Programming in Real-Time OS (uc/os-ii)

Size: px
Start display at page:

Download "Programming in Real-Time OS (uc/os-ii)"

Transcription

1 Programming in Real-Time OS (uc/os-ii) 경희대학교컴퓨터공학과 조진성 Embedded Software

2 Taxonomy [2] Library only Non-multitasking AVR studio Real-time OS (Embedded OS) Preemptive multitasking Micro-kernel approach VxWorks uc/os-ii Full-function OS Preemptive multitasking Embedded Linux WinCE ios Embedded Software 2

3 Taxonomy [1] Non-multitasking Single task with polling I/O Single task with ISR Foreground/background Cooperative multitasking Non-preemptive kernel + multiple tasks Preemptive multitasking Preemptive kernel + multiple tasks Embedded Software 3

4 Multitasking Multitasking (Multiprocessing) An application is sub-divided into logical tasks in a system. Each task processes its own function and can be implemented with ease. OS handles multitasking with scheduling and context-switching. Synchronization issues may occur and should be handled with semaphores and mutexes. Ex) ADSL Router PPP(point-to-point) task IP(Internet Protocol) task UDP(User Datagram Protocol) task TCP(Transmission Control Protocol) task RIP(Routing Information Protocol) task ATM(Asynchronous Transfer Mode) task Embedded Software 4

5 Multitasking (Cont d) Task Smallest execution unit Similar to `Thread Has its priority, state, stack, context (CPU register sets) Task state diagram terminate WATING get something wait something(events) start context switch interrupt DORMANT READY RUNNING ISR terminate context switch return Embedded Software 5

6 Multitasking (Cont d) Task priority Task-specific parameter which indicates its importance The more importance, the higher value (0 is the highest or the lowest) Static priority Not changed while running Given in compile-time Rate-Monotonic Scheduling (RMS) Dynamic priority Can be changed and given in run-time Earliest Deadline First (EDF) Embedded Software 6

7 Multitasking (Cont d) Multitasking Embedded Software 7

8 Multitasking (Cont d) Context switch TASK1 TASK2 TASK3 stack stack stack.. push registers Image into the each TCB context switch pop registers image from the TCB into CPU registers TCB TCB TCB Priority Status Priority Status Priority Status 1 Stack Base Address CPU register 4 2 Stack Base Address CPU register 3 Stack Base Address CPU register context MEMORY CPU CPU register Embedded Software 8

9 Multitasking (Cont d) Scheduler Selects which task should be executed among tasks in ready list In general, Priority & RR scheduling in embedded systems Dispatcher Allocates CPU to the scheduled task Ready list High priority Priority based scheduler TASK A 100 TASK B 80 TASK C 50 TASK D 30 TASK E 5 Scheduler TASK A win!! Embedded Software 9

10 Cooperative Multitasking Multitasking (multiple tasks) but non-preemptive kernel Context switch only on explicit system call, e.g. yield() So, programmers should control the flow of tasks, i.e. context switching of tasks. After an interrupt, CPU returns to the same task before the interrupt Example of non-preemptive kernel Pros Cons Original Windows 3.X, Macintosh Low interrupt latency Relatively small synchronization problem Large latency of high-priority tasks System fault due to a malfunctioning task (e.g. indefinite loop) Embedded Software 10

11 Cooperative Multitasking (Cont d) Non-preemptive kernel (non-preemptive scheduling) Low priority task (1) (2) ISR (3) (5) (4) (6) High priority task time (7) Embedded Software 11

12 Preemptive Multitasking Preemptive kernel Fast response of higher priority tasks The highest priority ready task takes control of CPU. On ISR return, OS schedules the highest priority ready task. Low priority task (1) (2) ISR (3) High priority task (4) (5) time (6) (7) Embedded Software 12

13 Preemptive Multitasking Preemptive kernel Current commercial OSs take this approach Embedded Software 13

14 Taxonomy [2] Library only Non-multitasking AVR studio Real-time OS (Embedded OS) Preemptive multitasking Micro-kernel approach VxWorks uc/os-ii Full-function OS Preemptive multitasking Embedded Linux WinCE ios Embedded Software 14

15 uc/os-ii Real-Time OS implemented by Jean J. Labrosse in 1992 Free open source for education Easy to study source codes Used on a lot of commercial products Avionics, medical devices, mobile handsets, consumer electronics, etc. License required for commercial purpose Official site Embedded Software 15

16 uc/os-ii Features Portable 8Bit, 16Bit, 32Bit, 64Bit CPU & DSP Reliable Approved by FAA(Federal Aviation Administration) in July, 2000 ROMable Very small footprint Preemptive real-time kernel Fast response The highest priority task preempts other tasks Multitasking Up to 64 tasks 0 is the highest priority Embedded Software 16 16

17 uc/os-ii File Structure OS_MUTEX.C OS_FLAG.C Embedded Software 17

18 Task Multitasking (Revisited) An application is sub-divided into logical tasks in a system. Each task processes its own function and can be implemented with ease. OS handles multitasking with scheduling and context-switching. Synchronization issues may occur and should be handled with semaphores and mutexes. Ex) ADSL Router PPP(point-to-point) task IP(Internet Protocol) task UDP(User Datagram Protocol) task TCP(Transmission Control Protocol) task RIP(Routing Information Protocol) task ATM(Asynchronous Transfer Mode) task Embedded Software 18

19 Task in uc/os-ii Task ID & priority Max. 64 tasks Task ID = Task priority Static priority Task 0 is the highest priority task The lowest priority task (e.g. task 63) is reserved as the idle task The lowest-1 priority task (e.g. task 62) is reserved as the statistics task Scheduling Priority scheduling algorithm Very fast: O(1) Embedded Software 19

