Ralf K. Heilmann CAT-GS: Critical-Angle Transmission Grating Spectrometer January 27,

Size: px
Start display at page:

Download "Ralf K. Heilmann CAT-GS: Critical-Angle Transmission Grating Spectrometer January 27,"

Transcription

1 Ralf K. Heilmann CAT-GS: Critical-Angle Transmission Grating Spectrometer January 27,

2 Overview of CAT-GS Mission requirements: Effective area > 1000 cm 2 (0.3 1 kev) Spectral resolution E/ΔE > 3000 (FWHM) Implementation: CAT grating array aft of mirrors (< 6 kg) Linear CCD detector array (32 CCDs) on instrument bus (< 40 kg) Flight mirror assembly view Ralf K. Heilmann CAT-GS: Critical-Angle Transmission Grating Spectrometer January 27,

3 Transmission Grating Spectrometer Heritage: Ralf K. Heilmann CAT-GS: Critical-Angle Transmission Grating Spectrometer January 27,

4 Diffraction Gratings for X-ray and EUV Spectroscopy Transmission Gratings Blazed Reflection Gratings Relaxed alignment & surface flatness tolerance Low diffraction efficiency (absorption, etc.) High diffraction efficiency Requires precise alignment, flat & smooth surface Grating Equation mλ = p(sinα + sin β ) m m: diffraction order λ: wavelength p: grating period α: incident angle, β m : diffracted angle Ralf K. Heilmann CAT-GS: Critical-Angle Transmission Grating Spectrometer January 27,

5 Ralf K. Heilmann CAT-GS: Critical-Angle Transmission Grating Spectrometer January 27,

6 Ralf K. Heilmann CAT-GS: Critical-Angle Transmission Grating Spectrometer January 27,

7 Ralf K. Heilmann CAT-GS: Critical-Angle Transmission Grating Spectrometer January 27,

8 Diffraction efficiency comparison bw. Chandra and CAT gratings Ralf K. Heilmann CAT-GS: Critical-Angle Transmission Grating Spectrometer January 27,

9 Mirror only (12.5 HPD) Observatory (15.0 HPD) Effect of sub-aperturing on resolution (Courtesy Andrew Rasmussen) λ/δλ ~ 2200 λ/δλ ~ 1350 Ralf K. Heilmann CAT-GS: Critical-Angle Transmission Grating Spectrometer January 27, 2009

10 Short history of the Space Nanotechnology Laboratory at MIT - Fabricated 200 (HEG) and 400 (MEG) nm-period Au transmission phase gratings for Chandra HETGS (> 500 gratings, > 1in 2, ) - SNL gratings flown on other missions: - SOHO (1995) - IMAGE (2000) - GOES N, O, P (2004, 2007, 2008) - TWINS A,B (2004, 2006) - Developed advanced high-precision grating patterning and nanofabrication tools and techniques Silicon CAT gratings Ralf K. Heilmann CAT-GS: Critical-Angle Transmission Grating Spectrometer January 27,

11 MIT Nanoruler Scanning-Beam Interference Lithography Tool Uses phase-locked, scanning beams to pattern large substrates (up to 300 mm) Tight control of grating phase & duty cycle (< 3 nm) Can pattern up to 5000 l/mm Recently demonstrated spatial frequency division which enables patterning up to 20,000 l/mm Heilmann et al., Nanotechnology 15, S504 (2004). C.-H. Chang et al., Opt. Lett. 33, 1572 (2008) Nanoruler with 300 mm silicon wafer Ralf K. Heilmann CAT-GS: Critical-Angle Transmission Grating Spectrometer January 27,

12 Nanoruler II 91 cm x 42 cm pulse compression grating Plymouth Grating Laboratory Ralf K. Heilmann CAT-GS: Critical-Angle Transmission Grating Spectrometer January 27,

13 Diffraction Gratings for X-ray and EUV Spectroscopy Transmission Gratings Blazed Reflection Gratings Relaxed alignment & surface flatness tolerance Low diffraction efficiency (absorption, etc.) High diffraction efficiency Requires precise alignment, flat & smooth surface Grating Equation mλ = p(sinα + sin β ) m m: diffraction order λ: wavelength p: grating period α: incident angle, β m : diffracted angle Ralf K. Heilmann CAT-GS: Critical-Angle Transmission Grating Spectrometer January 27,

14 How do you go from a blazed reflection grating to a blazed transmission grating? 2m+1 1m 0m-1 0 Ralf K. Heilmann CAT-GS: Critical-Angle Transmission Grating Spectrometer January 27,

15 Critical-Angle Transmission Gratings Oblique incidence, normal grating bars Normal incidence, tilted grating bars Ralf K. Heilmann CAT-GS: Critical-Angle Transmission Grating Spectrometer January 27,

16 Critical Angle Transmission (CAT) Grating Ralf K. Heilmann CAT-GS: Critical-Angle Transmission Grating Spectrometer January 27,

17 Critical-Angle Transmission (CAT) Grating Ralf K. Heilmann CAT-GS: Critical-Angle Transmission Grating Spectrometer January 27,

18 CAT Grating Design Issues Design Parameters (IXO) Period, p = 200 nm (large dispersion) Duty cycle (b/p) = 0.2 (high throughput) Critical angle, θ = 1.5º (high reflectivity) d = a/tanθ = 6 µm (optimum filling ) Sidewall roughness < 1 nm (high reflectivity) Fabrication Challenges High aspect ratio (d/b ~ 150) Thin grating bars (b = 40 nm) Freestanding structure Smooth sidewalls (roughness < 1 nm) Fine period gratings (p = 200 nm) Initial prototype: p = 574 nm, d = 10 μm Ralf K. Heilmann CAT-GS: Critical-Angle Transmission Grating Spectrometer January 27,

