LSF HPC :: getting most out of your NUMA machine

Size: px
Start display at page:

Download "LSF HPC :: getting most out of your NUMA machine"

Transcription

1 Leopold-Franzens-Universität Innsbruck ZID Zentraler Informatikdienst (ZID) LSF HPC :: getting most out of your NUMA machine platform computing conference, Michael Fink

2 who we are & what we do university of innsbruck founded 1669, state funded students, 5000 employees, external partners (university spinoff) central compute services (ZID) complete IT infractructure for research, teaching and administration central servers, computer labs (teaching) city-wide network (3 campuses + scattered sites) applications (ISP for all university members, database, HPC & al) staff: 80 ZID HPC group clusters and NUMA machines, mass storage staff: 4 HPC user consortium 15 member institutes coordination, exchange of knowlege and methods (seminar)

3 our SGI altix ccnuma machine SGI altix 350 why? plan 32 s GB ccnuma memory SLES 4, SGI propack 4 hierarchical sets efficient shm (openmp, posix threads) + message passing (MPI) large memory jobs (esp. abaqus) strategic preference "open source" software use SUN grid engine did not work out decision grid engine not NUMA-aware stay with LSF (origin 3800, compute cluster)

4 motivation parallel job in distributed memory cluster mpirun or batch system (LSF) message passing Switch places threads on n nodes processes stay within nodes memory access strictly intranode internode traffic limited to message passing LSF aware of layout physical node LSF node

5 parallel job in SMP machine disk IP OS assumes SMP paradigm IO n s 1 shared memory uniform access: same cost for accessing any part of memory arbitrary placement of processes arbitrary migration of processes LSF: 1 LSF-node, n s 1 LSF node SMP does not scale > 8 s need NUMA

6 parallel job in NUMA machine disk IP NUMA non uniform memory access (virtual shared memory) logical: SMP memory + I/O globally visible to all s, single OS instance physical: interconnect topology latency no. of hops ( 60ns/hop) internode traffic memory access + message passing OS (+LSF): behaves as in SMP 1 LSF node arbitrary placement+migration no dynamic memory page migration 1 LSF node why is this bad?

7 parallel job in NUMA machine :: job start disk IP what happens experiment job 4 threads uses 4 s and memory OS arbitrarily assigns 4 s initially internode traffic limited to message passing non-optimal placement: more hops than necessary

8 parallel job in NUMA machine :: the problem disk IP some time later threads migrate on different s used memory stays put (first touch) threads get separated from their memory new memory on new nodes internode traffic message passing memory access the same happens to other jobs fragmentation interconnect & I/O contention poor performance/throughput vanilla LSF: OS-instance granular does not address this problem

9 solution :: SGI propack4 sets + LSF HPC boot OS + I/O login batch disk IP set layout boot (2): OS, I/O (boot set) login (2): interactive work batch (28): LSF what are sets tell OS scheduler where to allocate and memory hierarchical: nesting allowed LSF HPC can create sets implementation activate boot-set develop persistent sets restrain interactive logins platform support secret LSF HPC option LSF_ROOT_SET

10 boot set goal bind all O/S + I/O processes to boot set how have kernel start /sbin/bootcpuset instead of /etc/init in /etc/elilo.conf add line append = "init=/sbin/bootcpuset" create file /etc/bootcpuset.conf how it works /sbin/bootcpuset reads config file /etc/bootcpuset.conf creates boot set binds itself to boot set exec's /etc/init /etc/bootcpuset.conf cpus 0-1 mems 0 see - linux resource admin guide

11 persistent sets fact propack4 sets are dynamic: lost on reboot goal sets persistent across boots how startup script /var/local/adm/cpuset/init.d/cpuset reads cpuset descriptions from files in /var/local/adm/cpuset/defs executed on system boot, creates all cpusets in defs /.../defs/login cpus 2-3 mems 1 /.../defs/lsfroot cpus 4-31 mems 2-15

12 restrain interactive logins goal bind interactive logins (we allow only ssh) to login set how in /etc/init.d/sshd replace startproc -f -p $SSHD_PIDFILE \ /usr/sbin/sshd $SSHD_OPTS -o "PidFile=$SSHD_PIDFILE" by /usr/bin/cpuset -i /login -I startproc -- -f -p $SSHD_PIDFILE \ /usr/sbin/sshd $SSHD_OPTS -o "PidFile=$SSHD_PIDFILE"

13 lsf root cpuset fact by default, LSF manages all s goal restrict LSF to manage batch set how create persistent set /lsfroot add line LSF_ROOT_SET=/lsfroot to lsf.conf result LSF creates sub-sets /dev/cpuset/lsfroot/hostname@jobid

14 how to use simple bsub -n 4 mpirun -np 4 program arg... OMP_NUM_THREADS=4 bsub -n 4 program arg... advanced control allocation within LSF-created set bsub -n 4 dplace -s 1 -c 0-3 mpirun -np 4 program arg... OMP_NUM_THREADS=4 bsub -n 4 dplace -x 2 -c 0-3 program arg... how it works LSF knows about topology and running jobs picks optimal set of s and creates set places job on set cpu # always starts at 0