20 Task in uc/os-ii (Cont d) Task state diagram in uc/os-ii Waiting OSFlagPend () OSMbocPend () OSTakDel () OSTask Creat () OSTask CreatExt () OSFlagPost () OSMboxPost () OSMboxPostOpt () OSMutexPost () OSQPost () OSQPostFront () OSQPostOpy () OSSemPost OSTaskResume OSTimeDlyResume OSTimetick () OSSStart () OSInt Exit () OS_TASK_SW () Dormant Ready Running OSMutexPend () OSQPend () OSSemPend OSTaskSuspend () OSTimeDLy () OSTimeDLyHMSM () Interrupt ISR Running OSTakDel () Task Preemption OSInt Exit() OSTakDel () Embedded Software 20

21 uc/os-ii System Call Task INT8U OSTaskCreate(void (*task)(void *pd), void *pdata, OS_STK *ptos, INT8U prio); INT8U OSTaskCreateExt(void (*task)(void *pd), void *pdata, OS_STK *ptos, INT8U prio, INT16U id, OS_STK *pbos, INT32U stk_size, void *pext, INT16U opt); INT8U OSTaskStkChk(INT8U prio, OS_STK_DATA *pdata); INT8U OSTaskDel(INT8U prio); INT8U OSTaskDelReq(INT8U prio); INT8U OSTaskChangePrio(INT8U oldprio, INT8U newprio); INT8U OSTaskSuspend(INT8U prio); INT8U OSTaskResume(INT8U prio); INT8U OSTaskQuery(INT8U prio, OS_TCB *pdata); Embedded Software 21

22 uc/os-ii System Call Time Void INT8U OSTimeDly(INT16U ticks); OSTimeDlyHMSM(INT8U hours, INT8U minutes, INT8U seconds, INT16U milli); INT8U INT32U Void OSTimeDlyResume(INT8U prio); OSTimeGet(void); OSTimeSet(INT32U ticks); Embedded Software 22

23 Synchronization Tasks cooperate in multitasking systems To coordinate their execution To share resources, and to access shared data structures Definitions Resource Entities which process/thread/task may utilize Physical entities such as CPU, memory, I/O devices (display, keyboard, printer, etc.) Logical entities such as variables, arrays, data structures (queue, stack, tree, etc.) Shared Resource Resource which one or more process/thread/task share Process/thread/task needs exclusive access on shared resources to avoid data corruption through synchronization mechanisms. Embedded Software 23

24 Synchronization (Cont d) Definitions Race condition A situation where several tasks access and manipulate shared resources concurrently The result is non-deterministic and depends on timing Critical section Code segment in which shared resources are accessed Mutually exclusive access should be guaranteed in critical sections (mutual exclusion, mutex) Critical section problem or Synchronization problem Shared resources may be corrupted in multitasking systems Embedded Software 24

25 Synchronization Mechanisms Primitive mechanisms for OS Software algorithms Disabling interrupts Spinlocks Hardware atomic instruction Busy waiting High-level mechanisms for application task/process/thread Semaphores Basic, easy to get the hang of, hard to program with Binary semaphore = mutex ( lock) Counting semaphore Monitors High-level, requires language support, implicit operations Easy to program with: Java synchronized Embedded Software 25

26 Synchronization Examples To coordinate executions Execute B in P j after A executed in P i P i A signal(sem) synchronized P j wait(sem) B To share resources Protect critical section C between P i and P j P i wait(sem) wait(sem) C C signal(sem) signal(sem) synchronized Embedded Software 26 P j

27 uc/os-ii System Call Semaphore OS_EVENT INT16U Void INT8U INT8U OS_EVENT *OSSemCreate(INT16U cnt); OSSemAccept(OS_EVENT *prevent); OSSemPend(OS_EVENT *prevent, INT16U timeout, INT8U *err); OSSemPost(OS_EVENT *prevent); OSSemQuery(OS_EVENT *prevent, OS_SEM_DATA *pdata); OSSemDel(OS_EVENT *prevent, INT8U opt, INT8U *err); Embedded Software 27

28 uc/os-ii System Call Mutex (Mutually Exclusive Lock) OS_EVENT *OSMutexCreate(INT8U prio, INT8U *err); Void OSMutexPend(OS_EVENT *prevent, INT16U timeout, INT8U *err); INT8U OSMutexAccept(OS_EVENT *prevent, INT8U *err); INT8U OSMutexPost(OS_EVENT *prevent); INT8U OSMutexQuery(OS_EVENT *prevent, OS_MUTEX_DATA *pdata); OS_EVENT OSMutexDel(OS_EVENT *prevent, INT8U opt, INT8U *err); Embedded Software 28

29 Deadlock Definition A set of blocked tasks/processes each holding a resource and waiting to acquire a resource held by another task/process in the set Example Semaphores A and B, initialized to 1 P i wait (A); wait (B); P j wait (B) wait (A) deadlock Embedded Software 29

30 Handling Deadlocks Deadlock prevention Restrain how requests are made Ensure that at least one necessary condition cannot hold Deadlock avoidance Require additional information about how resources are to be requested Decide to approve or disapprove requests on the fly Deadlock detection and recovery Allow the system to enter a deadlock state and then recover Just ignore the problem altogether! Embedded Software 30

31 Deadlock Prevention Deadlock can arise if four conditions hold simultaneously Mutual exclusion: only one process at a time can use a resource Hold and wait: a process holding at least one resource is waiting to acquire additional resources held by other processes No preemption: a resource can be released only voluntarily by the process holding it, after that process has completed its task Circular wait: there exists a set {P 0, P 1,, P n, P 0 } of waiting processes such that P 0 is waiting for a resource that is held by P 1, P 1 is waiting for a resource that is held by P 2,, P n 1 is waiting for a resource that is held by P n, and P n is waiting for a resource that is held by P 0 Embedded Software 31