19 Recent 200 nm-period CAT grating fabrication results - Smaller period - Smaller sidewall angle - Higher etch anisotropy - Larger process latitude - Larger open area (> 45%) Scanning electron micrographs: (a) Top view (b) Bottom view (c) Cross section (destructive) As of January 2009: IXO design parameters achieved: d = 6 μm, <b> = 40 nm Ralf K. Heilmann CAT-GS: Critical-Angle Transmission Grating Spectrometer January 27,

20 Ralf K. Heilmann CAT-GS: Critical-Angle Transmission Grating Spectrometer January 27,

21 -2-3 Ralf K. Heilmann CAT-GS: Critical-Angle Transmission Grating Spectrometer January 27,

22 First x-ray data from 200 nm-period CAT gratings intensity [arb. units] nm 1.6 nm 2.4 nm nm nm 17.5 nm α ~ 2.6 o - strong blazing - reduced blazing for λ with θ c (λ) < α -0 th order transmitted at shortest wavelengths (CAT grating becomes weak phase grating) α = 2.6 deg (blaze 5.2 deg from 0 th order) Raw data (not normalized) detector angle [deg] Heilmann et al. Proc. SPIE 7011 (2008) Ralf K. Heilmann CAT-GS: Critical-Angle Transmission Grating Spectrometer January 27,

23 Normalized Diffraction Efficiency Ralf K. Heilmann CAT-GS: Critical-Angle Transmission Grating Spectrometer January 27,

24 efficiency wavelength [nm] 0th order -1st order -2nd order -3rd -4th -5th -6th -7th -8th -9th -10th order 0th order -1st order -2nd order sum(-1:-10) sum on det. Model calculations: Silicon CAT grating p = 200 nm θ= 1.5 deg 20 m focal length: 78 cm CCD array (32 CCDs) th order -1st order -2nd order 0.7-3rd order -4th 0.6-5th efficiency th -7th -8th -9th -10th order th -12th -13th sum(-1:-10) sum on det. energy [kev] Ralf K. Heilmann CAT-GS: Critical-Angle Transmission Grating Spectrometer January 27,

25 The CCD array covers a range of m*λ = 7.2 nm to 15 nm mλ = p(sinα + sin β ) m 0.7 efficiency m*lambda [nm] Ralf K. Heilmann CAT-GS: Critical-Angle Transmission Grating Spectrometer January 27,

26 Order Sorting Capability of CAT-GS detector read-out at blaze Ralf K. Heilmann CAT-GS: Critical-Angle Transmission Grating Spectrometer January 27,

27 Baseline CCD for CAT MIT/Lincoln, 1024 x 1024, 24-micron pixels, 4 outputs High-performance backside treatment On-chip binning for nominal ~50 fps readout rate Chandra/Suzaku heritage: ~100 CCD-years on-orbit & counting Ralf K. Heilmann CAT-GS: Critical-Angle Transmission Grating Spectrometer January 27,

28 Detector Array Linear array of 32 CCDs (25 mm x 25 mm, 24 μm pixel size) Mass: Camera kg (depending on shielding requirement) Detector electronics and power supply (DEA) 22 kg Digital processor 14 kg Power: Camera DEA Digital processor 5 W (thermal control) 28 W 20 W Courtesy David Robinson Ralf K. Heilmann CAT-GS: Critical-Angle Transmission Grating Spectrometer January 27,

29 Resolution (FWHM): black CAT-GS <R> ~ 3000 red XMS (ΔE = 2eV) BUT: for A = 1000 cm 2 subaperturing provides R = 4500 Figure of Merit sqrt(a*r): black CAT-GS <R> ~ 3000 A = 3000 cm 2 red XMS (ΔE = 2eV) green no gratings For more detail and response files go to Ralf K. Heilmann CAT-GS: Critical-Angle Transmission Grating Spectrometer January 27,

30 Summary - CAT grating spectrometer easily meets & exceeds IXO requirements - CAT gratings combine advantages of transmission and blazed reflection gratings (low mass, relaxed alignment tolerances, high resolution, polarization insensitive - CAT-GS opens window into high-resolution soft x-ray spectroscopy Technology development: Increase open area (pre-etch techniques, etc.) Increase grating size (hierarchical support structures) Acknowledgements Eric Gullikson, Bob Fleming, Kathy Flanagan, Andrew Rasmussen, Chih-Hao Chang, Yong Zhao NSL & MTL (MIT) NASA ROSES APRA, Samsung scholarship program, Kavli Instrumentation Fund Ralf K. Heilmann CAT-GS: Critical-Angle Transmission Grating Spectrometer January 27,

Assembly of thin gratings for soft x-ray telescopes

Assembly of thin gratings for soft x-ray telescopes Assembly of thin gratings for soft x-ray telescopes Mireille Akilian 1, Ralf K. Heilmann and Mark L. Schattenburg Space Nanotechnology Laboratory, MIT Kavli Institute for Astrophysics and Space Research,

More information

Control of Light. Emmett Ientilucci Digital Imaging and Remote Sensing Laboratory Chester F. Carlson Center for Imaging Science 8 May 2007

Control of Light. Emmett Ientilucci Digital Imaging and Remote Sensing Laboratory Chester F. Carlson Center for Imaging Science 8 May 2007 Control of Light Emmett Ientilucci Digital Imaging and Remote Sensing Laboratory Chester F. Carlson Center for Imaging Science 8 May 007 Spectro-radiometry Spectral Considerations Chromatic dispersion

More information

Lenses lens equation (for a thin lens) = (η η ) f r 1 r 2

Lenses lens equation (for a thin lens) = (η η ) f r 1 r 2 Lenses lens equation (for a thin lens) 1 1 1 ---- = (η η ) ------ - ------ f r 1 r 2 Where object o f = focal length η = refractive index of lens material η = refractive index of adjacent material r 1