15 result :: LSF HPC manages batch load boot OS + I/O login batch disk IP benefits threads + memory stay together internode traffic reduced to program semantics minimal distance minimal contention it really works this way! /dev/cpuset/lsfroot # head */cpus ==> altix32@1225/cpus <== 4-7,24-25 ==> altix32@1250/cpus <== 8-13 ==> altix32@1256/cpus <== 18-19,26-27 ==> altix32@1257/cpus <== 20-21,28-29 /dev/cpuset/lsfroot # uptime 5:25pm up 56 days 2:28, 8 users, load average: 19.72, 19.64, 19.64

16 parerga & paralipomena setup is available follow link altix-cpusets acknowledgments platform computing platform support martin pöll invitation to this conference very fast and effective response sysadmin, 3rd party software questions?

Altix UV HW/SW! SGI Altix UV utilizes an array of advanced hardware and software feature to offload:!

Altix UV HW/SW! SGI Altix UV utilizes an array of advanced hardware and software feature to offload:! Altix UV HW/SW! SGI Altix UV utilizes an array of advanced hardware and software feature to offload:!! thread synchronization!! data sharing!! massage passing overhead from CPUs.! This system has a rich

More information

HPC Architectures. Types of resource currently in use

HPC Architectures. Types of resource currently in use HPC Architectures Types of resource currently in use Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_us

More information

Moab Workload Manager on Cray XT3

Moab Workload Manager on Cray XT3 Moab Workload Manager on Cray XT3 presented by Don Maxwell (ORNL) Michael Jackson (Cluster Resources, Inc.) MOAB Workload Manager on Cray XT3 Why MOAB? Requirements Features Support/Futures 2 Why Moab?

More information

Parallel Applications on Distributed Memory Systems. Le Yan HPC User LSU

Parallel Applications on Distributed Memory Systems. Le Yan HPC User LSU Parallel Applications on Distributed Memory Systems Le Yan HPC User Services @ LSU Outline Distributed memory systems Message Passing Interface (MPI) Parallel applications 6/3/2015 LONI Parallel Programming

More information

NUMA replicated pagecache for Linux

NUMA replicated pagecache for Linux NUMA replicated pagecache for Linux Nick Piggin SuSE Labs January 27, 2008 0-0 Talk outline I will cover the following areas: Give some NUMA background information Introduce some of Linux s NUMA optimisations

More information

Scalable Single System Image SGI Altix 3700, 512p Architecture and Software Environment

Scalable Single System Image SGI Altix 3700, 512p Architecture and Software Environment Silicon Graphics, Inc. Scalable Single System Image SGI Altix 3700, 512p Architecture and Software Environment Presented by: Jean-Pierre Panziera Principal Engineer Altix 3700 SSSI - Architecture and Software

More information

COSC 6385 Computer Architecture - Multi Processor Systems

COSC 6385 Computer Architecture - Multi Processor Systems COSC 6385 Computer Architecture - Multi Processor Systems Fall 2006 Classification of Parallel Architectures Flynn s Taxonomy SISD: Single instruction single data Classical von Neumann architecture SIMD:

More information

Experiences with LSF and cpusets on the Origin3800 at Dresden University of Technology

Experiences with LSF and cpusets on the Origin3800 at Dresden University of Technology Experiences with LSF and cpusets on the Origin3800 at Dresden University of Technology Stefanie Maletti TU Dresden, University Computer Center (URZ) stefanie.maletti@urz.tu-dresden.de ABSTRACT: Based on

More information

Cerebro Quick Start Guide

Cerebro Quick Start Guide Cerebro Quick Start Guide Overview of the system Cerebro consists of a total of 64 Ivy Bridge processors E5-4650 v2 with 10 cores each, 14 TB of memory and 24 TB of local disk. Table 1 shows the hardware

More information

SMP and ccnuma Multiprocessor Systems. Sharing of Resources in Parallel and Distributed Computing Systems

SMP and ccnuma Multiprocessor Systems. Sharing of Resources in Parallel and Distributed Computing Systems Reference Papers on SMP/NUMA Systems: EE 657, Lecture 5 September 14, 2007 SMP and ccnuma Multiprocessor Systems Professor Kai Hwang USC Internet and Grid Computing Laboratory Email: kaihwang@usc.edu [1]

More information

EIC system user manual

EIC system user manual EIC system user manual how to use system Feb 28 th 2013 SGI Japan Ltd. Index EIC system overview File system, Network User environment job script Submitting job Displaying status of job Canceling,deleting

More information

Cluster Computing. Resource and Job Management for HPC 16/08/2010 SC-CAMP. ( SC-CAMP) Cluster Computing 16/08/ / 50

Cluster Computing. Resource and Job Management for HPC 16/08/2010 SC-CAMP. ( SC-CAMP) Cluster Computing 16/08/ / 50 Cluster Computing Resource and Job Management for HPC SC-CAMP 16/08/2010 ( SC-CAMP) Cluster Computing 16/08/2010 1 / 50 Summary 1 Introduction Cluster Computing 2 About Resource and Job Management Systems