32 Inter-Task Communication Two types of IPC Message passing P i SendMsg(data) P j RecvMsg(data) synchronized (by kernel) Shared memory P i write msg. on data wait(sem) signal(sem) read msg. from data synchronized (by application via semaphore) P j Embedded Software 32

33 uc/os-ii System Call Message Mailbox OS_EVENT Void Void INT8U INT8U INT8U OS_EVENT *OSMboxCreate(void *msg); *OSMboxPend(OS_EVENT *pevent, INT16U timeout, INT8U *err); *OSMboxAccept(OS_EVENT *pevent); OSMboxPost(OS_EVENT *pevent, void *msg); OSMboxPostOpt(OS_EVENT *pevent, void *msg, INT8U opt); OSMboxQuery(OS_EVENT *pevent, OS_MBOX_DATA *pdata); *OSMboxDel(OS_EVENT *pevent, INT8U opt, INT8U *err); Embedded Software 33

34 uc/os-ii System Call Message Queue OS_EVENT void INT8U *err); void INT8U INT8U opt); INT8U INT8U INT8U OS_EVENT *err); *OSQCreate(void **start, INT16U size); *OSQPend(OS_EVENT *pevent, INT16U timeout, *OSQAccept(OS_EVENT *pevent); OSQPost(OS_EVENT *pevent, void *msg); OSQPostOpt(OS_EVENT *pevent, void *msg, INT8U OSQPostFront(OS_EVENT *pevent, void *msg); OSQQuery(OS_EVENT *pevent, OS_Q_DATA *pdata); OSQFlush(OS_EVENT *pevent); *OSQDel(OS_EVENT *pevent, INT8U opt, INT8U Embedded Software 34

µc/os-ii, The Real-Time Kernel

µc/os-ii, The Real-Time Kernel Semaphores (OS_SEM.C) INT16U OSSemAccept(OS_EVENT *pevent); OS_EVENT *OSSemCreate(INT16U cnt); OS_EVENT *OSSemDel(OS_EVENT *pevent, INT8U opt, INT8U *err); void OSSemPend(OS_EVENT *pevent, INT16U timeout,

More information

Int tmytask() { while(1){ .. } }

Int tmytask() { while(1){ .. } } CHAPTER 2 BY RADU MURESAN Page 1 TASK OBJECT Upon creation, each task has an associated name, a unique ID, a priority (if part of a preemptive scheduling plan), a task control block (TCB), a stack, and

More information

µc/os-ii for the Philips XA

µc/os-ii for the Philips XA Application Note AN-1000 Jean J. Labrosse Jean.Labrosse@uCOS-II.com www.ucos-ii.com Acknowledgements I would like to thank Tasking Software for providing me with their fine compiler (V3.0r0) and CrossView

More information

Nios II. uc/os-ii porting with Nios II Altera Corporation

Nios II. uc/os-ii porting with Nios II Altera Corporation Nios II uc/os-ii porting with Nios II 2002 2 µc/os-ii Main Features Portable (Most 8, 16, 32 and 64 bit CPUs) ROMable Scalable Preemptive Real-Time Deterministic High Performance Multitasking Robust Provides

More information

Embedded Systems: OS. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Embedded Systems: OS. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Embedded Systems: OS Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Standalone Applications Often no OS involved One large loop Microcontroller-based

More information

Embedded Systems: OS

Embedded Systems: OS Embedded Systems: OS Jinkyu Jeong (Jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu ICE3028: Embedded Systems Design, Fall 2018, Jinkyu Jeong (jinkyu@skku.edu) Standalone

More information

Micriμm. Getting Started with Micriμm s. Matt Gordon, Sr. Applications Engineer. 9L05I Renesas Electronics America Inc.

Micriμm. Getting Started with Micriμm s. Matt Gordon, Sr. Applications Engineer. 9L05I Renesas Electronics America Inc. Getting Started with Micriμm s μc/os-iii Kernel Matt Gordon, Sr. Applications Engineer Micriμm Class ID: 9L05I Renesas Electronics America Inc. 2012 Renesas Electronics America Inc. All rights reserved.

More information

Lab 8 Real-time OS - 1

Lab 8 Real-time OS - 1 Lab 8-1 Speaker: Hao-Yun Chin Advisor: Prof. Tian-Sheuan Chang Apr 27, 2004 Outline Introduction to Real-time Operation System (RTOS) Introduction to C/OS-II Features Task & task scheduling Start C/OS-II

More information

Micrium µc/os II RTOS Introduction EE J. E. Lumpp

Micrium µc/os II RTOS Introduction EE J. E. Lumpp Micrium µc/os II RTOS Introduction (by Jean Labrosse) EE599 001 Fall 2012 J. E. Lumpp μc/os II μc/os II is a highly portable, ROMable, very scalable, preemptive real time, deterministic, multitasking kernel

More information

Chapter 7: Deadlocks. Operating System Concepts 9 th Edition

Chapter 7: Deadlocks. Operating System Concepts 9 th Edition Chapter 7: Deadlocks Silberschatz, Galvin and Gagne 2013 Chapter 7: Deadlocks System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection

More information

UNIT -3 PROCESS AND OPERATING SYSTEMS 2marks 1. Define Process? Process is a computational unit that processes on a CPU under the control of a scheduling kernel of an OS. It has a process structure, called

More information

Measurement laboratory 3 Embedded operating systems

Measurement laboratory 3 Embedded operating systems Budapest University of Technology and Economics Department of Measurement and Information Systems Measurement laboratory 3 Embedded operating systems Student s guide Version: 1.4 2013 / July / 15 NASZÁLY

More information

More on Synchronization and Deadlock

More on Synchronization and Deadlock Examples of OS Kernel Synchronization More on Synchronization and Deadlock Two processes making system calls to read/write on the same file, leading to possible race condition on the file system data structures

More information

CSE 153 Design of Operating Systems

CSE 153 Design of Operating Systems CSE 153 Design of Operating Systems Winter 2018 Midterm Review Midterm in class on Monday Covers material through scheduling and deadlock Based upon lecture material and modules of the book indicated on