More information

Simple Spectrograph. grating. slit. camera lens. collimator. primary

Simple Spectrograph. grating. slit. camera lens. collimator. primary Simple Spectrograph slit grating camera lens collimator primary Notes: 1) For ease of sketching, this shows a transmissive system (refracting telescope, transmission grating). Most telescopes use a reflecting

More information

Diffractive Optics for Moon Topography Mapping

Diffractive Optics for Moon Topography Mapping Diffractive Optics for Moon Topography Mapping John G. Smith a, Luis Ramos-Izquierdo b, Andrew Stockham a, Stan Scott b a MEMS Optical *, Inc., 205 Import Circle, Huntsville, AL, USA 35806 b NASA Goddard

More information

Diffraction Efficiency

Diffraction Efficiency Diffraction Efficiency Turan Erdogan Gratings are based on diffraction and interference: Diffraction gratings can be understood using the optical principles of diffraction and interference. When light

More information

Optics Vac Work MT 2008

Optics Vac Work MT 2008 Optics Vac Work MT 2008 1. Explain what is meant by the Fraunhofer condition for diffraction. [4] An aperture lies in the plane z = 0 and has amplitude transmission function T(y) independent of x. It is

More information

Spectrographs. C. A. Griffith, Class Notes, PTYS 521, 2016 Not for distribution.

Spectrographs. C. A. Griffith, Class Notes, PTYS 521, 2016 Not for distribution. Spectrographs C A Griffith, Class Notes, PTYS 521, 2016 Not for distribution 1 Spectrographs and their characteristics A spectrograph is an instrument that disperses light into a frequency spectrum, which

More information

Astronomical spectrographs. ASTR320 Wednesday February 20, 2019

Astronomical spectrographs. ASTR320 Wednesday February 20, 2019 Astronomical spectrographs ASTR320 Wednesday February 20, 2019 Spectrographs A spectrograph is an instrument used to form a spectrum of an object Much higher spectral resolutions than possible with multiband

More information

LECTURE 14 PHASORS & GRATINGS. Instructor: Kazumi Tolich

LECTURE 14 PHASORS & GRATINGS. Instructor: Kazumi Tolich LECTURE 14 PHASORS & GRATINGS Instructor: Kazumi Tolich Lecture 14 2 Reading chapter 33-5 & 33-8 Phasors n Addition of two harmonic waves n Interference pattern from multiple sources n Single slit diffraction

More information

Condenser Optics for Dark Field X-Ray Microscopy

Condenser Optics for Dark Field X-Ray Microscopy Condenser Optics for Dark Field X-Ray Microscopy S. J. Pfauntsch, A. G. Michette, C. J. Buckley Centre for X-Ray Science, Department of Physics, King s College London, Strand, London WC2R 2LS, UK Abstract.

More information

Introduction to Microeletromechanical Systems (MEMS) Lecture 8 Topics. MEMS Overview

Introduction to Microeletromechanical Systems (MEMS) Lecture 8 Topics. MEMS Overview Introduction to Microeletromechanical Systems (MEMS) Lecture 8 Topics MicroOptoElectroMechanical Systems (MOEMS) Scanning D Micromirrors TI Digital Light Projection Device Basic Optics: Refraction and

More information

High spatial resolution measurement of volume holographic gratings

High spatial resolution measurement of volume holographic gratings High spatial resolution measurement of volume holographic gratings Gregory J. Steckman, Frank Havermeyer Ondax, Inc., 8 E. Duarte Rd., Monrovia, CA, USA 9116 ABSTRACT The conventional approach for measuring

More information

Scanning laser reflection tool for alignment and period measurement of critical-angle transmission gratings

Scanning laser reflection tool for alignment and period measurement of critical-angle transmission gratings Scanning laser reflection tool for alignment and period measurement of critical-angle transmission gratings Jungki Song, 1 Ralf K. Heilmann, 1 Alexander R. Bruccoleri, 2 Edward Hertz, 3 and Mark L. Schattenburg

More information

Diffraction efficiency of 200-nm-period critical-angle transmission gratings in the soft x-ray and extreme ultraviolet wavelength bands

Diffraction efficiency of 200-nm-period critical-angle transmission gratings in the soft x-ray and extreme ultraviolet wavelength bands Diffraction efficiency of 200-nm-period critical-angle transmission gratings in the soft x-ray and extreme ultraviolet wavelength bands Ralf K. Heilmann, 1, * Minseung Ahn, 1 Alex Bruccoleri, 1 Chih-Hao

More information

Introduction to Diffraction Gratings

Introduction to Diffraction Gratings Introduction to Diffraction Diffraction (Ruled and Holographic) Diffraction gratings can be divided into two basic categories: holographic and ruled. A ruled grating is produced by physically forming grooves

More information

Understanding and selecting diffraction gratings

Understanding and selecting diffraction gratings Understanding and selecting diffraction gratings Diffraction gratings are used in a variety of applications where light needs to be spectrally split, including engineering, communications, chemistry, physics

More information

Spherical Crystal X-ray Imaging for MTW, OMEGA, and OMEGA EP

Spherical Crystal X-ray Imaging for MTW, OMEGA, and OMEGA EP Spherical Crystal X-ray Imaging for MTW, OMEGA, and OMEGA EP C.STOECKL, G. FISKEL, R. K. JUNGQUIST, P. M. NILSON, AND W. THEOBALD University of Rochester, Laboratory for Laser Energetics Spherical Crystal

More information

Optical Topography Measurement of Patterned Wafers

Optical Topography Measurement of Patterned Wafers Optical Topography Measurement of Patterned Wafers Xavier Colonna de Lega and Peter de Groot Zygo Corporation, Laurel Brook Road, Middlefield CT 6455, USA xcolonna@zygo.com Abstract. We model the measurement

