE EC6009 ADVANCED COMPUTER ARCHITECTURE LECTURE NOTES

DEPARTMENT OF ECE IV YEAR ECE EC6009 ADVANCED COMPUTER ARCHITECTURE LECTURE NOTES DEPARTMENT OF ECE IV YEAR ECE EC6009 ADVANCED COMPUTER ARCHITECTURE LECTURE NOTES SYLLABUS EC6009 ADVANCED COMPUTER ARCHITECTURE L T P C 3 0 0 3 OBJECTIVES: The student should be made to: Understand the

More information

1.13 Historical Perspectives and References

1.13 Historical Perspectives and References Case Studies and Exercises by Diana Franklin 61 Appendix H reviews VLIW hardware and software, which, in contrast, are less popular than when EPIC appeared on the scene just before the last edition. Appendix

More information

Microelettronica. J. M. Rabaey, "Digital integrated circuits: a design perspective" EE141 Microelettronica

Microelettronica. J. M. Rabaey, Digital integrated circuits: a design perspective EE141 Microelettronica Microelettronica J. M. Rabaey, "Digital integrated circuits: a design perspective" Introduction Why is designing digital ICs different today than it was before? Will it change in future? The First Computer

More information

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture Computer and Information Sciences College / Computer Science Department CS 207 D Computer Architecture The Computer Revolution Progress in computer technology Underpinned by Moore s Law Makes novel applications

More information

Lecture 2: Computer Performance. Assist.Prof.Dr. Gürhan Küçük Advanced Computer Architectures CSE 533

Lecture 2: Computer Performance. Assist.Prof.Dr. Gürhan Küçük Advanced Computer Architectures CSE 533 Lecture 2: Computer Performance Assist.Prof.Dr. Gürhan Küçük Advanced Computer Architectures CSE 533 Performance and Cost Purchasing perspective given a collection of machines, which has the - best performance?

More information

Computer Architecture

Computer Architecture Informatics 3 Computer Architecture Dr. Vijay Nagarajan Institute for Computing Systems Architecture, School of Informatics University of Edinburgh (thanks to Prof. Nigel Topham) General Information Instructor

More information

LECTURE 1. Introduction

LECTURE 1. Introduction LECTURE 1 Introduction CLASSES OF COMPUTERS When we think of a computer, most of us might first think of our laptop or maybe one of the desktop machines frequently used in the Majors Lab. Computers, however,

More information

Computer Architecture

Computer Architecture Informatics 3 Computer Architecture Dr. Boris Grot and Dr. Vijay Nagarajan Institute for Computing Systems Architecture, School of Informatics University of Edinburgh General Information Instructors: Boris

More information

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 1. Computer Abstractions and Technology

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 1. Computer Abstractions and Technology COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 1 Computer Abstractions and Technology The Computer Revolution Progress in computer technology Underpinned by Moore

More information

Advanced Computer Architecture Week 1: Introduction. ECE 154B Dmitri Strukov

Advanced Computer Architecture Week 1: Introduction. ECE 154B Dmitri Strukov Advanced Computer Architecture Week 1: Introduction ECE 154B Dmitri Strukov 1 Outline Course information Trends (in technology, cost, performance) and issues 2 Course organization Class website (old),

More information

How What When Why CSC3501 FALL07 CSC3501 FALL07. Louisiana State University 1- Introduction - 1. Louisiana State University 1- Introduction - 2

How What When Why CSC3501 FALL07 CSC3501 FALL07. Louisiana State University 1- Introduction - 1. Louisiana State University 1- Introduction - 2 Computer Organization and Design Dr. Arjan Durresi Louisiana State University Baton Rouge, LA 70803 durresi@csc.lsu.edu d These slides are available at: http://www.csc.lsu.edu/~durresi/csc3501_07/ Louisiana

More information

Computer Architecture. Fall Dongkun Shin, SKKU

Computer Architecture. Fall Dongkun Shin, SKKU Computer Architecture Fall 2018 1 Syllabus Instructors: Dongkun Shin Office : Room 85470 E-mail : dongkun@skku.edu Office Hours: Wed. 15:00-17:30 or by appointment Lecture notes nyx.skku.ac.kr Courses