More information

What s An OS? Cyclic Executive. Interrupts. Advantages Simple implementation Low overhead Very predictable

What s An OS? Cyclic Executive. Interrupts. Advantages Simple implementation Low overhead Very predictable What s An OS? Provides environment for executing programs Process abstraction for multitasking/concurrency scheduling Hardware abstraction layer (device drivers) File systems Communication Do we need an

More information

Putting it All Together

Putting it All Together EE445M/EE360L.12 Embedded and Real-Time Systems/ Real-Time Operating Systems : Commercial RTOS, Final Exam, Review 1 Putting it All Together Micrium μcos-ii Reference: www.micrium.com Application Note

More information

CS 571 Operating Systems. Midterm Review. Angelos Stavrou, George Mason University

CS 571 Operating Systems. Midterm Review. Angelos Stavrou, George Mason University CS 571 Operating Systems Midterm Review Angelos Stavrou, George Mason University Class Midterm: Grading 2 Grading Midterm: 25% Theory Part 60% (1h 30m) Programming Part 40% (1h) Theory Part (Closed Books):

More information

What is the Race Condition? And what is its solution? What is a critical section? And what is the critical section problem?

What is the Race Condition? And what is its solution? What is a critical section? And what is the critical section problem? What is the Race Condition? And what is its solution? Race Condition: Where several processes access and manipulate the same data concurrently and the outcome of the execution depends on the particular

More information

Tasks. Task Implementation and management

Tasks. Task Implementation and management Tasks Task Implementation and management Tasks Vocab Absolute time - real world time Relative time - time referenced to some event Interval - any slice of time characterized by start & end times Duration

More information

UNIT:2. Process Management

UNIT:2. Process Management 1 UNIT:2 Process Management SYLLABUS 2.1 Process and Process management i. Process model overview ii. Programmers view of process iii. Process states 2.2 Process and Processor Scheduling i Scheduling Criteria

More information

Chapter 6: Process Synchronization. Operating System Concepts 9 th Edit9on

Chapter 6: Process Synchronization. Operating System Concepts 9 th Edit9on Chapter 6: Process Synchronization Operating System Concepts 9 th Edit9on Silberschatz, Galvin and Gagne 2013 Objectives To present the concept of process synchronization. To introduce the critical-section

More information

Module 1. Introduction:

Module 1. Introduction: Module 1 Introduction: Operating system is the most fundamental of all the system programs. It is a layer of software on top of the hardware which constitutes the system and manages all parts of the system.

More information

Multiprocessor and Real- Time Scheduling. Chapter 10

Multiprocessor and Real- Time Scheduling. Chapter 10 Multiprocessor and Real- Time Scheduling Chapter 10 Classifications of Multiprocessor Loosely coupled multiprocessor each processor has its own memory and I/O channels Functionally specialized processors

More information

INTERRUPT MANAGEMENT An interrupt is a hardware mechanism used to service an event that can be external or internal to

INTERRUPT MANAGEMENT An interrupt is a hardware mechanism used to service an event that can be external or internal to CHAPTER 2 ucosiii Page 1 ENGG4420 CHAPTER 2 LECTURE 5 October 22 12 3:28 PM INTERRUPT MANAGEMENT An interrupt is a hardware mechanism used to service an event that can be external or internal to the CPU.

More information

ENGG4420 CHAPTER 2 LECTURE 6

ENGG4420 CHAPTER 2 LECTURE 6 CHAPTER 2 ucosiii Page 1 ENGG4420 CHAPTER 2 LECTURE 6 October 25 12 5:03 PM SEMAPHORE INTERNALS OS_SEM data type defined in os.h Semaphore services are enabled at compile time by setting the configuration

More information

Introduction to Real-Time Operating Systems

Introduction to Real-Time Operating Systems Introduction to Real-Time Operating Systems GPOS vs RTOS General purpose operating systems Real-time operating systems GPOS vs RTOS: Similarities Multitasking Resource management OS services to applications

More information

Chapter 7: Deadlocks. Operating System Concepts 9 th Edition

Chapter 7: Deadlocks. Operating System Concepts 9 th Edition Chapter 7: Deadlocks Silberschatz, Galvin and Gagne 2013 Chapter 7: Deadlocks System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection

More information

Real-Time Programming

Real-Time Programming Real-Time Programming Week 7: Real-Time Operating Systems Instructors Tony Montiel & Ken Arnold rtp@hte.com 4/1/2003 Co Montiel 1 Objectives o Introduction to RTOS o Event Driven Systems o Synchronization

More information

uc/os-ii Real-Time Kernel

uc/os-ii Real-Time Kernel uc/os-ii Real-Time Kernel Shi-Wu Lo Dept. of Computer Science and Information Engineering National Taiwan University Slides come from my class notes, slides from graduates and students in my lab (Li-Pin

More information

ENGG4420 CHAPTER 2 HOMEWORK

ENGG4420 CHAPTER 2 HOMEWORK CHAPTER 2 By Radu Muresan University of Guelph Page 1 TYPICAL MESSAGE QUEUE USE The following are typical ways to use message queues within an application: 1) non interlocked, one way data communication;

More information

Lesson 6: Process Synchronization

Lesson 6: Process Synchronization Lesson 6: Process Synchronization Chapter 5: Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Mutex Locks Semaphores Classic Problems of Synchronization

More information

Systemy RT i embedded Wykład 11 Systemy RTOS

Systemy RT i embedded Wykład 11 Systemy RTOS Systemy RT i embedded Wykład 11 Systemy RTOS Wrocław 2013 Plan Introduction Tasks Queues Interrupts Resources Memory management Multiprocessor operation Introduction What s an Operating System? Provides