More information

Windows Server 2012: Server Virtualization

Windows Server 2012: Server Virtualization Windows Server 2012: Server Virtualization Module Manual Author: David Coombes, Content Master Published: 4 th September, 2012 Information in this document, including URLs and other Internet Web site references,

More information

OS impact on performance

OS impact on performance PhD student CEA, DAM, DIF, F-91297, Arpajon, France Advisor : William Jalby CEA supervisor : Marc Pérache 1 Plan Remind goal of OS Reproducibility Conclusion 2 OS : between applications and hardware 3

More information

Practical Introduction to

Practical Introduction to 1 2 Outline of the workshop Practical Introduction to What is ScaleMP? When do we need it? How do we run codes on the ScaleMP node on the ScaleMP Guillimin cluster? How to run programs efficiently on ScaleMP?

More information

Imperial College London. Simon Burbidge 29 Sept 2016

Imperial College London. Simon Burbidge 29 Sept 2016 Imperial College London Simon Burbidge 29 Sept 2016 Imperial College London Premier UK University and research institution ranked #2= (with Cambridge) in QS World University rankings (MIT #1) #9 in worldwide

More information

PARALLEL ARCHITECTURES

PARALLEL ARCHITECTURES PARALLEL ARCHITECTURES Course Parallel Computing Wolfgang Schreiner Research Institute for Symbolic Computation (RISC) Wolfgang.Schreiner@risc.jku.at http://www.risc.jku.at Parallel Random Access Machine

More information

The SGI Message Passing Toolkit

The SGI Message Passing Toolkit White Paper The SGI Message Passing Toolkit Optimized Performance Across the Altix Product Line Table of Contents 1.0 Introduction... 1 2.0 SGI MPT Performance... 1 2.1 Message Latency... 1 2.1.1 Altix

More information

MSC Nastran Explicit Nonlinear (SOL 700) on Advanced SGI Architectures

MSC Nastran Explicit Nonlinear (SOL 700) on Advanced SGI Architectures MSC Nastran Explicit Nonlinear (SOL 700) on Advanced SGI Architectures Presented By: Dr. Olivier Schreiber, Application Engineering, SGI Walter Schrauwen, Senior Engineer, Finite Element Development, MSC

More information

Computing architectures Part 2 TMA4280 Introduction to Supercomputing

Computing architectures Part 2 TMA4280 Introduction to Supercomputing Computing architectures Part 2 TMA4280 Introduction to Supercomputing NTNU, IMF January 16. 2017 1 Supercomputing What is the motivation for Supercomputing? Solve complex problems fast and accurately:

More information

Advanced Job Launching. mapping applications to hardware

Advanced Job Launching. mapping applications to hardware Advanced Job Launching mapping applications to hardware A Quick Recap - Glossary of terms Hardware This terminology is used to cover hardware from multiple vendors Socket The hardware you can touch and

More information

Lecture Topics. Announcements. Today: Advanced Scheduling (Stallings, chapter ) Next: Deadlock (Stallings, chapter

Lecture Topics. Announcements. Today: Advanced Scheduling (Stallings, chapter ) Next: Deadlock (Stallings, chapter Lecture Topics Today: Advanced Scheduling (Stallings, chapter 10.1-10.4) Next: Deadlock (Stallings, chapter 6.1-6.6) 1 Announcements Exam #2 returned today Self-Study Exercise #10 Project #8 (due 11/16)

More information

Using Docker in High Performance Computing in OpenPOWER Environment

Using Docker in High Performance Computing in OpenPOWER Environment Using Docker in High Performance Computing in OpenPOWER Environment Zhaohui Ding, Senior Product Architect Sam Sanjabi, Advisory Software Engineer IBM Platform Computing #OpenPOWERSummit Join the conversation

More information

Getting Performance from OpenMP Programs on NUMA Architectures

Getting Performance from OpenMP Programs on NUMA Architectures Getting Performance from OpenMP Programs on NUMA Architectures Christian Terboven, RWTH Aachen University terboven@itc.rwth-aachen.de EU H2020 Centre of Excellence (CoE) 1 October 2015 31 March 2018 Grant

More information

Cluster Network Products

Cluster Network Products Cluster Network Products Cluster interconnects include, among others: Gigabit Ethernet Myrinet Quadrics InfiniBand 1 Interconnects in Top500 list 11/2009 2 Interconnects in Top500 list 11/2008 3 Cluster

More information

DELIVERABLE D5.5 Report on ICARUS visualization cluster installation. John BIDDISCOMBE (CSCS) Jerome SOUMAGNE (CSCS)

DELIVERABLE D5.5 Report on ICARUS visualization cluster installation. John BIDDISCOMBE (CSCS) Jerome SOUMAGNE (CSCS) DELIVERABLE D5.5 Report on ICARUS visualization cluster installation John BIDDISCOMBE (CSCS) Jerome SOUMAGNE (CSCS) 02 May 2011 NextMuSE 2 Next generation Multi-mechanics Simulation Environment Cluster

