Practical Machine Learning in R

Size: px
Start display at page:

Download "Practical Machine Learning in R"

Transcription

1 Practical Machine Learning in R Tuning Lars Kotthoff 12 larsko@uwo.edu 1 with slides from Bernd Bischl and Michel Lang 2 slides available at 1

2 Tuning Frank Hutter and Marius Lindauer, Algorithm Configuration: A Hands on Tutorial, AAAI

3 Hperparameter Tuning ud to find best hperparameters for a method in a data-dependent wa important to achieve good performance in practice esntial for some methods, e.g. SVMs 3

4 Grid and Random Search Bergstra, James, and Yoshua Bengio. Random Search for Hper-Parameter Optimization. J. Mach. Learn. Res. 13, no. 1 (Februar 2012):

5 Population-Bad Methods e.g. Racing and Genetic Algorithms start with population of random configurations eliminate weak individuals generate new population from strong individuals iterate 5

6 Model-Bad Search currentl considered state-of-the-art build surrogate model of parameter-respon surface evaluate cheap model instead of expensive target function u model to o next point to evaluate target function at iterate 6

7 Model-Bad Search Components learner for surrogate model method for generating t of initial obrvations infill criterion how to get next evaluation point termination criterion 7

8 Model-Bad Search Example 1D Iter = 1, Gap = e init x 8

9 Model-Bad Search Example 1D Iter = 2, Gap = e init 1 0 x 9

10 Model-Bad Search Example 1D Iter = 3, Gap = e init x 10

11 Model-Bad Search Example 1D Iter = 4, Gap = e e 04 6e 04 4e 04 init 2e 04 0e+00 x 11

12 Model-Bad Search Example 1D Iter = 5, Gap = e e 04 init 1e 04 0e+00 x 12

13 Model-Bad Search Example 1D Iter = 6, Gap = e init x 13

14 Model-Bad Search Example 1D Iter = 7, Gap = e e 05 4e 05 3e 05 init 2e 05 1e 05 0e+00 x 14

15 Model-Bad Search Example 1D Iter = 8, Gap = e e 05 e 05 e 05 init 5.0e 06 e+00 x 15

16 Model-Bad Search Example 1D Iter = 9, Gap = e e e e 06 init 2.5e 06 e+00 x 16

17 Model-Bad Search Example 1D Iter = 10, Gap = e e 07 3e 07 2e 07 init 1e 07 0e+00 x 17

18 Model-Bad Search Example 2D 2.0 init init init init

19 Model-Bad Search Example 2D 2.0 init init init init

20 Model-Bad Search Example 2D 2.0 init init init init 20

21 Model-Bad Search Example 2D 2.0 init init init init

22 Model-Bad Search Example 2D 2.0 init init init init

23 Model-Bad Search Example 2D 2.0 init init init init

24 Model-Bad Search Example 2D 2.0 init init init init

25 Model-Bad Search Example 2D 2.0 init init init init 25

26 Model-Bad Search Example 2D 2.0 init init init init

27 Model-Bad Search Example 2D 2.0 init init init init

28 When are we done? most approaches incomplete cannot prove optimalit, not guaranteed to find optimal solution (in finite time) performance highl dependent on configuration space How do we know when to stop? 28

29 Time Budget How much time/how man function evaluations? too much wasted resources too little suboptimal result experiment with different ttings run veral times with different random initializations 29

30 Evaluation repeated evaluation with same train/test split statisticall unsound violates independence assumption example: parameters have no real effect, onl random variation still one parameter tting will win solution: different train/test splits 30

31 Nested Resampling 31

32 In mlr tuning with different methods available as wrapper model-bad optimization available in mlrmbo package nested resampling available as resampling method 32

33 Exercis 07-tuning-exercis.Rmd 33

AI-Augmented Algorithms

AI-Augmented Algorithms AI-Augmented Algorithms How I Learned to Stop Worrying and Love Choice Lars Kotthoff University of Wyoming larsko@uwyo.edu Warsaw, 17 April 2019 Outline Big Picture Motivation Choosing Algorithms Tuning

More information

AI-Augmented Algorithms

AI-Augmented Algorithms AI-Augmented Algorithms How I Learned to Stop Worrying and Love Choice Lars Kotthoff University of Wyoming larsko@uwyo.edu Boulder, 16 January 2019 Outline Big Picture Motivation Choosing Algorithms Tuning

More information

Overview on Automatic Tuning of Hyperparameters

Overview on Automatic Tuning of Hyperparameters Overview on Automatic Tuning of Hyperparameters Alexander Fonarev http://newo.su 20.02.2016 Outline Introduction to the problem and examples Introduction to Bayesian optimization Overview of surrogate