More information

Embedded Systems. 5. Operating Systems. Lothar Thiele. Computer Engineering and Networks Laboratory

Embedded Systems. 5. Operating Systems. Lothar Thiele. Computer Engineering and Networks Laboratory Embedded Systems 5. Operating Systems Lothar Thiele Computer Engineering and Networks Laboratory Embedded Operating Systems 5 2 Embedded Operating System (OS) Why an operating system (OS) at all? Same

More information

Lecture 9: Midterm Review

Lecture 9: Midterm Review Project 1 Due at Midnight Lecture 9: Midterm Review CSE 120: Principles of Operating Systems Alex C. Snoeren Midterm Everything we ve covered is fair game Readings, lectures, homework, and Nachos Yes,

More information

Synchronization I. Jo, Heeseung

Synchronization I. Jo, Heeseung Synchronization I Jo, Heeseung Today's Topics Synchronization problem Locks 2 Synchronization Threads cooperate in multithreaded programs To share resources, access shared data structures Also, to coordinate

More information

CS 318 Principles of Operating Systems

CS 318 Principles of Operating Systems CS 318 Principles of Operating Systems Fall 2017 Midterm Review Ryan Huang 10/12/17 CS 318 Midterm Review 2 Midterm October 17 th Tuesday 9:00-10:20 am at classroom Covers material before virtual memory

More information

CSE 4/521 Introduction to Operating Systems

CSE 4/521 Introduction to Operating Systems CSE 4/521 Introduction to Operating Systems Lecture 7 Process Synchronization II (Classic Problems of Synchronization, Synchronization Examples) Summer 2018 Overview Objective: 1. To examine several classical

More information

CS A331 Programming Language Concepts

CS A331 Programming Language Concepts CS A331 Programming Language Concepts Lecture 12 Alternative Language Examples (General Concurrency Issues and Concepts) March 30, 2014 Sam Siewert Major Concepts Concurrent Processing Processes, Tasks,

More information

Last Class: Monitors. Real-world Examples

Last Class: Monitors. Real-world Examples Last Class: Monitors Monitor wraps operations with a mutex Condition variables release mutex temporarily C++ does not provide a monitor construct, but monitors can be implemented by following the monitor

More information

Preemptive Scheduling

Preemptive Scheduling Preemptive Scheduling Lecture 18 18-1 Big Picture Methods learned so far We ve been using a foreground/background system Interrupt service routines run in foreground Task code runs in background Limitations

More information

Chapter 6: Process Synchronization

Chapter 6: Process Synchronization Module 6: Process Synchronization Chapter 6: Process Synchronization Background! The Critical-Section Problem! Peterson s Solution! Synchronization Hardware! Semaphores! Classic Problems of Synchronization!

More information

Lecture 3: Concurrency & Tasking

Lecture 3: Concurrency & Tasking Lecture 3: Concurrency & Tasking 1 Real time systems interact asynchronously with external entities and must cope with multiple threads of control and react to events - the executing programs need to share

More information

Micrium OS Kernel Labs

Micrium OS Kernel Labs Micrium OS Kernel Labs 2018.04.16 Micrium OS is a flexible, highly configurable collection of software components that provides a powerful embedded software framework for developers to build their application

More information

EECS 571 Principles of Real-Time Embedded Systems. Lecture Note #10: More on Scheduling and Introduction of Real-Time OS

EECS 571 Principles of Real-Time Embedded Systems. Lecture Note #10: More on Scheduling and Introduction of Real-Time OS EECS 571 Principles of Real-Time Embedded Systems Lecture Note #10: More on Scheduling and Introduction of Real-Time OS Kang G. Shin EECS Department University of Michigan Mode Changes Changes in mission

More information

Stellaris Robotic Evaluation Board and Micriµm µc/os-iii

Stellaris Robotic Evaluation Board and Micriµm µc/os-iii Introductions Stellaris Robotic Evaluation Board and Micriµm µc/os-iii Jean J. Labrosse Founder, President and CEO of Micriµm Dexter Travis Stellaris ARM Cortex -M3 Applications Engineering Dexter Travis,

More information

Chapter 7: Deadlocks. Operating System Concepts 9 th Edition

Chapter 7: Deadlocks. Operating System Concepts 9 th Edition Chapter 7: Deadlocks Silberschatz, Galvin and Gagne 2013 Chapter 7: Deadlocks System Model Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection

More information

Interrupts and Time. Real-Time Systems, Lecture 5. Martina Maggio 28 January Lund University, Department of Automatic Control

Interrupts and Time. Real-Time Systems, Lecture 5. Martina Maggio 28 January Lund University, Department of Automatic Control Interrupts and Time Real-Time Systems, Lecture 5 Martina Maggio 28 January 2016 Lund University, Department of Automatic Control Content [Real-Time Control System: Chapter 5] 1. Interrupts 2. Clock Interrupts

More information

Process Coordination and Shared Data

Process Coordination and Shared Data Process Coordination and Shared Data Lecture 26 In These Notes... Sharing data safely When multiple threads/processes interact in a system, new species of bugs arise 1. Compiler tries to save time by not

More information

Lecture notes Lectures 1 through 5 (up through lecture 5 slide 63) Book Chapters 1-4

Lecture notes Lectures 1 through 5 (up through lecture 5 slide 63) Book Chapters 1-4 EE445M Midterm Study Guide (Spring 2017) (updated February 25, 2017): Instructions: Open book and open notes. No calculators or any electronic devices (turn cell phones off). Please be sure that your answers

More information

Microkernel/OS and Real-Time Scheduling

Microkernel/OS and Real-Time Scheduling Chapter 12 Microkernel/OS and Real-Time Scheduling Hongwei Zhang http://www.cs.wayne.edu/~hzhang/ Ack.: this lecture is prepared in part based on slides of Lee, Sangiovanni-Vincentelli, Seshia. Outline