More information

An introduction to checkpointing. for scientific applications

An introduction to checkpointing. for scientific applications damien.francois@uclouvain.be UCL/CISM - FNRS/CÉCI An introduction to checkpointing for scientific applications November 2013 CISM/CÉCI training session What is checkpointing? Without checkpointing: $./count

More information

Graham vs legacy systems

Graham vs legacy systems New User Seminar Graham vs legacy systems This webinar only covers topics pertaining to graham. For the introduction to our legacy systems (Orca etc.), please check the following recorded webinar: SHARCNet

More information

PCS - Part Two: Multiprocessor Architectures

PCS - Part Two: Multiprocessor Architectures PCS - Part Two: Multiprocessor Architectures Institute of Computer Engineering University of Lübeck, Germany Baltic Summer School, Tartu 2008 Part 2 - Contents Multiprocessor Systems Symmetrical Multiprocessors

More information

Scheduling. Jesus Labarta

Scheduling. Jesus Labarta Scheduling Jesus Labarta Scheduling Applications submitted to system Resources x Time Resources: Processors Memory Objective Maximize resource utilization Maximize throughput Minimize response time Not

More information

Introduction to GALILEO

Introduction to GALILEO Introduction to GALILEO Parallel & production environment Mirko Cestari m.cestari@cineca.it Alessandro Marani a.marani@cineca.it Domenico Guida d.guida@cineca.it Maurizio Cremonesi m.cremonesi@cineca.it

More information

Minnesota Supercomputing Institute Regents of the University of Minnesota. All rights reserved.

Minnesota Supercomputing Institute Regents of the University of Minnesota. All rights reserved. Minnesota Supercomputing Institute Introduction to MSI for Physical Scientists Michael Milligan MSI Scientific Computing Consultant Goals Introduction to MSI resources Show you how to access our systems

More information

Experiences in Managing Resources on a Large Origin3000 cluster

Experiences in Managing Resources on a Large Origin3000 cluster Experiences in Managing Resources on a Large Origin3000 cluster UG Summit 2002, Manchester, May 20 2002, Mark van de Sanden & Huub Stoffers http://www.sara.nl A oarse Outline of this Presentation Overview

More information

Determining Optimal MPI Process Placement for Large- Scale Meteorology Simulations with SGI MPIplace

Determining Optimal MPI Process Placement for Large- Scale Meteorology Simulations with SGI MPIplace Determining Optimal MPI Process Placement for Large- Scale Meteorology Simulations with SGI MPIplace James Southern, Jim Tuccillo SGI 25 October 2016 0 Motivation Trend in HPC continues to be towards more

More information

MERCED CLUSTER BASICS Multi-Environment Research Computer for Exploration and Discovery A Centerpiece for Computational Science at UC Merced

MERCED CLUSTER BASICS Multi-Environment Research Computer for Exploration and Discovery A Centerpiece for Computational Science at UC Merced MERCED CLUSTER BASICS Multi-Environment Research Computer for Exploration and Discovery A Centerpiece for Computational Science at UC Merced Sarvani Chadalapaka HPC Administrator University of California

More information

Outline. Execution Environments for Parallel Applications. Supercomputers. Supercomputers

Outline. Execution Environments for Parallel Applications. Supercomputers. Supercomputers Outline Execution Environments for Parallel Applications Master CANS 2007/2008 Departament d Arquitectura de Computadors Universitat Politècnica de Catalunya Supercomputers OS abstractions Extended OS

More information

Non-uniform memory access (NUMA)

Non-uniform memory access (NUMA) Non-uniform memory access (NUMA) Memory access between processor core to main memory is not uniform. Memory resides in separate regions called NUMA domains. For highest performance, cores should only access

More information

NUMA-aware OpenMP Programming

NUMA-aware OpenMP Programming NUMA-aware OpenMP Programming Dirk Schmidl IT Center, RWTH Aachen University Member of the HPC Group schmidl@itc.rwth-aachen.de Christian Terboven IT Center, RWTH Aachen University Deputy lead of the HPC

More information

Architecting and Managing GPU Clusters. Dale Southard, NVIDIA

Architecting and Managing GPU Clusters. Dale Southard, NVIDIA Architecting and Managing GPU Clusters Dale Southard, NVIDIA About the Speaker and You [Dale] is a senior solution architect with NVIDIA (I fix things). I primarily cover HPC in Gov/Edu/Research and on

More information

Update on Windows Persistent Memory Support Neal Christiansen Microsoft

Update on Windows Persistent Memory Support Neal Christiansen Microsoft Update on Windows Persistent Memory Support Neal Christiansen Microsoft 1 Agenda What is Persistent Memory (PM) Review: Existing Windows PM Support What s New New PM APIs Large Page Support Hyper-V Support

More information

CS4500/5500 Operating Systems File Systems and Implementations

CS4500/5500 Operating Systems File Systems and Implementations Operating Systems File Systems and Implementations Yanyan Zhuang Department of Computer Science http://www.cs.uccs.edu/~yzhuang UC. Colorado Springs Recap of Previous Classes Processes and threads o Abstraction

More information

Cray Operating System and I/O Road Map Charlie Carroll

Cray Operating System and I/O Road Map Charlie Carroll Cray Operating System and I/O Road Map Charlie Carroll Cray Operating Systems Focus Performance Maximize compute cycles delivered to applications while also providing necessary services Lightweight kernel

More information

A Case for High Performance Computing with Virtual Machines

A Case for High Performance Computing with Virtual Machines A Case for High Performance Computing with Virtual Machines Wei Huang*, Jiuxing Liu +, Bulent Abali +, and Dhabaleswar K. Panda* *The Ohio State University +IBM T. J. Waston Research Center Presentation

More information

Why you should care about hardware locality and how.