More information

An Empirical Study of Per-Instance Algorithm Scheduling

An Empirical Study of Per-Instance Algorithm Scheduling An Empirical Study of Per-Instance Algorithm Scheduling Marius Lindauer, Rolf-David Bergdoll, and Frank Hutter University of Freiburg Abstract. Algorithm selection is a prominent approach to improve a

More information

arxiv: v1 [stat.ml] 23 Nov 2018

arxiv: v1 [stat.ml] 23 Nov 2018 Learning Multiple Defaults for Machine Learning Algorithms Florian Pfisterer and Jan N. van Rijn and Philipp Probst and Andreas Müller and Bernd Bischl Ludwig Maximilian University of Munich, Germany Columbia

More information

Efficient Hyper-parameter Optimization for NLP Applications

Efficient Hyper-parameter Optimization for NLP Applications Efficient Hyper-parameter Optimization for NLP Applications Lidan Wang 1, Minwei Feng 1, Bowen Zhou 1, Bing Xiang 1, Sridhar Mahadevan 2,1 1 IBM Watson, T. J. Watson Research Center, NY 2 College of Information

More information

Sequential Model-based Optimization for General Algorithm Configuration

Sequential Model-based Optimization for General Algorithm Configuration Sequential Model-based Optimization for General Algorithm Configuration Frank Hutter, Holger Hoos, Kevin Leyton-Brown University of British Columbia LION 5, Rome January 18, 2011 Motivation Most optimization

More information

An Empirical Study of Hyperparameter Importance Across Datasets

An Empirical Study of Hyperparameter Importance Across Datasets An Empirical Study of Hyperparameter Importance Across Datasets Jan N. van Rijn and Frank Hutter University of Freiburg, Germany {vanrijn,fh}@cs.uni-freiburg.de Abstract. With the advent of automated machine

More information

Automatic solver configuration using SMAC

Automatic solver configuration using SMAC Automatic solver configuration using SMAC How to boost performance of your SAT solver? Marius Lindauer 1 University of Freiburg SAT Industrial Day 2016, Bordeaux 1 Thanks to Frank Hutter! Ever looked into

More information

arxiv: v2 [stat.ml] 13 Jul 2018 Abstract

arxiv: v2 [stat.ml] 13 Jul 2018 Abstract ICML 2018 AutoML Workshop Automatic Gradient Boosting Janek Thomas janek.thomas@stat.uni-muenchen.de Stefan Coors stefan.coors@campus.lmu.de Bernd Bischl bernd.bischl@stat.uni-muenchen.de Department of

More information

Neural Network Optimization and Tuning / Spring 2018 / Recitation 3

Neural Network Optimization and Tuning / Spring 2018 / Recitation 3 Neural Network Optimization and Tuning 11-785 / Spring 2018 / Recitation 3 1 Logistics You will work through a Jupyter notebook that contains sample and starter code with explanations and comments throughout.

More information

Machine Learning Techniques for Data Mining

Machine Learning Techniques for Data Mining Machine Learning Techniques for Data Mining Eibe Frank University of Waikato New Zealand 10/25/2000 1 PART VII Moving on: Engineering the input and output 10/25/2000 2 Applying a learner is not all Already

More information

Package llama. R topics documented: July 11, Type Package

Package llama. R topics documented: July 11, Type Package Type Package Package llama July 11, 2018 Title Leveraging Learning to Automatically Manage Algorithms Version 0.9.2 Date 2018-07-11 Author Lars Kotthoff [aut,cre], Bernd Bischl [aut], Barry Hurley [ctb],

More information

Slides for Data Mining by I. H. Witten and E. Frank

Slides for Data Mining by I. H. Witten and E. Frank Slides for Data Mining by I. H. Witten and E. Frank 7 Engineering the input and output Attribute selection Scheme-independent, scheme-specific Attribute discretization Unsupervised, supervised, error-

More information

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle   holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/22055 holds various files of this Leiden University dissertation. Author: Koch, Patrick Title: Efficient tuning in supervised machine learning Issue Date:

More information

The Impact of Initial Designs on the Performance of MATSuMoTo on the Noiseless BBOB-2015 Testbed: A Preliminary Study

The Impact of Initial Designs on the Performance of MATSuMoTo on the Noiseless BBOB-2015 Testbed: A Preliminary Study The Impact of Initial Designs on the Performance of MATSuMoTo on the Noiseless BBOB-2015 Testbed: A Preliminary Study Dimo Brockhoff INRIA Lille Nord Europe Bernd Bischl LMU München Tobias Wagner TU Dortmund

More information

Introduction to the bnclassify package

Introduction to the bnclassify package Introduction to the bnclassify package Bojan Mihaljevic, Concha Bielza, Pedro Larranaga 2017-09-06 Contents 1 Introduction 1 2 Data 2 3 Workflow 2 4 Network structure 3 4.1 Learning...........................................