More information

EECS2021E EECS2021E. The Computer Revolution. Morgan Kaufmann Publishers September 12, Chapter 1 Computer Abstractions and Technology 1

EECS2021E EECS2021E. The Computer Revolution. Morgan Kaufmann Publishers September 12, Chapter 1 Computer Abstractions and Technology 1 COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface RISC-V Edition EECS2021E Computer Organization Fall 2017 These slides are based on the slides by the authors. The slides doesn t include

More information

ECE 486/586. Computer Architecture. Lecture # 3

ECE 486/586. Computer Architecture. Lecture # 3 ECE 486/586 Computer Architecture Lecture # 3 Spring 2014 Portland State University Lecture Topics Measuring, Reporting and Summarizing Performance Execution Time and Throughput Benchmarks Comparing and

More information

Review: latency vs. throughput

Review: latency vs. throughput Lecture : Performance measurement and Instruction Set Architectures Last Time Introduction to performance Computer benchmarks Amdahl s law Today Take QUIZ 1 today over Chapter 1 Turn in your homework on

More information

ELE 455/555 Computer System Engineering. Section 1 Review and Foundations Class 5 Computer System Performance

ELE 455/555 Computer System Engineering. Section 1 Review and Foundations Class 5 Computer System Performance ELE 455/555 Computer System Engineering Section 1 Review and Foundations Class 5 Computer System Overview Eight Great Ideas in Computer Architecture Design for Moore s Law Integrated Circuit resources

More information

Course web site: teaching/courses/car. Piazza discussion forum:

Course web site:   teaching/courses/car. Piazza discussion forum: Announcements Course web site: http://www.inf.ed.ac.uk/ teaching/courses/car Lecture slides Tutorial problems Courseworks Piazza discussion forum: http://piazza.com/ed.ac.uk/spring2018/car Tutorials start

More information

CS3350B Computer Architecture CPU Performance and Profiling

CS3350B Computer Architecture CPU Performance and Profiling CS3350B Computer Architecture CPU Performance and Profiling Marc Moreno Maza http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html Department of Computer Science University of Western Ontario, Canada

More information

Chapter 1: Fundamentals of Quantitative Design and Analysis

Chapter 1: Fundamentals of Quantitative Design and Analysis 1 / 12 Chapter 1: Fundamentals of Quantitative Design and Analysis Be careful in this chapter. It contains a tremendous amount of information and data about the changes in computer architecture since the

More information

Computer Architecture!

Computer Architecture! Informatics 3 Computer Architecture! Dr. Boris Grot and Dr. Vijay Nagarajan!! Institute for Computing Systems Architecture, School of Informatics! University of Edinburgh! General Information! Instructors:!

More information

Computer Architecture!

Computer Architecture! Informatics 3 Computer Architecture! Dr. Boris Grot and Dr. Vijay Nagarajan!! Institute for Computing Systems Architecture, School of Informatics! University of Edinburgh! General Information! Instructors

More information

CS Computer Architecture Spring Lecture 01: Introduction

CS Computer Architecture Spring Lecture 01: Introduction CS 35101 Computer Architecture Spring 2008 Lecture 01: Introduction Created by Shannon Steinfadt Indicates slide was adapted from :Kevin Schaffer*, Mary Jane Irwinº, and from Computer Organization and

More information

Computer Architecture s Changing Definition

Computer Architecture s Changing Definition Computer Architecture s Changing Definition 1950s Computer Architecture Computer Arithmetic 1960s Operating system support, especially memory management 1970s to mid 1980s Computer Architecture Instruction

More information

Power Measurement Using Performance Counters

Power Measurement Using Performance Counters Power Measurement Using Performance Counters October 2016 1 Introduction CPU s are based on complementary metal oxide semiconductor technology (CMOS). CMOS technology theoretically only dissipates power

More information

CMSC 411 Computer Systems Architecture Lecture 2 Trends in Technology. Moore s Law: 2X transistors / year