More information

CSE 451: Operating Systems Winter Lecture 7 Synchronization. Steve Gribble. Synchronization. Threads cooperate in multithreaded programs

CSE 451: Operating Systems Winter Lecture 7 Synchronization. Steve Gribble. Synchronization. Threads cooperate in multithreaded programs CSE 451: Operating Systems Winter 2005 Lecture 7 Synchronization Steve Gribble Synchronization Threads cooperate in multithreaded programs to share resources, access shared data structures e.g., threads

More information

10/17/ Gribble, Lazowska, Levy, Zahorjan 2. 10/17/ Gribble, Lazowska, Levy, Zahorjan 4

10/17/ Gribble, Lazowska, Levy, Zahorjan 2. 10/17/ Gribble, Lazowska, Levy, Zahorjan 4 Temporal relations CSE 451: Operating Systems Autumn 2010 Module 7 Synchronization Instructions executed by a single thread are totally ordered A < B < C < Absent synchronization, instructions executed

More information

Operating Systems. Designed and Presented by Dr. Ayman Elshenawy Elsefy

Operating Systems. Designed and Presented by Dr. Ayman Elshenawy Elsefy Operating Systems Designed and Presented by Dr. Ayman Elshenawy Elsefy Dept. of Systems & Computer Eng.. AL-AZHAR University Website : eaymanelshenawy.wordpress.com Email : eaymanelshenawy@yahoo.com Reference

More information

Real-time operating systems and scheduling

Real-time operating systems and scheduling Real-time operating systems and scheduling Problem 21 Consider a real-time operating system (OS) that has a built-in preemptive scheduler. Each task has a unique priority and the lower the priority id,

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6602- EMBEDDED SYSTEMS QUESTION BANK UNIT I - INTRODUCTION TO EMBEDDED SYSTEMS PART A

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6602- EMBEDDED SYSTEMS QUESTION BANK UNIT I - INTRODUCTION TO EMBEDDED SYSTEMS PART A DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6602- EMBEDDED SYSTEMS QUESTION BANK UNIT I - INTRODUCTION TO EMBEDDED SYSTEMS PART A 1. Define system. A system is a way of working, organizing or

More information

OPERATING SYSTEM CONCEPTS UNDERSTAND!!! IMPLEMENT!!! ANALYZE!!!

OPERATING SYSTEM CONCEPTS UNDERSTAND!!! IMPLEMENT!!! ANALYZE!!! OPERATING SYSTEM CONCEPTS UNDERSTAND!!! IMPLEMENT!!! Processor Management Memory Management IO Management File Management Multiprogramming Protection and Security Network Management UNDERSTAND!!! IMPLEMENT!!!

More information

Concurrency, Mutual Exclusion and Synchronization C H A P T E R 5

Concurrency, Mutual Exclusion and Synchronization C H A P T E R 5 Concurrency, Mutual Exclusion and Synchronization C H A P T E R 5 Multiple Processes OS design is concerned with the management of processes and threads: Multiprogramming Multiprocessing Distributed processing

More information

Concurrency: Deadlock and Starvation

Concurrency: Deadlock and Starvation Concurrency: Deadlock and Starvation Chapter 6 E&CE 354: Processes 1 Deadlock Deadlock = situation in which every process from a set is permanently blocked, i.e. cannot proceed with execution Common cause:

More information

CS A320 Operating Systems for Engineers

CS A320 Operating Systems for Engineers CS A320 Operating Systems for Engineers Lecture 4 Conclusion of MOS Chapter 2 September 18, 2013 Sam Siewert Many Ways to Schedule a CPU Core We ve Come a Long way Since Batch Scheduling Sam Siewert 2

More information

CSC Operating Systems Spring Lecture - XII Midterm Review. Tevfik Ko!ar. Louisiana State University. March 4 th, 2008.

CSC Operating Systems Spring Lecture - XII Midterm Review. Tevfik Ko!ar. Louisiana State University. March 4 th, 2008. CSC 4103 - Operating Systems Spring 2008 Lecture - XII Midterm Review Tevfik Ko!ar Louisiana State University March 4 th, 2008 1 I/O Structure After I/O starts, control returns to user program only upon

More information

Chapter 6 Process Synchronization

Chapter 6 Process Synchronization Chapter 6 Process Synchronization Cooperating Process process that can affect or be affected by other processes directly share a logical address space (threads) be allowed to share data via files or messages

More information

Semaphore. Originally called P() and V() wait (S) { while S <= 0 ; // no-op S--; } signal (S) { S++; }

Semaphore. Originally called P() and V() wait (S) { while S <= 0 ; // no-op S--; } signal (S) { S++; } Semaphore Semaphore S integer variable Two standard operations modify S: wait() and signal() Originally called P() and V() Can only be accessed via two indivisible (atomic) operations wait (S) { while

More information

Interrupts and Time. Interrupts. Content. Real-Time Systems, Lecture 5. External Communication. Interrupts. Interrupts

Interrupts and Time. Interrupts. Content. Real-Time Systems, Lecture 5. External Communication. Interrupts. Interrupts Content Interrupts and Time Real-Time Systems, Lecture 5 [Real-Time Control System: Chapter 5] 1. Interrupts 2. Clock Interrupts Martina Maggio 25 January 2017 Lund University, Department of Automatic

More information

Subject: Operating System (BTCOC403) Class: S.Y.B.Tech. (Computer Engineering)

Subject: Operating System (BTCOC403) Class: S.Y.B.Tech. (Computer Engineering) A. Multiple Choice Questions (60 questions) Subject: Operating System (BTCOC403) Class: S.Y.B.Tech. (Computer Engineering) Unit-I 1. What is operating system? a) collection of programs that manages hardware

More information

Dealing with Issues for Interprocess Communication

Dealing with Issues for Interprocess Communication Dealing with Issues for Interprocess Communication Ref Section 2.3 Tanenbaum 7.1 Overview Processes frequently need to communicate with other processes. In a shell pipe the o/p of one process is passed