More information

EC500. Design of Secure and Reliable Hardware. Lecture 1 & 2

EC500. Design of Secure and Reliable Hardware. Lecture 1 & 2 EC500 Design of Secure and Reliable Hardware Lecture 1 & 2 Mark Karpovsky January 17 th, 2013 1 Security Errors injected by the attacker (active attacks) Reliability Errors injected by random sources e.g.

More information

SpySMAC: Automated Configuration and Performance Analysis of SAT Solvers

SpySMAC: Automated Configuration and Performance Analysis of SAT Solvers SpySMAC: Automated Configuration and Performance Analysis of SAT Solvers Stefan Falkner, Marius Lindauer, and Frank Hutter University of Freiburg {sfalkner,lindauer,fh}@cs.uni-freiburg.de Abstract. Most

More information

CS 229 Midterm Review

CS 229 Midterm Review CS 229 Midterm Review Course Staff Fall 2018 11/2/2018 Outline Today: SVMs Kernels Tree Ensembles EM Algorithm / Mixture Models [ Focus on building intuition, less so on solving specific problems. Ask

More information

GLMSELECT for Model Selection

GLMSELECT for Model Selection Winnipeg SAS User Group Meeting May 11, 2012 GLMSELECT for Model Selection Sylvain Tremblay SAS Canada Education Copyright 2010 SAS Institute Inc. All rights reserved. Proc GLM Proc REG Class Statement

More information

Otto Group Product Classification Challenge

Otto Group Product Classification Challenge Otto Group Product Classification Challenge Hoang Duong May 19, 2015 1 Introduction The Otto Group Product Classification Challenge is the biggest Kaggle competition to date with 3590 participating teams.

More information

MOI-MBO: Multiobjective Infill for Parallel Model-Based Optimization

MOI-MBO: Multiobjective Infill for Parallel Model-Based Optimization MOI-MBO: Multiobjective Infill for Parallel Model-Based Optimization Bernd Bischl 1, Simon Wessing 2, Nadja Bauer 1, Klaus Friedrichs 1, and Claus Weihs 1 1 Department of Statistics, TU Dortmund, Germany

More information

Stereo Matching! Christian Unger 1,2, Nassir Navab 1!! Computer Aided Medical Procedures (CAMP), Technische Universität München, Germany!!

Stereo Matching! Christian Unger 1,2, Nassir Navab 1!! Computer Aided Medical Procedures (CAMP), Technische Universität München, Germany!! Stereo Matching Christian Unger 12 Nassir Navab 1 1 Computer Aided Medical Procedures CAMP) Technische Universität München German 2 BMW Group München German Hardware Architectures. Microprocessors Pros:

More information

Support Vector Machines. James McInerney Adapted from slides by Nakul Verma

Support Vector Machines. James McInerney Adapted from slides by Nakul Verma Support Vector Machines James McInerney Adapted from slides by Nakul Verma Last time Decision boundaries for classification Linear decision boundary (linear classification) The Perceptron algorithm Mistake

More information

Practical Guidance for Machine Learning Applications

Practical Guidance for Machine Learning Applications Practical Guidance for Machine Learning Applications Brett Wujek About the authors Material from SGF Paper SAS2360-2016 Brett Wujek Senior Data Scientist, Advanced Analytics R&D ~20 years developing engineering

More information

Foundations of AI. 4. Informed Search Methods. Heuristics, Local Search Methods, Genetic Algorithms. Wolfram Burgard & Bernhard Nebel

Foundations of AI. 4. Informed Search Methods. Heuristics, Local Search Methods, Genetic Algorithms. Wolfram Burgard & Bernhard Nebel Foundations of AI 4. Informed Search Methods Heuristics, Local Search Methods, Genetic Algorithms Wolfram Burgard & Bernhard Nebel Contents Best-First Search A* and IDA* Local Search Methods Genetic Algorithms

More information

Efficient Transfer Learning Method for Automatic Hyperparameter Tuning

Efficient Transfer Learning Method for Automatic Hyperparameter Tuning Efficient Transfer Learning Method for Automatic Hyperparameter Tuning Dani Yogatama Carnegie Mellon University Pittsburgh, PA 1513, USA dyogatama@cs.cmu.edu Gideon Mann Google Research New York, NY 111,

More information

Topics In Feature Selection

Topics In Feature Selection Topics In Feature Selection CSI 5388 Theme Presentation Joe Burpee 2005/2/16 Feature Selection (FS) aka Attribute Selection Witten and Frank book Section 7.1 Liu site http://athena.csee.umbc.edu/idm02/