Why you should care about hardware locality and how. Why you should care about hardware locality and how. Brice Goglin TADaaM team Inria Bordeaux Sud-Ouest Agenda Quick example as an introduction Bind your processes What's the actual problem? Convenient

More information

Parallel Programming with MPI

Parallel Programming with MPI Parallel Programming with MPI Science and Technology Support Ohio Supercomputer Center 1224 Kinnear Road. Columbus, OH 43212 (614) 292-1800 oschelp@osc.edu http://www.osc.edu/supercomputing/ Functions

More information

Introduction Workshop 11th 12th November 2013

Introduction Workshop 11th 12th November 2013 Introduction Workshop 11th 12th November Lecture II: Access and Batchsystem Dr. Andreas Wolf Gruppenleiter Hochleistungsrechnen Hochschulrechenzentrum Overview Access and Requirements Software packages

More information

The Google File System (GFS)

The Google File System (GFS) 1 The Google File System (GFS) CS60002: Distributed Systems Antonio Bruto da Costa Ph.D. Student, Formal Methods Lab, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur 2 Design constraints

More information

MPI versions. MPI History

MPI versions. MPI History MPI versions MPI History Standardization started (1992) MPI-1 completed (1.0) (May 1994) Clarifications (1.1) (June 1995) MPI-2 (started: 1995, finished: 1997) MPI-2 book 1999 MPICH 1.2.4 partial implemention

More information

Coherent HyperTransport Enables The Return of the SMP

Coherent HyperTransport Enables The Return of the SMP Coherent HyperTransport Enables The Return of the SMP Einar Rustad Copyright 2010 - All rights reserved. 1 Top500 History The expensive SMPs used to rule: Cray XMP, Convex Exemplar, Sun ES NOW, the Clusters

More information

Technical Computing Suite supporting the hybrid system

Technical Computing Suite supporting the hybrid system Technical Computing Suite supporting the hybrid system Supercomputer PRIMEHPC FX10 PRIMERGY x86 cluster Hybrid System Configuration Supercomputer PRIMEHPC FX10 PRIMERGY x86 cluster 6D mesh/torus Interconnect

More information

When we start? 10/24/2013 Operating Systems, Beykent University 1

When we start? 10/24/2013 Operating Systems, Beykent University 1 When we start? 10/24/2013 Operating Systems, Beykent University 1 Early Systems 10/24/2013 Operating Systems, Beykent University 2 Second Generation 10/24/2013 Operating Systems, Beykent University 3 Third

More information

Regional & National HPC resources available to UCSB

Regional & National HPC resources available to UCSB Regional & National HPC resources available to UCSB Triton Affiliates and Partners Program (TAPP) Extreme Science and Engineering Discovery Environment (XSEDE) UCSB clusters https://it.ucsb.edu/services/supercomputing

More information

HTC Brief Instructions

HTC Brief Instructions HTC Brief Instructions Version 18.08.2018 University of Paderborn Paderborn Center for Parallel Computing Warburger Str. 100, D-33098 Paderborn http://pc2.uni-paderborn.de/ 2 HTC BRIEF INSTRUCTIONS Table

More information

Introduction to HPC Using zcluster at GACRC

Introduction to HPC Using zcluster at GACRC Introduction to HPC Using zcluster at GACRC Georgia Advanced Computing Resource Center University of Georgia Zhuofei Hou, HPC Trainer zhuofei@uga.edu Outline What is GACRC? What is HPC Concept? What is

More information

The MOSIX Scalable Cluster Computing for Linux. mosix.org

The MOSIX Scalable Cluster Computing for Linux.  mosix.org The MOSIX Scalable Cluster Computing for Linux Prof. Amnon Barak Computer Science Hebrew University http://www. mosix.org 1 Presentation overview Part I : Why computing clusters (slide 3-7) Part II : What

More information

Introduction to the SHARCNET Environment May-25 Pre-(summer)school webinar Speaker: Alex Razoumov University of Ontario Institute of Technology

Introduction to the SHARCNET Environment May-25 Pre-(summer)school webinar Speaker: Alex Razoumov University of Ontario Institute of Technology Introduction to the SHARCNET Environment 2010-May-25 Pre-(summer)school webinar Speaker: Alex Razoumov University of Ontario Institute of Technology available hardware and software resources our web portal

More information

Altix Usage and Application Programming

Altix Usage and Application Programming Center for Information Services and High Performance Computing (ZIH) Altix Usage and Application Programming Discussion And Important Information For Users Zellescher Weg 12 Willers-Bau A113 Tel. +49 351-463

More information

Minnesota Supercomputing Institute Regents of the University of Minnesota. All rights reserved.