CMSC 411 Computer Systems Architecture Lecture 2 Trends in Technology. Moore s Law: 2X transistors / year CMSC 411 Computer Systems Architecture Lecture 2 Trends in Technology Moore s Law: 2X transistors / year Cramming More Components onto Integrated Circuits Gordon Moore, Electronics, 1965 # on transistors

More information

Exercise 1 Due 02.November 2010, 12:15pm

Exercise 1 Due 02.November 2010, 12:15pm Computer Architecture Exercise 1 Due 02.November 2010, 12:15pm Part 1. Case Study - Chip Fabrication Cost There are many factors involved in the price of a computer chip. New, smaller technologies give

More information

Computer Architecture. Introduction. Lynn Choi Korea University

Computer Architecture. Introduction. Lynn Choi Korea University Computer Architecture Introduction Lynn Choi Korea University Class Information Lecturer Prof. Lynn Choi, School of Electrical Eng. Phone: 3290-3249, 공학관 411, lchoi@korea.ac.kr, TA: 윤창현 / 신동욱, 3290-3896,

More information

Chapter 1. The Computer Revolution

Chapter 1. The Computer Revolution Chapter 1 Baback Izadi Division of Engineering Programs bai@engr.newpaltz.edu The Computer Revolution Progress in computer technology Underpinned by Moore s Law Makes novel applications feasible Computers

More information

Moore s Law. CS 6534: Tech Trends / Intro. Good Ol Days: Frequency Scaling. The Power Wall. Charles Reiss. 24 August 2016

Moore s Law. CS 6534: Tech Trends / Intro. Good Ol Days: Frequency Scaling. The Power Wall. Charles Reiss. 24 August 2016 Moore s Law CS 6534: Tech Trends / Intro Microprocessor Transistor Counts 1971-211 & Moore's Law 2,6,, 1,,, Six-Core Core i7 Six-Core Xeon 74 Dual-Core Itanium 2 AMD K1 Itanium 2 with 9MB cache POWER6

More information

Review: Performance Latency vs. Throughput. Time (seconds/program) is performance measure Instructions Clock cycles Seconds.

Review: Performance Latency vs. Throughput. Time (seconds/program) is performance measure Instructions Clock cycles Seconds. Performance 980 98 982 983 984 985 986 987 988 989 990 99 992 993 994 995 996 997 998 999 2000 7/4/20 CS 6C: Great Ideas in Computer Architecture (Machine Structures) Caches Instructor: Michael Greenbaum

More information

PERFORMANCE MEASUREMENT

PERFORMANCE MEASUREMENT Administrivia CMSC 411 Computer Systems Architecture Lecture 3 Performance Measurement and Reliability Homework problems for Unit 1 posted today due next Thursday, 2/12 Start reading Appendix C Basic Pipelining

More information

TDT4255 Computer Design. Lecture 1. Magnus Jahre

TDT4255 Computer Design. Lecture 1. Magnus Jahre 1 TDT4255 Computer Design Lecture 1 Magnus Jahre 2 Outline Practical course information Chapter 1: Computer Abstractions and Technology 3 Practical Course Information 4 TDT4255 Computer Design TDT4255

More information

5008: Computer Architecture

5008: Computer Architecture 5008: Computer Architecture Chapter 1 Fundamentals of Computer Design CA Lecture02 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 02-1 Review from Last Lecture Computer Architecture >> instruction sets Quantitative

More information

CS 6534: Tech Trends / Intro

CS 6534: Tech Trends / Intro 1 CS 6534: Tech Trends / Intro Charles Reiss 24 August 2016 Moore s Law Microprocessor Transistor Counts 1971-2011 & Moore's Law 16-Core SPARC T3 2,600,000,000 1,000,000,000 Six-Core Core i7 Six-Core Xeon

More information

Introduction to Multicore architecture. Tao Zhang Oct. 21, 2010

Introduction to Multicore architecture. Tao Zhang Oct. 21, 2010 Introduction to Multicore architecture Tao Zhang Oct. 21, 2010 Overview Part1: General multicore architecture Part2: GPU architecture Part1: General Multicore architecture Uniprocessor Performance (ECint)