More information

LECTURE 12 INTERFERENCE OF LIGHT. Instructor: Kazumi Tolich

LECTURE 12 INTERFERENCE OF LIGHT. Instructor: Kazumi Tolich LECTURE 12 INTERFERENCE OF LIGHT Instructor: Kazumi Tolich Lecture 12 2 17.2 The interference of light Young s double-slit experiment Analyzing double-slit interference 17.3 The diffraction grating Spectroscopy

More information

Imaging Spectrometers

Imaging Spectrometers JOBIN YVON Imaging Spectrometers ihr Series Uniquely shaped for uniquely superior performance. ihr Series Imaging Spectrometers A Unique Shape for a Unique Spectrometer The difference between ihr spectrometers

More information

Electricity & Optics

Electricity & Optics Physics 24100 Electricity & Optics Lecture 27 Chapter 33 sec. 7-8 Fall 2017 Semester Professor Koltick Clicker Question Bright light of wavelength 585 nm is incident perpendicularly on a soap film (n =

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

(Fiber-optic Reosc Echelle Spectrograph of Catania Observatory)

(Fiber-optic Reosc Echelle Spectrograph of Catania Observatory) (Fiber-optic Reosc Echelle Spectrograph of Catania Observatory) The echelle spectrograph delivered by REOSC (France), was designed to work at the F/15 cassegrain focus of the 91-cm telescope. The spectrograph

More information

Freeform optics at ESA: an overview

Freeform optics at ESA: an overview Freeform optics at ESA: an overview C.Pachot, A.Zuccaro Marchi, S.Mahalik, M.Miranda, A.Deep, L.Maresi, O.Sqalli, M.Taccola, M.Francois, S.Santandrea European Space Agency ESA, ESTEC, Keplerlaan 1, 2201

More information

d has a relationship with ψ

d has a relationship with ψ Principle of X-Ray Stress Analysis Metallic materials consist of innumerable crystal grains. Each grain usually faces in a random direction. When stress is applied on such materials, the interatomic distance

More information

Spectrograph overview:

Spectrograph overview: High performance measurement systems Monochromator Family Gilden Photonics offers a range of integrated optical wavelength solutions in customized designs, OEM design, manufacturing and value added resell

More information

STANDARD SERIES MONOCHROMATOS FEATURES. Highly Customizable Modular Design. Two Configurable Input and Output Ports

STANDARD SERIES MONOCHROMATOS FEATURES. Highly Customizable Modular Design. Two Configurable Input and Output Ports STANDARD SERIES MONOCHROMATOS FEATURES Highly Customizable Modular Design Two Configurable Input and Output Ports Configurable turret and Grating Options USB2.0 Communication A Full Line of Input and Output

More information

Development of EUV-Scatterometry for CD Characterization of Masks. Frank Scholze, Gerhard Ulm Physikalisch-Technische Bundesanstalt, Berlin, Germany

Development of EUV-Scatterometry for CD Characterization of Masks. Frank Scholze, Gerhard Ulm Physikalisch-Technische Bundesanstalt, Berlin, Germany Development of EUV-Scatterometry for CD Characterization of Masks PB Frank Scholze, Gerhard Ulm Physikalisch-Technische Bundesanstalt, Berlin, Germany Jan Perlich, Frank-Michael Kamm, Jenspeter Rau nfineon

More information

Introduction to. 3D Scanning Confocal Microscope with Spectrometer

Introduction to. 3D Scanning Confocal Microscope with Spectrometer Introduction to Nanofinder-S 3D Scanning Confocal Microscope with Spectrometer Alexei Kuzmin E-mail: a.kuzmin@cfi.lu.lv Principle of Confocal Microscopy Laser X-Y Excitation Pinhole Excitation Filter Objective

More information

Extreme Ultraviolet Phase Contrast Imaging

Extreme Ultraviolet Phase Contrast Imaging Extreme Ultraviolet Phase Contrast Imaging Gregory Denbeaux 1, Rashi Garg 1, Andy Aquila 2, Anton Barty 3, Kenneth Goldberg 2, Eric Gullikson 2, Yanwei Liu 2, Obert Wood 4 1, University at Albany, Albany,

More information

X-ray Optics. How do we form an X-Ray Image?

X-ray Optics. How do we form an X-Ray Image? X-ray Optics X-Ray Astronomy School V 6 August 2007 Dan Schwartz SAO/CXC How do we form an X-Ray Image? B1509-58 1E0658 Cen A This talk is X-rayted. You must be 2 light-nanoseconds tall for admittance

More information

PHYSICS 213 PRACTICE EXAM 3*

PHYSICS 213 PRACTICE EXAM 3* PHYSICS 213 PRACTICE EXAM 3* *The actual exam will contain EIGHT multiple choice quiz-type questions covering concepts from lecture (16 points), ONE essay-type question covering an important fundamental

More information

4D Technology Corporation

4D Technology Corporation 4D Technology Corporation Dynamic Laser Interferometry for Company Profile Disk Shape Characterization DiskCon Asia-Pacific 2006 Chip Ragan chip.ragan@4dtechnology.com www.4dtechnology.com Interferometry

More information

Phase-Contrast Imaging and Tomography at 60 kev using a Conventional X-ray Tube

Phase-Contrast Imaging and Tomography at 60 kev using a Conventional X-ray Tube Phase-Contrast Imaging and Tomography at 60 kev using a Conventional X-ray Tube T. Donath* a, F. Pfeiffer a,b, O. Bunk a, W. Groot a, M. Bednarzik a, C. Grünzweig a, E. Hempel c, S. Popescu c, M. Hoheisel

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 41 Review Spring 2016 Semester Matthew Jones Final Exam Date:Tuesday, May 3 th Time:7:00 to 9:00 pm Room: Phys 112 You can bring one double-sided pages of notes/formulas.