More information

Automatic Algorithm Configuration based on Local Search

Automatic Algorithm Configuration based on Local Search Automatic Algorithm Configuration based on Local Search Frank Hutter 1 Holger Hoos 1 Thomas Stützle 2 1 Department of Computer Science University of British Columbia Canada 2 IRIDIA Université Libre de

More information

Informed search algorithms. Chapter 4

Informed search algorithms. Chapter 4 Informed search algorithms Chapter 4 Material Chapter 4 Section 1 - Exclude memory-bounded heuristic search 3 Outline Best-first search Greedy best-first search A * search Heuristics Local search algorithms

More information

2. Blackbox hyperparameter optimization and AutoML

2. Blackbox hyperparameter optimization and AutoML AutoML 2017. Automatic Selection, Configuration & Composition of ML Algorithms. at ECML PKDD 2017, Skopje. 2. Blackbox hyperparameter optimization and AutoML Pavel Brazdil, Frank Hutter, Holger Hoos, Joaquin

More information

Special Topic: Missing Values. Missing Can Mean Many Things. Missing Values Common in Real Data

Special Topic: Missing Values. Missing Can Mean Many Things. Missing Values Common in Real Data Special Topic: Missing Values Missing Values Common in Real Data Pneumonia: 6.3% of attribute values are missing one attribute is missing in 61% of cases C-Section: only about 1/2% of attribute values

More information

CPSC 340: Machine Learning and Data Mining. Probabilistic Classification Fall 2017

CPSC 340: Machine Learning and Data Mining. Probabilistic Classification Fall 2017 CPSC 340: Machine Learning and Data Mining Probabilistic Classification Fall 2017 Admin Assignment 0 is due tonight: you should be almost done. 1 late day to hand it in Monday, 2 late days for Wednesday.

More information

An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation

An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Bengio Université de Montréal 13/06/2007

More information

An Overview MARS is an adaptive procedure for regression, and is well suited for high dimensional problems.

An Overview MARS is an adaptive procedure for regression, and is well suited for high dimensional problems. Data mining and Machine Learning, Mar 24, 2008 MARS: Multivariate Adaptive Regression Splines (Friedman 1991, Friedman and Silverman 1989) An Overview MARS is an adaptive procedure for regression, and

More information

Section 1 Click Instructions Talking Points

Section 1 Click Instructions Talking Points Section 1 Click Instructions Talking Points 1. This tutorial will cover Split testing with ClickDimensions Email Sends. You must have already created your Email Send and added recipients. If you haven't,

More information

Data Knowledge and Optimization. Patrick De Causmaecker CODeS-imec Department of Computer Science KU Leuven/ KULAK

Data Knowledge and Optimization. Patrick De Causmaecker CODeS-imec Department of Computer Science KU Leuven/ KULAK Data Knowledge and Optimization Patrick De Causmaecker CODeS-imec Department of Computer Science KU Leuven/ KULAK Whishes from West-Flanders, Belgium 10 rules for success in supply chain mngmnt & logistics

More information

Foundations of AI. 4. Informed Search Methods. Heuristics, Local Search Methods, Genetic Algorithms

Foundations of AI. 4. Informed Search Methods. Heuristics, Local Search Methods, Genetic Algorithms Foundations of AI 4. Informed Search Methods Heuristics, Local Search Methods, Genetic Algorithms Luc De Raedt and Wolfram Burgard and Bernhard Nebel Contents Best-First Search A* and IDA* Local Search

More information

arxiv: v1 [cs.cv] 5 Jan 2018

arxiv: v1 [cs.cv] 5 Jan 2018 Combination of Hyperband and Bayesian Optimization for Hyperparameter Optimization in Deep Learning arxiv:1801.01596v1 [cs.cv] 5 Jan 2018 Jiazhuo Wang Blippar jiazhuo.wang@blippar.com Jason Xu Blippar

More information

Introduction to Evolutionary Computation

Introduction to Evolutionary Computation Introduction to Evolutionary Computation The Brought to you by (insert your name) The EvoNet Training Committee Some of the Slides for this lecture were taken from the Found at: www.cs.uh.edu/~ceick/ai/ec.ppt

More information

Automated Configuration of MIP solvers

Automated Configuration of MIP solvers Automated Configuration of MIP solvers Frank Hutter, Holger Hoos, and Kevin Leyton-Brown Department of Computer Science University of British Columbia Vancouver, Canada {hutter,hoos,kevinlb}@cs.ubc.ca

More information

Ensemble Learning. Another approach is to leverage the algorithms we have via ensemble methods