More information

Introduction. Summary. Why computer architecture? Technology trends Cost issues

Introduction. Summary. Why computer architecture? Technology trends Cost issues Introduction 1 Summary Why computer architecture? Technology trends Cost issues 2 1 Computer architecture? Computer Architecture refers to the attributes of a system visible to a programmer (that have

More information

ECE 15B COMPUTER ORGANIZATION

ECE 15B COMPUTER ORGANIZATION ECE 15B COMPUTER ORGANIZATION What are Computing Systems? CMOS Camera (courtesy of Samsung Electronics Co., Ltd) Lecture 1 Introduction Dr. Rahul Singh UCLA Gonda Robotic Surgery Center da Vinci surgical

More information

Performance evaluation. Performance evaluation. CS/COE0447: Computer Organization. It s an everyday process

Performance evaluation. Performance evaluation. CS/COE0447: Computer Organization. It s an everyday process Performance evaluation It s an everyday process CS/COE0447: Computer Organization and Assembly Language Chapter 4 Sangyeun Cho Dept. of Computer Science When you buy food Same quantity, then you look at

More information

Memory Systems IRAM. Principle of IRAM

Memory Systems IRAM. Principle of IRAM Memory Systems 165 other devices of the module will be in the Standby state (which is the primary state of all RDRAM devices) or another state with low-power consumption. The RDRAM devices provide several

More information

Response Time and Throughput

Response Time and Throughput Response Time and Throughput Response time How long it takes to do a task Throughput Total work done per unit time e.g., tasks/transactions/ per hour How are response time and throughput affected by Replacing

More information

Multithreading: Exploiting Thread-Level Parallelism within a Processor

Multithreading: Exploiting Thread-Level Parallelism within a Processor Multithreading: Exploiting Thread-Level Parallelism within a Processor Instruction-Level Parallelism (ILP): What we ve seen so far Wrap-up on multiple issue machines Beyond ILP Multithreading Advanced

More information

Multi-Core Microprocessor Chips: Motivation & Challenges

Multi-Core Microprocessor Chips: Motivation & Challenges Multi-Core Microprocessor Chips: Motivation & Challenges Dileep Bhandarkar, Ph. D. Architect at Large DEG Architecture & Planning Digital Enterprise Group Intel Corporation October 2005 Copyright 2005

More information

High Performance Computing

High Performance Computing High Performance Computing CS701 and IS860 Basavaraj Talawar basavaraj@nitk.edu.in Course Syllabus Definition, RISC ISA, RISC Pipeline, Performance Quantification Instruction Level Parallelism Pipeline

More information

EE282H: Computer Architecture and Organization. EE282H: Computer Architecture and Organization -- Course Overview

EE282H: Computer Architecture and Organization. EE282H: Computer Architecture and Organization -- Course Overview : Computer Architecture and Organization Kunle Olukotun Gates 302 kunle@ogun.stanford.edu http://www-leland.stanford.edu/class/ee282h/ : Computer Architecture and Organization -- Course Overview Goals»

More information

Course overview Computer system structure and operation

Course overview Computer system structure and operation Computer Architecture Week 01 Course overview Computer system structure and operation College of Information Science and Engineering Ritsumeikan University reference information course web site: http://www.ritsumei.ac.jp/~piumarta/ca/

More information

Appendix D: Storage Systems (Cont)

Appendix D: Storage Systems (Cont) Appendix D: Storage Systems (Cont) Instructor: Josep Torrellas CS433 Copyright Josep Torrellas 1999, 2001, 2002, 2013 1 Reliability, Availability, Dependability Dependability: deliver service such that

More information

Microprocessor Trends and Implications for the Future

Microprocessor Trends and Implications for the Future Microprocessor Trends and Implications for the Future John Mellor-Crummey Department of Computer Science Rice University johnmc@rice.edu COMP 522 Lecture 4 1 September 2016 Context Last two classes: from