More information

Unit 5.C Physical Optics Essential Fundamentals of Physical Optics

Unit 5.C Physical Optics Essential Fundamentals of Physical Optics Unit 5.C Physical Optics Essential Fundamentals of Physical Optics Early Booklet E.C.: + 1 Unit 5.C Hwk. Pts.: / 25 Unit 5.C Lab Pts.: / 20 Late, Incomplete, No Work, No Units Fees? Y / N 1. Light reflects

More information

Coupling of surface roughness to the performance of computer-generated holograms

Coupling of surface roughness to the performance of computer-generated holograms Coupling of surface roughness to the performance of computer-generated holograms Ping Zhou* and Jim Burge College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA *Corresponding author:

More information

Physics 272 Lecture 27 Interference (Ch ) Diffraction (Ch )

Physics 272 Lecture 27 Interference (Ch ) Diffraction (Ch ) Physics 272 Lecture 27 Interference (Ch 35.4-5) Diffraction (Ch 36.1-3) Thin Film Interference 1 2 n 0 =1 (air) t n 1 (thin film) n 2 Get two waves by reflection off of two different interfaces. Ray 2

More information

X-Ray fluorescence and Raman spectroscopy

X-Ray fluorescence and Raman spectroscopy X-Ray fluorescence and Raman spectroscopy Advanced physics laboratory (nd part) 4CFU Catalini Letizia, De Angelis Giulia Vittoria, Piselli Verdiana Abstract In this paper we report about two different

More information

University Physics (Prof. David Flory) Chapt_37 Monday, August 06, 2007

University Physics (Prof. David Flory) Chapt_37 Monday, August 06, 2007 Name: Date: 1. If we increase the wavelength of the light used to form a double-slit diffraction pattern: A) the width of the central diffraction peak increases and the number of bright fringes within

More information

Progress of the Thomson Scattering Experiment on HSX

Progress of the Thomson Scattering Experiment on HSX Progress of the Thomson Scattering Experiment on HSX K. Zhai, F.S.B. Anderson, D.T. Anderson HSX Plasma Laboratory, UW-Madison Bill Mason PSL, UW-Madison, The Thomson scattering system being constructed

More information

EFFECTS OF VARYING INCIDENT ANGLE ON THE CONTRAST OF THE FRINGE METROLOGY USING A FRESNEL ZONE PLATE

EFFECTS OF VARYING INCIDENT ANGLE ON THE CONTRAST OF THE FRINGE METROLOGY USING A FRESNEL ZONE PLATE EFFECTS OF VRYING INCIDENT NGLE ON THE CONTRST OF THE FRINGE METROLOGY USING FRESNEL ZONE PLTE Chulmin Joo,G.S.Pati,CarlG.Chen,PaulT.Konkola,RalfK.Heilmann, and Mark L. Schattenburg Massachusetts Institute

More information

arxiv: v1 [physics.ins-det] 13 Jan 2015

arxiv: v1 [physics.ins-det] 13 Jan 2015 The Assembly of the Belle II TOP Counter Boqun Wang, On behalf of the Belle II PID Group Department of Physics, University of Cincinnati, Cincinnati, OH, USA University of Cincinnati preprint UCHEP-14-01

More information

Throughput of an Optical Instrument II: Physical measurements, Source, Optics. Q4- Number of 500 nm photons per second generated at source

Throughput of an Optical Instrument II: Physical measurements, Source, Optics. Q4- Number of 500 nm photons per second generated at source Throughput of an Optical Instrument II: Physical measurements, Source, Optics Question- Value Q1- Percent output between 450-550 nm by mass Answer (w/ units) Q2- Energy in J of a 500 nm photon Q3- Flux

More information

FLEX 2 NEW. Key points. 3D Confocal Raman, 2 lasers, fiber based, AFM combined

FLEX 2 NEW. Key points. 3D Confocal Raman, 2 lasers, fiber based, AFM combined FLEX 2 3D Confocal Raman, 2 lasers, fiber based, AFM combined NEW Key points Compact size 2 lasers, easily switchable 2 confocal operation modes, easily switchable : High Spatial Resolution 35 nm High

More information

Textbook Reference: Physics (Wilson, Buffa, Lou): Chapter 24

Textbook Reference: Physics (Wilson, Buffa, Lou): Chapter 24 AP Physics-B Physical Optics Introduction: We have seen that the reflection and refraction of light can be understood in terms of both rays and wave fronts of light. Light rays are quite compatible with

More information

Outline. Abstract. Modeling Approach

Outline. Abstract. Modeling Approach EUV Interference Lithography Michael Goldstein ϕ, Donald Barnhart λ, Ranju D. Venables ϕ, Bernice Van Der Meer ϕ, Yashesh A. Shroff ϕ ϕ = Intel Corporation (www.intel.com), λ = Optica Software (www.opticasoftware.com)

More information

Variable line-space gratings: new designs for use in grazing incidence spectrometers

Variable line-space gratings: new designs for use in grazing incidence spectrometers Variable line-space gratings: new designs for use in grazing incidence spectrometers Michael C. Hettrick and Stuart Bowyer Applied Optics Vol. 22, Issue 24, pp. 3921-3924 (1983) http://dx.doi.org/10.1364/ao.22.003921

More information

Southern African Large Telescope. PFIS Distortion and Alignment Model

Southern African Large Telescope. PFIS Distortion and Alignment Model Southern African Large Telescope PFIS Distortion and Alignment Model Kenneth Nordsieck University of Wisconsin Document Number: SALT-3120AS0023 Revision 2.0 31 May 2006 Change History Rev Date Description

More information

NIRvana: 640ST. Applications: Nanotube fluorescence, emission, absorption, non-destructive testing and singlet oxygen detection

NIRvana: 640ST. Applications: Nanotube fluorescence, emission, absorption, non-destructive testing and singlet oxygen detection Powered by LightField The NIRvana: 64ST from Princeton Instruments is the world s first scientific grade, deep-cooled, large format InGaAs camera for low-light scientific SWIR imaging and spectroscopy

More information

Chapter 4 - Diffraction

Chapter 4 - Diffraction Diffraction is the phenomenon that occurs when a wave interacts with an obstacle. David J. Starling Penn State Hazleton PHYS 214 When a wave interacts with an obstacle, the waves spread out and interfere.