Ensemble Learning. Another approach is to leverage the algorithms we have via ensemble methods Ensemble Learning Ensemble Learning So far we have seen learning algorithms that take a training set and output a classifier What if we want more accuracy than current algorithms afford? Develop new learning

More information

Non-deterministic Search techniques. Emma Hart

Non-deterministic Search techniques. Emma Hart Non-deterministic Search techniques Emma Hart Why do local search? Many real problems are too hard to solve with exact (deterministic) techniques Modern, non-deterministic techniques offer ways of getting

More information

Entity Relationship Modelling

Entity Relationship Modelling Entity Relationship Modelling Overview Database Analysis Life Cycle Components of an Entity Relationship Diagram What is a relationship? Entities, attributes, and relationships in a system The degree of

More information

Bias-Variance Decomposition Error Estimators

Bias-Variance Decomposition Error Estimators Bias-Variance Decomposition Error Estimators Cross-Validation Bias-Variance tradeoff Intuition Model too simple does not fit the data well a biased solution. Model too comple small changes to the data,

More information

Bias-Variance Decomposition Error Estimators Cross-Validation

Bias-Variance Decomposition Error Estimators Cross-Validation Bias-Variance Decomposition Error Estimators Cross-Validation Bias-Variance tradeoff Intuition Model too simple does not fit the data well a biased solution. Model too comple small changes to the data,

More information

K-Consistency. CS 188: Artificial Intelligence. K-Consistency. Strong K-Consistency. Constraint Satisfaction Problems II

K-Consistency. CS 188: Artificial Intelligence. K-Consistency. Strong K-Consistency. Constraint Satisfaction Problems II CS 188: Artificial Intelligence K-Consistency Constraint Satisfaction Problems II Instructor: Marco Alvarez University of Rhode Island (These slides were created/modified by Dan Klein, Pieter Abbeel, Anca

More information

Data Engineering. Data preprocessing and transformation

Data Engineering. Data preprocessing and transformation Data Engineering Data preprocessing and transformation Just apply a learner? NO! Algorithms are biased No free lunch theorem: considering all possible data distributions, no algorithm is better than another

More information

LECTURE 6: CROSS VALIDATION

LECTURE 6: CROSS VALIDATION LECTURE 6: CROSS VALIDATION CSCI 4352 Machine Learning Dongchul Kim, Ph.D. Department of Computer Science A Regression Problem Given a data set, how can we evaluate our (linear) model? Cross Validation

More information

7. Metalearning for Automated Workflow Design

7. Metalearning for Automated Workflow Design AutoML 2017. at ECML PKDD 2017, Skopje. Automatic Selection, Configuration & Composition of ML Algorithms 7. Metalearning for Automated Workflow Design by. Pavel Brazdil, Frank Hutter, Holger Hoos, Joaquin

More information

CURRENT RESEARCH ON EXPLORATORY LANDSCAPE ANALYSIS

CURRENT RESEARCH ON EXPLORATORY LANDSCAPE ANALYSIS CURRENT RESEARCH ON EXPLORATORY LANDSCAPE ANALYSIS HEIKE TRAUTMANN. MIKE PREUSS. 1 EXPLORATORY LANDSCAPE ANALYSIS effective and sophisticated approach to characterize properties of optimization problems

More information

Cross-validation for detecting and preventing overfitting

Cross-validation for detecting and preventing overfitting Cross-validation for detecting and preventing overfitting Note to other teachers and users of these slides. Andrew would be delighted if ou found this source material useful in giving our own lectures.

More information

Reinforcement Learning: A brief introduction. Mihaela van der Schaar

Reinforcement Learning: A brief introduction. Mihaela van der Schaar Reinforcement Learning: A brief introduction Mihaela van der Schaar Outline Optimal Decisions & Optimal Forecasts Markov Decision Processes (MDPs) States, actions, rewards and value functions Dynamic Programming

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Constraint Satisfaction Problems II Instructors: Dan Klein and Pieter Abbeel University of California, Berkeley [These slides were created by Dan Klein and Pieter Abbeel

More information

Bounded Suboptimal Search: A Direct Approach Using Inadmissible Estimates

Bounded Suboptimal Search: A Direct Approach Using Inadmissible Estimates Bounded Suboptimal Search: A Direct Approach Using Inadmissible Estimates Jordan T. Thayer and Wheeler Ruml jtd7, ruml at cs.unh.edu With Thanks To NSF-IIS0812141 and DARPA CSSG N10AP20029 Jordan T. Thayer

More information

CS 559: Machine Learning Fundamentals and Applications 10 th Set of Notes

CS 559: Machine Learning Fundamentals and Applications 10 th Set of Notes 1 CS 559: Machine Learning Fundamentals and Applications 10 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215