More information

CS61C Machine Structures. Lecture 1 Introduction. 8/27/2006 John Wawrzynek (Warzneck)

CS61C Machine Structures. Lecture 1 Introduction. 8/27/2006 John Wawrzynek (Warzneck) CS61C Machine Structures Lecture 1 Introduction 8/27/2006 John Wawrzynek (Warzneck) (http://www.cs.berkeley.edu/~johnw/) http://www-inst.eecs.berkeley.edu/~cs61c/ CS 61C L01 Introduction (1) What are Machine

More information

When and Where? Course Information. Expected Background ECE 486/586. Computer Architecture. Lecture # 1. Spring Portland State University

When and Where? Course Information. Expected Background ECE 486/586. Computer Architecture. Lecture # 1. Spring Portland State University When and Where? ECE 486/586 Computer Architecture Lecture # 1 Spring 2015 Portland State University When: Tuesdays and Thursdays 7:00-8:50 PM Where: Willow Creek Center (WCC) 312 Office hours: Tuesday

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 1. Computer Abstractions and Technology

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 1. Computer Abstractions and Technology COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 1 Computer Abstractions and Technology The Computer Revolution Progress in computer technology Underpinned by Moore

More information

Computer Architecture Lecture 1: Fundamentals of Quantitative Design and Analysis (Chapter 1)

Computer Architecture Lecture 1: Fundamentals of Quantitative Design and Analysis (Chapter 1) Computer Architecture Lecture 1: Fundamentals of Quantitative Design and Analysis (Chapter 1) Chih Wei Liu 劉志尉 National Chiao Tung University cwliu@twins.ee.nctu.edu.tw Computer Technology Introduction

More information

Chapter 1. Computer Abstractions and Technology. Adapted by Paulo Lopes, IST

Chapter 1. Computer Abstractions and Technology. Adapted by Paulo Lopes, IST Chapter 1 Computer Abstractions and Technology Adapted by Paulo Lopes, IST The Computer Revolution Progress in computer technology Sustained by Moore s Law Makes novel and old applications feasible Computers

More information

B649 Graduate Computer Architecture. Lec 2 - Introduction. Slides derived from David Patterson

B649 Graduate Computer Architecture. Lec 2 - Introduction. Slides derived from David Patterson B649 Graduate Computer Architecture Lec 2 - Introduction Slides derived from David Patterson Review from last lecture Computer Architecture >> instruction sets Computer Architecture skill sets are different

More information

EITF20: Computer Architecture Part1.1.1: Introduction

EITF20: Computer Architecture Part1.1.1: Introduction EITF20: Computer Architecture Part1.1.1: Introduction Liang Liu liang.liu@eit.lth.se 1 Course Factor Computer Architecture (7.5HP) http://www.eit.lth.se/kurs/eitf20 EIT s Course Service Desk (studerandeexpedition)

More information

COMPUTER ARCHITECTURE AND OPERATING SYSTEMS (CS31702)

COMPUTER ARCHITECTURE AND OPERATING SYSTEMS (CS31702) COMPUTER ARCHITECTURE AND OPERATING SYSTEMS (CS31702) Syllabus Architecture: Basic organization, fetch-decode-execute cycle, data path and control path, instruction set architecture, I/O subsystems, interrupts,

More information

5DV118 Computer Organization and Architecture Umeå University Department of Computing Science Stephen J. Hegner. Topic 1: Introduction

5DV118 Computer Organization and Architecture Umeå University Department of Computing Science Stephen J. Hegner. Topic 1: Introduction 5DV118 Computer Organization and Architecture Umeå University Department of Computing Science Stephen J. Hegner Topic 1: Introduction These slides are mostly taken verbatim, or with minor changes, from

More information

Mainstream Computer System Components CPU Core 2 GHz GHz 4-way Superscaler (RISC or RISC-core (x86): Dynamic scheduling, Hardware speculation