Minnesota Supercomputing Institute Regents of the University of Minnesota. All rights reserved. Minnesota Supercomputing Institute Introduction to MSI Systems Andrew Gustafson The Machines at MSI Machine Type: Cluster Source: http://en.wikipedia.org/wiki/cluster_%28computing%29 Machine Type: Cluster

More information

Multicore Performance and Tools. Part 1: Topology, affinity, clock speed

Multicore Performance and Tools. Part 1: Topology, affinity, clock speed Multicore Performance and Tools Part 1: Topology, affinity, clock speed Tools for Node-level Performance Engineering Gather Node Information hwloc, likwid-topology, likwid-powermeter Affinity control and

More information

Lecture 17. NUMA Architecture and Programming

Lecture 17. NUMA Architecture and Programming Lecture 17 NUMA Architecture and Programming Announcements Extended office hours today until 6pm Weds after class? Partitioning and communication in Particle method project 2012 Scott B. Baden /CSE 260/

More information

SGI UV 300RL for Oracle Database In-Memory

SGI UV 300RL for Oracle Database In-Memory SGI UV 300RL for Oracle Database In- Single-system Architecture Enables Real-time Business at Near Limitless Scale with Mission-critical Reliability TABLE OF CONTENTS 1.0 Introduction 1 2.0 SGI In- Computing

More information

Bright Cluster Manager

Bright Cluster Manager Bright Cluster Manager Using Slurm for Data Aware Scheduling in the Cloud Martijn de Vries CTO About Bright Computing Bright Computing 1. Develops and supports Bright Cluster Manager for HPC systems, server

More information

I/O Monitoring at JSC, SIONlib & Resiliency

I/O Monitoring at JSC, SIONlib & Resiliency Mitglied der Helmholtz-Gemeinschaft I/O Monitoring at JSC, SIONlib & Resiliency Update: I/O Infrastructure @ JSC Update: Monitoring with LLview (I/O, Memory, Load) I/O Workloads on Jureca SIONlib: Task-Local

More information

Parallel and Distributed Computing

Parallel and Distributed Computing Parallel and Distributed Computing NUMA; OpenCL; MapReduce José Monteiro MSc in Information Systems and Computer Engineering DEA in Computational Engineering Department of Computer Science and Engineering

More information

Considerations for LS-DYNA Workflow Efficiencies in an HPC Linux Environment

Considerations for LS-DYNA Workflow Efficiencies in an HPC Linux Environment 9 th International LS-DYNA Users Conference Computing / Code Technology (2) Considerations for LS-DYNA Workflow Efficiencies in an HPC Linux Environment Stanley Posey HPC Applications Development SGI,

More information

Batch Systems. Running calculations on HPC resources

Batch Systems. Running calculations on HPC resources Batch Systems Running calculations on HPC resources Outline What is a batch system? How do I interact with the batch system Job submission scripts Interactive jobs Common batch systems Converting between

More information

BlueGene/L (No. 4 in the Latest Top500 List)

BlueGene/L (No. 4 in the Latest Top500 List) BlueGene/L (No. 4 in the Latest Top500 List) first supercomputer in the Blue Gene project architecture. Individual PowerPC 440 processors at 700Mhz Two processors reside in a single chip. Two chips reside

More information

Parallel Processors. The dream of computer architects since 1950s: replicate processors to add performance vs. design a faster processor

Parallel Processors. The dream of computer architects since 1950s: replicate processors to add performance vs. design a faster processor Multiprocessing Parallel Computers Definition: A parallel computer is a collection of processing elements that cooperate and communicate to solve large problems fast. Almasi and Gottlieb, Highly Parallel

More information

Computer Architecture

Computer Architecture Computer Architecture Chapter 7 Parallel Processing 1 Parallelism Instruction-level parallelism (Ch.6) pipeline superscalar latency issues hazards Processor-level parallelism (Ch.7) array/vector of processors

More information

COSC 6374 Parallel Computation. Parallel Computer Architectures

COSC 6374 Parallel Computation. Parallel Computer Architectures OS 6374 Parallel omputation Parallel omputer Architectures Some slides on network topologies based on a similar presentation by Michael Resch, University of Stuttgart Spring 2010 Flynn s Taxonomy SISD:

More information

Introduction to HPC Using zcluster at GACRC

Introduction to HPC Using zcluster at GACRC Introduction to HPC Using zcluster at GACRC On-class PBIO/BINF8350 Georgia Advanced Computing Resource Center University of Georgia Zhuofei Hou, HPC Trainer zhuofei@uga.edu Outline What is GACRC? What

More information

WHY PARALLEL PROCESSING? (CE-401)

WHY PARALLEL PROCESSING? (CE-401) PARALLEL PROCESSING (CE-401) COURSE INFORMATION 2 + 1 credits (60 marks theory, 40 marks lab) Labs introduced for second time in PP history of SSUET Theory marks breakup: Midterm Exam: 15 marks Assignment:

More information

Windows-HPC Environment at RWTH Aachen University

Windows-HPC Environment at RWTH Aachen University Windows-HPC Environment at RWTH Aachen University Christian Terboven, Samuel Sarholz {terboven, sarholz}@rz.rwth-aachen.de Center for Computing and Communication RWTH Aachen University PPCES 2009 March

More information

Department of Computer Science Institute for System Architecture, Operating Systems Group REAL-TIME MICHAEL ROITZSCH OVERVIEW

Department of Computer Science Institute for System Architecture, Operating Systems Group REAL-TIME MICHAEL ROITZSCH OVERVIEW Department of Computer Science Institute for System Architecture, Operating Systems Group REAL-TIME MICHAEL ROITZSCH OVERVIEW 2 SO FAR talked about in-kernel building blocks: threads memory IPC drivers

More information

Practical Scientific Computing

Practical Scientific Computing Practical Scientific Computing Performance-optimized Programming Preliminary discussion: July 11, 2008 Dr. Ralf-Peter Mundani, mundani@tum.de Dipl.-Ing. Ioan Lucian Muntean, muntean@in.tum.de MSc. Csaba

More information

COSC 6374 Parallel Computation. Parallel Computer Architectures

COSC 6374 Parallel Computation. Parallel Computer Architectures OS 6374 Parallel omputation Parallel omputer Architectures Some slides on network topologies based on a similar presentation by Michael Resch, University of Stuttgart Edgar Gabriel Fall 2015 Flynn s Taxonomy

More information

Best practices. Using Affinity Scheduling in IBM Platform LSF. IBM Platform LSF

Best practices. Using Affinity Scheduling in IBM Platform LSF. IBM Platform LSF IBM Platform LSF Best practices Using Affinity Scheduling in IBM Platform LSF Rong Song Shen Software Developer: LSF Systems & Technology Group Sam Sanjabi Senior Software Developer Systems & Technology

More information

20/12/12. X86_64 Architecture: NUMA Considerations

20/12/12. X86_64 Architecture: NUMA Considerations 20/12/12 X86_64 Architecture: NUMA Considerations X86 Architecture Outline: X86_64 basic Architecture NUMA and ccnuma Architectures NUMA performance issues Memory allocation mechanisms NUMA Policy NUMA

More information

Introduction to Parallel Programming

Introduction to Parallel Programming Introduction to Parallel Programming David Lifka lifka@cac.cornell.edu May 23, 2011 5/23/2011 www.cac.cornell.edu 1 y What is Parallel Programming? Using more than one processor or computer to complete

More information

InfiniBand-based HPC Clusters

InfiniBand-based HPC Clusters Boosting Scalability of InfiniBand-based HPC Clusters Asaf Wachtel, Senior Product Manager 2010 Voltaire Inc. InfiniBand-based HPC Clusters Scalability Challenges Cluster TCO Scalability Hardware costs

More information

NovoalignMPI User Guide

NovoalignMPI User Guide MPI User Guide MPI is a messaging passing version of that allows the alignment process to be spread across multiple servers in a cluster or other network of computers 1. Multiple servers can be used to

More information

Introduction to PICO Parallel & Production Enviroment

Introduction to PICO Parallel & Production Enviroment Introduction to PICO Parallel & Production Enviroment Mirko Cestari m.cestari@cineca.it Alessandro Marani a.marani@cineca.it Domenico Guida d.guida@cineca.it Nicola Spallanzani n.spallanzani@cineca.it

More information

Research on the Implementation of MPI on Multicore Architectures

Research on the Implementation of MPI on Multicore Architectures Research on the Implementation of MPI on Multicore Architectures Pengqi Cheng Department of Computer Science & Technology, Tshinghua University, Beijing, China chengpq@gmail.com Yan Gu Department of Computer

More information

Considerations for LS-DYNA Efficiency in SGI IRIX and Linux Environments with a NUMA System Architecture

Considerations for LS-DYNA Efficiency in SGI IRIX and Linux Environments with a NUMA System Architecture 4 th European LS-DYNA Users Conference MPP / Linux Cluster / Hardware I Considerations for LS-DYNA Efficiency in SGI IRIX and Linux Environments with a NUMA System Architecture Authors: Stan Posey, Nick

More information

Batch Systems & Parallel Application Launchers Running your jobs on an HPC machine

Batch Systems & Parallel Application Launchers Running your jobs on an HPC machine Batch Systems & Parallel Application Launchers Running your jobs on an HPC machine Partners Funding Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike

More information

Compute Node Linux (CNL) The Evolution of a Compute OS

Compute Node Linux (CNL) The Evolution of a Compute OS Compute Node Linux (CNL) The Evolution of a Compute OS Overview CNL The original scheme plan, goals, requirements Status of CNL Plans Features and directions Futures May 08 Cray Inc. Proprietary Slide

More information

Improving User Accounting and Isolation with Linux Kernel Features. Brian Bockelman Condor Week 2011

Improving User Accounting and Isolation with Linux Kernel Features. Brian Bockelman Condor Week 2011 Improving User Accounting and Isolation with Linux Kernel Features Brian Bockelman Condor Week 2011 Case Study: MPD The MPICH2 library is a common implementation of the MPI interface, a popular parallel