More information

High-End Computing Systems

High-End Computing Systems High-End Computing Systems EE380 State-of-the-Art Lecture Hank Dietz Professor & Hardymon Chair in Networking Electrical & Computer Engineering Dept. University of Kentucky Lexington, KY 40506-0046 http://aggregate.org/hankd/

More information

Efficient Tuning of SVM Hyperparameters Using Radius/Margin Bound and Iterative Algorithms

Efficient Tuning of SVM Hyperparameters Using Radius/Margin Bound and Iterative Algorithms IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 5, SEPTEMBER 2002 1225 Efficient Tuning of SVM Hyperparameters Using Radius/Margin Bound and Iterative Algorithms S. Sathiya Keerthi Abstract This paper

More information

Variational Methods II

Variational Methods II Mathematical Foundations of Computer Graphics and Vision Variational Methods II Luca Ballan Institute of Visual Computing Last Lecture If we have a topological vector space with an inner product and functionals

More information

Package mlrcpo. January 10, 2019

Package mlrcpo. January 10, 2019 Package mlrcpo January 10, 2019 Title Composable Preprocessing Operators and Pipelines for Machine Learning Description Toolset that enriches 'mlr' with a diverse set of preprocessing operators. Composable

More information

Approximate nonlinear explicit MPC based on reachability analysis

Approximate nonlinear explicit MPC based on reachability analysis Approximate nonlinear explicit MPC based on reachability analysis D.M. Raimondo 1, M. Schulze Darup 2, M. Mönnigmann 2 Università degli studi di Pavia Ruhr-Universität Bochum The system Introduction: Nonlinear

More information

Vorlesung Grundlagen der Künstlichen Intelligenz

Vorlesung Grundlagen der Künstlichen Intelligenz Vorlesung Grundlagen der Künstlichen Intelligenz Reinhard Lafrenz / Prof. A. Knoll Robotics and Embedded Systems Department of Informatics I6 Technische Universität München www6.in.tum.de lafrenz@in.tum.de

More information

Random Forest in Genomic Selection

Random Forest in Genomic Selection Random Forest in genomic selection 1 Dpto Mejora Genética Animal, INIA, Madrid; Universidad Politécnica de Valencia, 20-24 September, 2010. Outline 1 Remind 2 Random Forest Introduction Classification

More information

Section 4 Matching Estimator

Section 4 Matching Estimator Section 4 Matching Estimator Matching Estimators Key Idea: The matching method compares the outcomes of program participants with those of matched nonparticipants, where matches are chosen on the basis

More information

Synthetic Data. Michael Lin

Synthetic Data. Michael Lin Synthetic Data Michael Lin 1 Overview The data privacy problem Imputation Synthetic data Analysis 2 Data Privacy As a data provider, how can we release data containing private information without disclosing

More information

AttentionNet for Accurate Localization and Detection of Objects. (To appear in ICCV 2015)

AttentionNet for Accurate Localization and Detection of Objects. (To appear in ICCV 2015) AttentionNet for Accurate Localization and Detection of Objects. (To appear in ICCV 2015) Donggeun Yoo, Sunggyun Park, Joon-Young Lee, Anthony Paek, In So Kweon. State-of-the-art frameworks for object

More information

Boosting Simple Model Selection Cross Validation Regularization

Boosting Simple Model Selection Cross Validation Regularization Boosting: (Linked from class website) Schapire 01 Boosting Simple Model Selection Cross Validation Regularization Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University February 8 th,

More information

Neural Networks: promises of current research

Neural Networks: promises of current research April 2008 www.apstat.com Current research on deep architectures A few labs are currently researching deep neural network training: Geoffrey Hinton s lab at U.Toronto Yann LeCun s lab at NYU Our LISA lab

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 4. Informed Search Methods Heuristics, Local Search Methods, Genetic Algorithms Joschka Boedecker and Wolfram Burgard and Frank Hutter and Bernhard Nebel Albert-Ludwigs-Universität

More information

Supervised vs. Unsupervised Learning

Supervised vs. Unsupervised Learning Clustering Supervised vs. Unsupervised Learning So far we have assumed that the training samples used to design the classifier were labeled by their class membership (supervised learning) We assume now

More information

Data Replication in the Quality Space

Data Replication in the Quality Space Data Replication in the Quality Space Yicheng Tu April 1, 2008 At Commnet USF Roadmap Introduction Static data replication Dynamic data replication Experimental (simulation) results Summary Data Replication