Mainstream Computer System Components CPU Core 2 GHz GHz 4-way Superscaler (RISC or RISC-core (x86): Dynamic scheduling, Hardware speculation Mainstream Computer System Components CPU Core 2 GHz - 3.0 GHz 4-way Superscaler (RISC or RISC-core (x86): Dynamic scheduling, Hardware speculation One core or multi-core (2-4) per chip Multiple FP, integer

More information

Mainstream Computer System Components

Mainstream Computer System Components Mainstream Computer System Components Double Date Rate (DDR) SDRAM One channel = 8 bytes = 64 bits wide Current DDR3 SDRAM Example: PC3-12800 (DDR3-1600) 200 MHz (internal base chip clock) 8-way interleaved

More information

A Simple Model for Estimating Power Consumption of a Multicore Server System

A Simple Model for Estimating Power Consumption of a Multicore Server System , pp.153-160 http://dx.doi.org/10.14257/ijmue.2014.9.2.15 A Simple Model for Estimating Power Consumption of a Multicore Server System Minjoong Kim, Yoondeok Ju, Jinseok Chae and Moonju Park School of

More information

ECE520 VLSI Design. Lecture 1: Introduction to VLSI Technology. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 1: Introduction to VLSI Technology. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 1: Introduction to VLSI Technology Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Course Objectives

More information

Tutorial 11. Final Exam Review

Tutorial 11. Final Exam Review Tutorial 11 Final Exam Review Introduction Instruction Set Architecture: contract between programmer and designers (e.g.: IA-32, IA-64, X86-64) Computer organization: describe the functional units, cache

More information

Advanced Computer Architecture Week 1: Introduction. ECE 154B Dmitri Strukov

Advanced Computer Architecture Week 1: Introduction. ECE 154B Dmitri Strukov Advanced Computer Architecture Week 1: Introduction ECE 154B Dmitri Strukov 1 Outline Course information Trends (in technology, cost, performance) and issues 2 Course organization Class website: http://www.ece.ucsb.edu/~strukov/ece154bwint

More information

CSE 548 Computer Architecture. Clock Rate vs IPC. V. Agarwal, M. S. Hrishikesh, S. W. Kechler. D. Burger. Presented by: Ning Chen

CSE 548 Computer Architecture. Clock Rate vs IPC. V. Agarwal, M. S. Hrishikesh, S. W. Kechler. D. Burger. Presented by: Ning Chen CSE 548 Computer Architecture Clock Rate vs IPC V. Agarwal, M. S. Hrishikesh, S. W. Kechler. D. Burger Presented by: Ning Chen Transistor Changes Development of silicon fabrication technology caused transistor

More information

Computer Architecture Crash course

Computer Architecture Crash course Computer Architecture Crash course Frédéric Haziza Department of Computer Systems Uppsala University Summer 2008 Conclusions The multicore era is already here cost of parallelism is dropping

More information

Thomas Polzer Institut für Technische Informatik

Thomas Polzer Institut für Technische Informatik Thomas Polzer tpolzer@ecs.tuwien.ac.at Institut für Technische Informatik Computer Organization and Design The Hardware / Software Interface David A. Patterson and John L. Hennessy Course based on the

More information

Fundamentals of Computer Design

Fundamentals of Computer Design CS359: Computer Architecture Fundamentals of Computer Design Yanyan Shen Department of Computer Science and Engineering 1 Defining Computer Architecture Agenda Introduction Classes of Computers 1.3 Defining

More information

Low-power Architecture. By: Jonathan Herbst Scott Duntley

Low-power Architecture. By: Jonathan Herbst Scott Duntley Low-power Architecture By: Jonathan Herbst Scott Duntley Why low power? Has become necessary with new-age demands: o Increasing design complexity o Demands of and for portable equipment Communication Media

More information

Parallelism: The Real Y2K Crisis. Darek Mihocka August 14, 2008

Parallelism: The Real Y2K Crisis. Darek Mihocka August 14, 2008 Parallelism: The Real Y2K Crisis Darek Mihocka August 14, 2008 The Free Ride For decades, Moore's Law allowed CPU vendors to rely on steady clock speed increases: late 1970's: 1 MHz (6502) mid 1980's:

More information