More information

Introduction. Part I: Measuring the Wavelength of Light. Experiment 8: Wave Optics. Physics 11B

Introduction. Part I: Measuring the Wavelength of Light. Experiment 8: Wave Optics. Physics 11B Physics 11B Experiment 8: Wave Optics Introduction Equipment: In Part I you use a machinist rule, a laser, and a lab clamp on a stand to hold the laser at a grazing angle to the bench top. In Part II you

More information

Series Spectrometers PARTICLE CHARACTERIZATION ELEMENTAL ANALYSIS FLUORESCENCE GRATINGS & OEM SPECTROMETERS OPTICAL COMPONENTS RAMAN

Series Spectrometers PARTICLE CHARACTERIZATION ELEMENTAL ANALYSIS FLUORESCENCE GRATINGS & OEM SPECTROMETERS OPTICAL COMPONENTS RAMAN Series Spectrometers ELEMENTAL ANALYSIS FLUORESCENCE GRATINGS & OEM SPECTROMETERS OPTICAL COMPONENTS PARTICLE CHARACTERIZATION RAMAN SPECTROSCOPIC ELLIPSOMETRY SPR IMAGING ihr Series Imaging Spectrometers

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 42 Review Spring 2013 Semester Matthew Jones Final Exam Date:Tuesday, April 30 th Time:1:00 to 3:00 pm Room: Phys 112 You can bring two double-sided pages of

More information

Four-zone reflective polarization conversion plate

Four-zone reflective polarization conversion plate Four-zone reflective polarization conversion plate A.G. Nalimov a,b, S.S. Stafeev* a,b, L, O Faolain c, V.V. Kotlyar a,b a Image Processing Systems Institute of the RAS, 151 Molodogvardeyskaya st., Samara,

More information

LED Evenement 2014 Spectroscopy - Straylight. Avantes BV Apeldoorn, The Netherlands

LED Evenement 2014 Spectroscopy - Straylight. Avantes BV Apeldoorn, The Netherlands LED Evenement 2014 Spectroscopy - Straylight Avantes BV Apeldoorn, The Netherlands Content: - Company - Spectroscopy - Spectrometer measuring light - Straylight - How to prevent - Why - conclusion Introduction

More information

AP* Optics Free Response Questions

AP* Optics Free Response Questions AP* Optics Free Response Questions 1978 Q5 MIRRORS An object 6 centimeters high is placed 30 centimeters from a concave mirror of focal length 10 centimeters as shown above. (a) On the diagram above, locate

More information

Dr. Larry J. Paxton Johns Hopkins University Applied Physics Laboratory Laurel, MD (301) (301) fax

Dr. Larry J. Paxton Johns Hopkins University Applied Physics Laboratory Laurel, MD (301) (301) fax Dr. Larry J. Paxton Johns Hopkins University Applied Physics Laboratory Laurel, MD 20723 (301) 953-6871 (301) 953-6670 fax Understand the instrument. Be able to convert measured counts/pixel on-orbit into

More information

Easy integration into complex experimental setup

Easy integration into complex experimental setup NIRvana: 64ST The NIRvana: 64ST from Princeton Instruments is the world s first scientific grade, deep-cooled, large format InGaAs camera for low-light scientific SWIR imaging and spectroscopy applications.

More information

L. Pina, A. Fojtik, R. Havlikova, A. Jancarek, S.Palinek, M. Vrbova

L. Pina, A. Fojtik, R. Havlikova, A. Jancarek, S.Palinek, M. Vrbova L. Pina, A. Fojtik, R. Havlikova, A. Jancarek, S.Palinek, M. Vrbova Faculty of Nuclear Sciences, Czech Technical University, Brehova 7, 115 19 Prague, Czech Republic CD EXPERIMENTAL ARRANGEMENT SPECTRAL

More information

Diffraction. Introduction:

Diffraction. Introduction: 1 Diffraction Introduction: The phenomenon of diffraction results when a wave interacts with an object or aperture whose size is comparable to the wavelength of the wave interacting with it. Loosely speaking,

More information

Lecture 39. Chapter 37 Diffraction

Lecture 39. Chapter 37 Diffraction Lecture 39 Chapter 37 Diffraction Interference Review Combining waves from small number of coherent sources double-slit experiment with slit width much smaller than wavelength of the light Diffraction

More information

Laser Beacon Tracking for High-Accuracy Attitude Determination

Laser Beacon Tracking for High-Accuracy Attitude Determination Laser Beacon Tracking for High-Accuracy Attitude Determination Tam Nguyen Massachusetts Institute of Technology 29 th AIAA/USU Conference on Small Satellites SSC15-VIII-2 08/12/2015 Outline Motivation

More information

The location of the bright fringes can be found using the following equation.