More information

Slides credited from Dr. David Silver & Hung-Yi Lee

Slides credited from Dr. David Silver & Hung-Yi Lee Slides credited from Dr. David Silver & Hung-Yi Lee Review Reinforcement Learning 2 Reinforcement Learning RL is a general purpose framework for decision making RL is for an agent with the capacity to

More information

2006/2007 Intelligent Systems 1. Intelligent Systems. Prof. dr. Paul De Bra Technische Universiteit Eindhoven

2006/2007 Intelligent Systems 1. Intelligent Systems. Prof. dr. Paul De Bra Technische Universiteit Eindhoven test gamma 2006/2007 Intelligent Systems 1 Intelligent Systems Prof. dr. Paul De Bra Technische Universiteit Eindhoven debra@win.tue.nl 2006/2007 Intelligent Systems 2 Informed search and exploration Best-first

More information

Data Science meets Optimization. ODS 2017 EURO Plenary Patrick De Causmaecker EWG/DSO EURO Working Group CODeS KU Leuven/ KULAK

Data Science meets Optimization. ODS 2017 EURO Plenary Patrick De Causmaecker EWG/DSO EURO Working Group CODeS KU Leuven/ KULAK Data Science meets Optimization ODS 2017 EURO Plenary Patrick De Causmaecker EWG/DSO EURO Working Group CODeS KU Leuven/ KULAK ODS 2017, Sorrento www.fourthparadigm.com Copyright 2009 Microsoft Corporation

More information

arxiv: v2 [stat.ml] 15 Mar 2017

arxiv: v2 [stat.ml] 15 Mar 2017 : A Modular Framework for Model-Based Optimization of Expensive Black-Box Functions Bernd Bischl a, Jakob Richter b, Jakob Bossek c, Daniel Horn b, Janek Thomas a, Michel Lang b arxiv:1703.03373v2 [stat.ml]

More information

PSY 9556B (Feb 5) Latent Growth Modeling

PSY 9556B (Feb 5) Latent Growth Modeling PSY 9556B (Feb 5) Latent Growth Modeling Fixed and random word confusion Simplest LGM knowing how to calculate dfs How many time points needed? Power, sample size Nonlinear growth quadratic Nonlinear growth

More information

Cascades. Rik Sarkar. Social and Technological Networks. University of Edinburgh, 2018.

Cascades. Rik Sarkar. Social and Technological Networks. University of Edinburgh, 2018. Cascades Social and Technological Networks Rik Sarkar University of Edinburgh, 2018. Course Solutions to Ex0 are up Make sure you are comfortable with this material Notes 1 with exercise questions are

More information

Feature Selection. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani

Feature Selection. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani Feature Selection CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Dimensionality reduction Feature selection vs. feature extraction Filter univariate

More information

Algorithms for Integer Programming

Algorithms for Integer Programming Algorithms for Integer Programming Laura Galli November 9, 2016 Unlike linear programming problems, integer programming problems are very difficult to solve. In fact, no efficient general algorithm is

More information

Technical Report. Performance Analysis for Parallel R Programs: Towards Efficient Resource Utilization. Helena Kotthaus, Ingo Korb, Peter Marwedel

Technical Report. Performance Analysis for Parallel R Programs: Towards Efficient Resource Utilization. Helena Kotthaus, Ingo Korb, Peter Marwedel Performance Analysis for Parallel R Programs: Towards Efficient Resource Utilization Technical Report Helena Kotthaus, Ingo Korb, Peter Marwedel 01/2015 technische universität dortmund Part of the work

More information

CS 4100 // artificial intelligence

CS 4100 // artificial intelligence CS 4100 // artificial intelligence instructor: byron wallace Constraint Satisfaction Problems Attribution: many of these slides are modified versions of those distributed with the UC Berkeley CS188 materials

More information

Just the Facts Small-Sliding Contact in ANSYS Mechanical

Just the Facts Small-Sliding Contact in ANSYS Mechanical Just the Facts Small-Sliding Contact in ANSYS Mechanical ANSYS, Inc. 2600 ANSYS Drive Canonsburg, PA 15317 29 March 2018 Although this document provides information that customers may find useful, it is

More information

Variable Selection 6.783, Biomedical Decision Support

Variable Selection 6.783, Biomedical Decision Support 6.783, Biomedical Decision Support (lrosasco@mit.edu) Department of Brain and Cognitive Science- MIT November 2, 2009 About this class Why selecting variables Approaches to variable selection Sparsity-based

More information

Monte Carlo Methods; Combinatorial Search

Monte Carlo Methods; Combinatorial Search Monte Carlo Methods; Combinatorial Search Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico November 22, 2012 CPD (DEI / IST) Parallel and

More information

Model validation T , , Heli Hiisilä

Model validation T , , Heli Hiisilä Model validation T-61.6040, 03.10.2006, Heli Hiisilä Testing Neural Models: How to Use Re-Sampling Techniques? A. Lendasse & Fast bootstrap methodology for model selection, A. Lendasse, G. Simon, V. Wertz,

More information

Reliability of Computational Experiments on Virtualised Hardware

Reliability of Computational Experiments on Virtualised Hardware Reliability of Computational Experiments on Virtualised Hardware Ian P. Gent and Lars Kotthoff {ipg,larsko}@cs.st-andrews.ac.uk University of St Andrews arxiv:1110.6288v1 [cs.dc] 28 Oct 2011 Abstract.