More information

Towards NUMA Support with Distance Information

Towards NUMA Support with Distance Information Towards NUMA Support with Distance Information Dirk Schmidl, Christian Terboven, Dieter an Mey {schmidl terboven anmey}@rz.rwth-aachen.de Rechen- und Kommunikationszentrum (RZ) Agenda Topology of modern

More information

SCALABILITY AND HETEROGENEITY MICHAEL ROITZSCH

SCALABILITY AND HETEROGENEITY MICHAEL ROITZSCH Faculty of Computer Science Institute of Systems Architecture, Operating Systems Group SCALABILITY AND HETEROGENEITY MICHAEL ROITZSCH LAYER CAKE Application Runtime OS Kernel ISA Physical RAM 2 COMMODITY

More information

High Performance Computing (HPC) Using zcluster at GACRC

High Performance Computing (HPC) Using zcluster at GACRC High Performance Computing (HPC) Using zcluster at GACRC On-class STAT8060 Georgia Advanced Computing Resource Center University of Georgia Zhuofei Hou, HPC Trainer zhuofei@uga.edu Outline What is GACRC?

More information

Multiple Processor Systems. Lecture 15 Multiple Processor Systems. Multiprocessor Hardware (1) Multiprocessors. Multiprocessor Hardware (2)

Multiple Processor Systems. Lecture 15 Multiple Processor Systems. Multiprocessor Hardware (1) Multiprocessors. Multiprocessor Hardware (2) Lecture 15 Multiple Processor Systems Multiple Processor Systems Multiprocessors Multicomputers Continuous need for faster computers shared memory model message passing multiprocessor wide area distributed

More information

Understanding vnuma (Virtual Non-Uniform Memory Access)

Understanding vnuma (Virtual Non-Uniform Memory Access) Understanding vnuma (Virtual Non-Uniform Memory Access) SYMETRIC MULTIPROCESSING (SMP) To keep it simple, SMP architecture allows for multiprocessor servers to share a single bus and memory, while being

More information

MapReduce. U of Toronto, 2014

MapReduce. U of Toronto, 2014 MapReduce U of Toronto, 2014 http://www.google.org/flutrends/ca/ (2012) Average Searches Per Day: 5,134,000,000 2 Motivation Process lots of data Google processed about 24 petabytes of data per day in

More information

MPI History. MPI versions MPI-2 MPICH2

MPI History. MPI versions MPI-2 MPICH2 MPI versions MPI History Standardization started (1992) MPI-1 completed (1.0) (May 1994) Clarifications (1.1) (June 1995) MPI-2 (started: 1995, finished: 1997) MPI-2 book 1999 MPICH 1.2.4 partial implemention

More information

COS 318: Operating Systems. Overview. Jaswinder Pal Singh Computer Science Department Princeton University

COS 318: Operating Systems. Overview. Jaswinder Pal Singh Computer Science Department Princeton University COS 318: Operating Systems Overview Jaswinder Pal Singh Computer Science Department Princeton University (http://www.cs.princeton.edu/courses/cos318/) Important Times u Precepts: l Mon: 7:30-8:20pm, 105

More information

TrafficDB: HERE s High Performance Shared-Memory Data Store Ricardo Fernandes, Piotr Zaczkowski, Bernd Göttler, Conor Ettinoffe, and Anis Moussa

TrafficDB: HERE s High Performance Shared-Memory Data Store Ricardo Fernandes, Piotr Zaczkowski, Bernd Göttler, Conor Ettinoffe, and Anis Moussa TrafficDB: HERE s High Performance Shared-Memory Data Store Ricardo Fernandes, Piotr Zaczkowski, Bernd Göttler, Conor Ettinoffe, and Anis Moussa EPL646: Advanced Topics in Databases Christos Hadjistyllis

More information

Introduction to UBELIX

Introduction to UBELIX Science IT Support (ScITS) Michael Rolli, Nico Färber Informatikdienste Universität Bern 06.06.2017, Introduction to UBELIX Agenda > Introduction to UBELIX (Overview only) Other topics spread in > Introducing

More information

UAntwerpen, 24 June 2016

UAntwerpen, 24 June 2016 Tier-1b Info Session UAntwerpen, 24 June 2016 VSC HPC environment Tier - 0 47 PF Tier -1 623 TF Tier -2 510 Tf 16,240 CPU cores 128/256 GB memory/node IB EDR interconnect Tier -3 HOPPER/TURING STEVIN THINKING/CEREBRO

More information

Slurm Version Overview

Slurm Version Overview Slurm Version 18.08 Overview Brian Christiansen SchedMD Slurm User Group Meeting 2018 Schedule Previous major release was 17.11 (November 2017) Latest major release 18.08 (August 2018) Next major release

More information

1 Bull, 2011 Bull Extreme Computing

1 Bull, 2011 Bull Extreme Computing 1 Bull, 2011 Bull Extreme Computing Table of Contents Overview. Principal concepts. Architecture. Scheduler Policies. 2 Bull, 2011 Bull Extreme Computing SLURM Overview Ares, Gerardo, HPC Team Introduction

More information