The location of the bright fringes can be found using the following equation. What You Need to Know: In the past two labs we ve been thinking of light as a particle that reflects off of a surface or refracts into a medium. Now we are going to talk about light as a wave. If you take

More information

College Physics 150. Chapter 25 Interference and Diffraction

College Physics 150. Chapter 25 Interference and Diffraction College Physics 50 Chapter 5 Interference and Diffraction Constructive and Destructive Interference The Michelson Interferometer Thin Films Young s Double Slit Experiment Gratings Diffraction Resolution

More information

Surface and thickness measurement of a transparent film using wavelength scanning interferometry

Surface and thickness measurement of a transparent film using wavelength scanning interferometry Surface and thickness measurement of a transparent film using wavelength scanning interferometry Feng Gao, Hussam Muhamedsalih, and Xiangqian Jiang * Centre for Precision Technologies, University of Huddersfield,

More information

Chapter 36. Diffraction. Dr. Armen Kocharian

Chapter 36. Diffraction. Dr. Armen Kocharian Chapter 36 Diffraction Dr. Armen Kocharian Diffraction Light of wavelength comparable to or larger than the width of a slit spreads out in all forward directions upon passing through the slit This phenomena

More information

Lecture 6: Waves Review and Examples PLEASE REVIEW ON YOUR OWN. Lecture 6, p. 1

Lecture 6: Waves Review and Examples PLEASE REVIEW ON YOUR OWN. Lecture 6, p. 1 Lecture 6: Waves Review and Examples PLEASE REVEW ON YOUR OWN Lecture 6, p. 1 Single-Slit Slit Diffraction (from L4) Slit of width a. Where are the minima? Use Huygens principle: treat each point across

More information

Physics 214 Midterm Fall 2003 Form A

Physics 214 Midterm Fall 2003 Form A 1. A ray of light is incident at the center of the flat circular surface of a hemispherical glass object as shown in the figure. The refracted ray A. emerges from the glass bent at an angle θ 2 with respect

More information

New Scatterometer for Spatial Distribution Measurements of Light Scattering from Materials

New Scatterometer for Spatial Distribution Measurements of Light Scattering from Materials 10.2478/v10048-012-0012-y MEASUREMENT SCIENCE REVIEW, Volume 12, No. 2, 2012 New Scatterometer for Spatial Distribution Measurements of Light Scattering from Materials 1,3 E. Kawate, 1,2 M. Hain 1 AIST,

More information

Interference and Diffraction of Light

Interference and Diffraction of Light Name Date Time to Complete h m Partner Course/ Section / Grade Interference and Diffraction of Light Reflection by mirrors and refraction by prisms and lenses can be analyzed using the simple ray model

More information

Measurement of Highly Parabolic Mirror using Computer Generated Hologram

Measurement of Highly Parabolic Mirror using Computer Generated Hologram Measurement of Highly Parabolic Mirror using Computer Generated Hologram Taehee Kim a, James H. Burge b, Yunwoo Lee c a Digital Media R&D Center, SAMSUNG Electronics Co., Ltd., Suwon city, Kyungki-do,

More information

Xuechang Ren a *, Canhui Wang, Yanshuang Li, Shaoxin Shen, Shou Liu

Xuechang Ren a *, Canhui Wang, Yanshuang Li, Shaoxin Shen, Shou Liu Available online at www.sciencedirect.com Physics Procedia 22 (2011) 493 497 2011 International Conference on Physics Science and Technology (ICPST 2011) Optical Tweezers Array System Based on 2D Photonic

More information

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

Phys 104: College Physics EXAM 3

Phys 104: College Physics EXAM 3 Phys 14: College Physics Key Name I. VERY SHORT ANSWER: EXAM 3 FRIDAY, APRIL 16, 21 1) 3 A cat plays with a butterfly at dawn and looks directly up at light from the sun rising in the east that has been

More information

Spectrometers: Monochromators / Slits

Spectrometers: Monochromators / Slits Spectrometers: Monochromators / Slits Monochromator Characteristics Dispersion: The separation, or wavelength selectivity, of a monochromator is dependent on its dispersion. Angular Dispersion: The change

More information

Apex High Performance Spectrometer

Apex High Performance Spectrometer Apex High Performance Spectrometer 1 Elite High Performance Spectrometers Challenge Integrated, high end instruments are required to detect low light levels for challenging Fluorescence and Raman applications

More information

Holographic Elements in Solar Concentrator and Collection Systems

Holographic Elements in Solar Concentrator and Collection Systems Holographic Elements in Solar Concentrator and Collection Systems Raymond K. Kostuk,2, Jose Castro, Brian Myer 2, Deming Zhang and Glenn Rosenberg 3 Electrical and Computer Engineering, Department University

More information

Tutorial Solutions. 10 Holographic Applications Holographic Zone-Plate

Tutorial Solutions. 10 Holographic Applications Holographic Zone-Plate 10 Holographic Applications 10.1 Holographic Zone-Plate Tutorial Solutions Show that if the intensity pattern for on on-axis holographic lens is recorded in lithographic film, then a one-plate results.

More information

Chemistry Instrumental Analysis Lecture 6. Chem 4631

Chemistry Instrumental Analysis Lecture 6. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 6 UV to IR Components of Optical Basic components of spectroscopic instruments: stable source of radiant energy transparent container to hold sample device

More information

CMOS compatible highly efficient grating couplers with a stair-step blaze profile

CMOS compatible highly efficient grating couplers with a stair-step blaze profile CMOS compatible highly efficient grating couplers with a stair-step blaze profile Zhou Liang( ) a), Li Zhi-Yong( ) a), Hu Ying-Tao( ) a), Xiong Kang( ) a), Fan Zhong-Chao( ) b), Han Wei-Hua( ) b), Yu Yu-De

More information

Diffraction and Interference of Plane Light Waves

Diffraction and Interference of Plane Light Waves PHY 92 Diffraction and Interference of Plane Light Waves Diffraction and Interference of Plane Light Waves Introduction In this experiment you will become familiar with diffraction patterns created when

More information

Immersion Microlithography at 193 nm with a Talbot Prism Interferometer

Immersion Microlithography at 193 nm with a Talbot Prism Interferometer RIT Scholar Works Presentations and other scholarship 5-28-2004 Immersion Microlithography at 193 nm with a Talbot Prism Interferometer Anatoly Bourov Yongfa Fan Frank Cropanese Neal Lafferty Lena V. Zavyalova