More information

Cross-validation for detecting and preventing overfitting

Cross-validation for detecting and preventing overfitting Cross-validation for detecting and preventing overfitting Note to other teachers and users of these slides. Andrew would be delighted if ou found this source material useful in giving our own lectures.

More information

ARTIFICIAL INTELLIGENCE. Informed search

ARTIFICIAL INTELLIGENCE. Informed search INFOB2KI 2017-2018 Utrecht University The Netherlands ARTIFICIAL INTELLIGENCE Informed search Lecturer: Silja Renooij These slides are part of the INFOB2KI Course Notes available from www.cs.uu.nl/docs/vakken/b2ki/schema.html

More information

Automatic Algorithm Configuration based on Local Search

Automatic Algorithm Configuration based on Local Search Automatic Algorithm Configuration based on Local Search Frank Hutter 1 Holger Hoos 1 Thomas Stützle 2 1 Department of Computer Science University of British Columbia Canada 2 IRIDIA Université Libre de

More information

Passing Out Review Forms

Passing Out Review Forms Type Checking #1 Passing Out Review Forms #2 One-Slide Summary A type environment gives types for free variables. You typecheck a let-body with an environment that has been updated to contain the new let-variable.

More information

Experienced Optimization with Reusable Directional Model for Hyper-Parameter Search

Experienced Optimization with Reusable Directional Model for Hyper-Parameter Search Experienced Optimization with Reusable Directional Model for Hyper-Parameter Search Yi-Qi Hu and Yang Yu and Zhi-Hua Zhou National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing

More information

Parallel Code Optimisation

Parallel Code Optimisation April 8, 2008 Terms and terminology Identifying bottlenecks Optimising communications Optimising IO Optimising the core code Theoretical perfomance The theoretical floating point performance of a processor

More information

AlphaD3M: Machine Learning Pipeline Synthesis

AlphaD3M: Machine Learning Pipeline Synthesis ICML 2018 AutoML Workshop AlphaD3M: Machine Learning Pipeline Synthesis Iddo Drori idrori@nyu.edu Yamuna Krishnamurthy yamuna@nyu.edu Remi Rampin remi.rampin@nyu.edu Raoni de Paula Lourenco raoni@nyu.edu

More information

Chapter 8 The C 4.5*stat algorithm

Chapter 8 The C 4.5*stat algorithm 109 The C 4.5*stat algorithm This chapter explains a new algorithm namely C 4.5*stat for numeric data sets. It is a variant of the C 4.5 algorithm and it uses variance instead of information gain for the

More information

Tuning Differential Evolution for Cheap, Medium, and Expensive Computational Budgets

Tuning Differential Evolution for Cheap, Medium, and Expensive Computational Budgets Tuning Differential Evolution for Cheap, Medium, and Expensive Computational Budgets Ryoji Tanabe and Alex Fukunaga Graduate School of Arts and Sciences The University of Tokyo Abstract This paper presents

More information

High-End Computing Systems

High-End Computing Systems High-End Computing Systems EE380 State-of-the-Art Lecture Hank Dietz Professor & Hardymon Chair in Networking Electrical & Computer Engineering Dept. University of Kentucky Lexington, KY 40506-0046 http://aggregate.org/hankd/

More information

Handling Place References in Text

Handling Place References in Text Handling Place References in Text Introduction Most (geographic) information is available in the form of textual documents Place reference resolution involves two-subtasks: Recognition : Delimiting occurrences

More information

Lagrangian Relaxation: An overview

Lagrangian Relaxation: An overview Discrete Math for Bioinformatics WS 11/12:, by A. Bockmayr/K. Reinert, 22. Januar 2013, 13:27 4001 Lagrangian Relaxation: An overview Sources for this lecture: D. Bertsimas and J. Tsitsiklis: Introduction

More information

Generic Object-Face detection

Generic Object-Face detection Generic Object-Face detection Jana Kosecka Many slides adapted from P. Viola, K. Grauman, S. Lazebnik and many others Today Window-based generic object detection basic pipeline boosting classifiers face

More information