More information

ZiLOG Real-Time Kernel Version 1.2.0

ZiLOG Real-Time Kernel Version 1.2.0 ez80acclaim Family of Microcontrollers Version 1.2.0 PRELIMINARY Introduction The (RZK) is a realtime, preemptive, multitasking kernel designed for time-critical embedded applications. It is currently

More information

Chapter 8: Deadlocks. Bridge Crossing Example. The Deadlock Problem

Chapter 8: Deadlocks. Bridge Crossing Example. The Deadlock Problem Chapter 8: Deadlocks Deadlock Characterization Methods for Handling Deadlocks Deadlock Prevention Deadlock Avoidance Deadlock Detection Recovery from Deadlock 8.1 Bridge Crossing Example Bridge has one

More information

(MCQZ-CS604 Operating Systems)

(MCQZ-CS604 Operating Systems) command to resume the execution of a suspended job in the foreground fg (Page 68) bg jobs kill commands in Linux is used to copy file is cp (Page 30) mv mkdir The process id returned to the child process

More information

NetBurner s uc/os RTOS Library

NetBurner s uc/os RTOS Library NetBurner s uc/os RTOS Library Revision 1.1 July 17, 2007 Released 1 Table of Contents 1. Introduction... 4 2. Functions... 4 2.1. OSTaskCreate... 7 2.2. OSSimpleTaskCreate (MACRO)... 9 2.3. OSTaskDelete...

More information

The Deadlock Problem. A set of blocked processes each holding a resource and waiting to acquire a resource held by another process in the set.

The Deadlock Problem. A set of blocked processes each holding a resource and waiting to acquire a resource held by another process in the set. Deadlock The Deadlock Problem A set of blocked processes each holding a resource and waiting to acquire a resource held by another process in the set Example semaphores A and B, initialized to 1 P 0 P

More information

Chapter 6 Concurrency: Deadlock and Starvation

Chapter 6 Concurrency: Deadlock and Starvation Operating Systems: Internals and Design Principles Chapter 6 Concurrency: Deadlock and Starvation Seventh Edition By William Stallings Operating Systems: Internals and Design Principles When two trains

More information

IT 540 Operating Systems ECE519 Advanced Operating Systems

IT 540 Operating Systems ECE519 Advanced Operating Systems IT 540 Operating Systems ECE519 Advanced Operating Systems Prof. Dr. Hasan Hüseyin BALIK (5 th Week) (Advanced) Operating Systems 5. Concurrency: Mutual Exclusion and Synchronization 5. Outline Principles

More information

Deadlock. Concurrency: Deadlock and Starvation. Reusable Resources

Deadlock. Concurrency: Deadlock and Starvation. Reusable Resources Concurrency: Deadlock and Starvation Chapter 6 Deadlock Permanent blocking of a set of processes that either compete for system resources or communicate with each other No efficient solution Involve conflicting

More information

Embedded Systems. 6. Real-Time Operating Systems

Embedded Systems. 6. Real-Time Operating Systems Embedded Systems 6. Real-Time Operating Systems Lothar Thiele 6-1 Contents of Course 1. Embedded Systems Introduction 2. Software Introduction 7. System Components 10. Models 3. Real-Time Models 4. Periodic/Aperiodic

More information

EE458 - Embedded Systems Introduction to uc/os

EE458 - Embedded Systems Introduction to uc/os EE458 - Embedded Systems Introduction to uc/os Outline Introduction to uc/os References uc/os RTOS Library Reference 1 Background The source code to uc/os was published in Embedded Systems Programming

More information

Precept 2: Non-preemptive Scheduler. COS 318: Fall 2018

Precept 2: Non-preemptive Scheduler. COS 318: Fall 2018 Precept 2: Non-preemptive Scheduler COS 318: Fall 2018 Project 2 Schedule Precept: Monday 10/01, 7:30pm (You are here) Design Review: Monday 10/08, 3-7pm Due: Sunday 10/14, 11:55pm Project 2 Overview Goal:

More information

Operating Systems. Synchronization

Operating Systems. Synchronization Operating Systems Fall 2014 Synchronization Myungjin Lee myungjin.lee@ed.ac.uk 1 Temporal relations Instructions executed by a single thread are totally ordered A < B < C < Absent synchronization, instructions

More information

Process Synchronisation (contd.) Deadlock. Operating Systems. Spring CS5212

Process Synchronisation (contd.) Deadlock. Operating Systems. Spring CS5212 Operating Systems Spring 2009-2010 Outline Process Synchronisation (contd.) 1 Process Synchronisation (contd.) 2 Announcements Presentations: will be held on last teaching week during lectures make a 20-minute

More information

CSE 451: Operating Systems Winter Lecture 7 Synchronization. Hank Levy 412 Sieg Hall

CSE 451: Operating Systems Winter Lecture 7 Synchronization. Hank Levy 412 Sieg Hall CSE 451: Operating Systems Winter 2003 Lecture 7 Synchronization Hank Levy Levy@cs.washington.edu 412 Sieg Hall Synchronization Threads cooperate in multithreaded programs to share resources, access shared

More information

Synchronization COMPSCI 386

Synchronization COMPSCI 386 Synchronization COMPSCI 386 Obvious? // push an item onto the stack while (top == SIZE) ; stack[top++] = item; // pop an item off the stack while (top == 0) ; item = stack[top--]; PRODUCER CONSUMER Suppose

More information

OPERATING SYSTEMS CS3502 Spring Processor Scheduling. Chapter 5

OPERATING SYSTEMS CS3502 Spring Processor Scheduling. Chapter 5 OPERATING SYSTEMS CS3502 Spring 2018 Processor Scheduling Chapter 5 Goals of Processor Scheduling Scheduling is the sharing of the CPU among the processes in the ready queue The critical activities are:

More information

Introduction to Embedded Systems

Introduction to Embedded Systems Introduction to Embedded Systems Sanjit A. Seshia UC Berkeley EECS 9/9A Fall 0 008-0: E. A. Lee, A. L. Sangiovanni-Vincentelli, S. A. Seshia. All rights reserved. Chapter : Operating Systems, Microkernels,

More information

Operating Systems: William Stallings. Starvation. Patricia Roy Manatee Community College, Venice, FL 2008, Prentice Hall

Operating Systems: William Stallings. Starvation. Patricia Roy Manatee Community College, Venice, FL 2008, Prentice Hall Operating Systems: Internals and Design Principles, 6/E William Stallings Chapter 6 Concurrency: Deadlock and Starvation Patricia Roy Manatee Community College, Venice, FL 2008, Prentice Hall Deadlock

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 1019 L12 Synchronization Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ Critical section: shared

More information

Memory Management II

Memory Management II Memory Management II an OS view Dr Alun Moon Computing, Engineering and Information Sciences 1st November 2011 Dr Alun Moon (ceis:nu) Memory Management II 1st November 2011 1 / 16 Processes in memory Memory

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2016 Lecture 23 Deadlocks Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 Chapter 7: Deadlocks Objectives:

More information

Zilog Real-Time Kernel

Zilog Real-Time Kernel An Company Configurable Compilation RZK allows you to specify system parameters at compile time. For example, the number of objects, such as threads and semaphores required, are specez80acclaim! Family

More information

Chapter 5: Process Synchronization. Operating System Concepts 9 th Edition

Chapter 5: Process Synchronization. Operating System Concepts 9 th Edition Chapter 5: Process Synchronization Silberschatz, Galvin and Gagne 2013 Chapter 5: Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Mutex Locks

More information

RTOS Real T i Time me Operating System System Concepts Part 2

RTOS Real T i Time me Operating System System Concepts Part 2 RTOS Real Time Operating System Concepts Part 2 Real time System Pitfalls - 4: The Ariane 5 satelite launch rocket Rocket self destructed in 4 June -1996. Exactly after 40 second of lift off at an attitude

More information

Lecture. DM510 - Operating Systems, Weekly Notes, Week 11/12, 2018

Lecture. DM510 - Operating Systems, Weekly Notes, Week 11/12, 2018 Lecture In the lecture on March 13 we will mainly discuss Chapter 6 (Process Scheduling). Examples will be be shown for the simulation of the Dining Philosopher problem, a solution with monitors will also

More information

Maximum CPU utilization obtained with multiprogramming. CPU I/O Burst Cycle Process execution consists of a cycle of CPU execution and I/O wait

Maximum CPU utilization obtained with multiprogramming. CPU I/O Burst Cycle Process execution consists of a cycle of CPU execution and I/O wait Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling Thread Scheduling Operating Systems Examples Java Thread Scheduling Algorithm Evaluation CPU

More information

CHAPTER 6: PROCESS SYNCHRONIZATION

CHAPTER 6: PROCESS SYNCHRONIZATION CHAPTER 6: PROCESS SYNCHRONIZATION The slides do not contain all the information and cannot be treated as a study material for Operating System. Please refer the text book for exams. TOPICS Background

More information

Synchronization I. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Synchronization I. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Synchronization I Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today s Topics Synchronization problem Locks 2 Synchronization Threads cooperate

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2017 Lecture 11 Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ Multilevel Feedback Queue: Q0, Q1,

More information

Resource management. Real-Time Systems. Resource management. Resource management

Resource management. Real-Time Systems. Resource management. Resource management Real-Time Systems Specification Implementation Verification Mutual exclusion is a general problem that exists at several levels in a real-time system. Shared resources internal to the the run-time system:

More information

Deadlock. A Bit More on Synchronization. The Deadlock Problem. Deadlock Characterization. Operating Systems 2/7/2005. CSC 256/456 - Spring

Deadlock. A Bit More on Synchronization. The Deadlock Problem. Deadlock Characterization. Operating Systems 2/7/2005. CSC 256/456 - Spring A Bit More on Synchronization Deadlock CS 256/456 Dept. of Computer Science, University of Rochester Synchronizing interrupt handlers: Interrupt handlers run at highest priority and they must not block.

More information

Chendu College of Engineering & Technology

Chendu College of Engineering & Technology Chendu College of Engineering & Technology (Approved by AICTE, New Delhi and Affiliated to Anna University) Zamin Endathur, Madurantakam, Kancheepuram District 603311 +91-44-27540091/92 www.ccet.org.in

More information

Chapter 5: Process Synchronization. Operating System Concepts 9 th Edition

Chapter 5: Process Synchronization. Operating System Concepts 9 th Edition Chapter 5: Process Synchronization Silberschatz, Galvin and Gagne 2013 Chapter 5: Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Mutex Locks

More information

CS 4410 Operating Systems. Review 1. Summer 2016 Cornell University

CS 4410 Operating Systems. Review 1. Summer 2016 Cornell University CS 4410 Operating Systems Review 1 Summer 2016 Cornell University 1 A modern computer system keyboard disks mouse printer monitor CPU Disk controller USB controller Graphics adapter memory OS device driver

More information

SYNCHRONIZATION M O D E R N O P E R A T I N G S Y S T E M S R E A D 2. 3 E X C E P T A N D S P R I N G 2018

SYNCHRONIZATION M O D E R N O P E R A T I N G S Y S T E M S R E A D 2. 3 E X C E P T A N D S P R I N G 2018 SYNCHRONIZATION M O D E R N O P E R A T I N G S Y S T E M S R E A D 2. 3 E X C E P T 2. 3. 8 A N D 2. 3. 1 0 S P R I N G 2018 INTER-PROCESS COMMUNICATION 1. How a process pass information to another process

More information