More information

Benefiting from Polarization: Effects at High-NA Imaging

Benefiting from Polarization: Effects at High-NA Imaging Benefiting from Polarization: Effects at High-NA Imaging Bruce W. Smith L. Zavyalova, A. Estroff, Y. Fan, A. Bourov Rochester Institute of Technology P. Zimmerman International SEMACH and Intel J. Cashmore

More information

The Overlapping Effects of Step Exposure by Laser Interferometric. Lithography System

The Overlapping Effects of Step Exposure by Laser Interferometric. Lithography System The Overlapping Effects of Step Exposure by Laser Interferometric Lithography System Hung-Lin Hsieh 1, Cheng-Wei Chien 1, Farn-Shiun Hwu 1,, Yi-cheng Huang 3, and *Jyh-Chen Chen 1 1 Dept. of Mechanical

More information

WORCESTER POLYTECHNIC INSTITUTE

WORCESTER POLYTECHNIC INSTITUTE WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT Optical Metrology and NDT ME-593L, C 2018 Introduction: Wave Optics January 2018 Wave optics: coherence Temporal coherence Review interference

More information

Single slit diffraction

Single slit diffraction Single slit diffraction Book page 364-367 Review double slit Core Assume paths of the two rays are parallel This is a good assumption if D >>> d PD = R 2 R 1 = dsin θ since sin θ = PD d Constructive interference

More information

Crystal Quality Analysis Group

Crystal Quality Analysis Group Crystal Quality Analysis Group Contents Contents 1. Overview...1 2. Measurement principles...3 2.1 Considerations related to orientation and diffraction conditions... 3 2.2 Rocking curve measurement...

More information

Development of InP Immersion Grating for the near to mid infrared wavelength

Development of InP Immersion Grating for the near to mid infrared wavelength Paper No.54 Development of InP Immersion Grating for the near to mid infrared wavelength Takashi. Sukegawa Y.Okura, T.Nakayasu Outline Introduction Immersion grating by CANON InP immersion grating Summary

More information

Physical Optics. 1 st year physics laboratories. University of Ottawa.

Physical Optics. 1 st year physics laboratories. University of Ottawa. Physical Optics 1 st year physics laboratories University of Ottawa https://uottawa.brightspace.com/d2l/home INTRODUCTION Physical optics deals with light as a wave which can bend around obstacles (diffraction)

More information

Multilayer EUV optics with integrated IR suppression gratings

Multilayer EUV optics with integrated IR suppression gratings Multilayer EUV optics with integrated IR suppression gratings Torsten Feigl, Marco Perske, Hagen Pauer, Tobias Fiedler optix fab GmbH Uwe Zeitner, Robert Leitel, Hans-Christoph Eckstein, Philipp Schleicher,

More information

Single Slit Diffraction *

Single Slit Diffraction * OpenStax-CNX module: m42515 1 Single Slit Diffraction * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Discuss the single slit diraction

More information

Study of Air Bubble Induced Light Scattering Effect On Image Quality in 193 nm Immersion Lithography

Study of Air Bubble Induced Light Scattering Effect On Image Quality in 193 nm Immersion Lithography Study of Air Bubble Induced Light Scattering Effect On Image Quality in 193 nm Immersion Lithography Y. Fan, N. Lafferty, A. Bourov, L. Zavyalova, B. W. Smith Rochester Institute of Technology Microelectronic

More information

Chapter 8: Physical Optics

Chapter 8: Physical Optics Chapter 8: Physical Optics Whether light is a particle or a wave had puzzled physicists for centuries. In this chapter, we only analyze light as a wave using basic optical concepts such as interference

More information

CARBON NANOTUBE FLAT PLATE BLACKBODY CALIBRATOR. John C. Fleming

CARBON NANOTUBE FLAT PLATE BLACKBODY CALIBRATOR. John C. Fleming CARBON NANOTUBE FLAT PLATE BLACKBODY CALIBRATOR John C. Fleming Ball Aerospace, jfleming@ball.com Sandra Collins, Beth Kelsic, Nathan Schwartz, David Osterman, Bevan Staple Ball Aerospace, scollins@ball.com

More information

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

WAVELENGTH MANAGEMENT

WAVELENGTH MANAGEMENT BEAM DIAGNOS TICS SPECIAL PRODUCTS OEM DETECTORS THZ DETECTORS PHOTO DETECTORS HIGH POWER SOLUTIONS POWER DETECTORS ENERGY DETECTORS MONITORS Camera Accessories WAVELENGTH MANAGEMENT UV CONVERTERS UV Converters

More information

ratio of the volume under the 2D MTF of a lens to the volume under the 2D MTF of a diffraction limited

ratio of the volume under the 2D MTF of a lens to the volume under the 2D MTF of a diffraction limited SUPPLEMENTARY FIGURES.9 Strehl ratio (a.u.).5 Singlet Doublet 2 Incident angle (degree) 3 Supplementary Figure. Strehl ratio of the singlet and doublet metasurface lenses. Strehl ratio is the ratio of

More information

Narcissus of Diffractive OpticalSurfaces. Jonathan B. Cohen. ElOp E1ectrooptics Industries Ltd. P.O.B , Rehovot , Israel LINTRODUCTION

Narcissus of Diffractive OpticalSurfaces. Jonathan B. Cohen. ElOp E1ectrooptics Industries Ltd. P.O.B , Rehovot , Israel LINTRODUCTION Narcissus of Diffractive OpticalSurfaces Jonathan B. Cohen ElOp E1ectrooptics Industries Ltd. P.O.B. 1 165, Rehovot 7611 1, Israel 1. ABSTRACT Narcissus is usually approximated by means of a paraxial ray

More information