Informed search algorithms. Section 3.5 Russell & Norvig

Size: px
Start display at page:

Download "Informed search algorithms. Section 3.5 Russell & Norvig"

Transcription

1 Informed search algorithms Section 3.5 Russell & Norvig

2 Outline Review Informed search Greedy search 2nd Term 2011 Informed Search - Lecture 1 2

3 Goals of this part of the Course Primary: Show how search permeates much of AI problem-solving puzzles & games scheduling problems planning Formulate search problems Create heuristics using abstraction Reduce search needed to solve problems 2nd Term 2011 Informed Search - Lecture 1 3

4 The Importance of Research in Search Search: core AI problem-solving approach. However, search is intractable. Improvements to search algorithms affect many other areas of AI. 2nd Term 2011 Informed Search - Lecture 1 4

5 Ubiquity of Search Solving puzzles Planning Playing games Machine Learning Pattern matching Satisfying constraints Vision processing Almost all problem-solving 2nd Term 2011 Informed Search - Lecture 1 5

6 State Space Search Search is done through space of states. Edges connect states and have associated costs and direction. Problem is specified by an initial state and a goal test. Solution: path from initial state to a state that satisfies the goal test. Solution cost = sum of edge costs along solution path. 2nd Term 2011 Informed Search - Lecture 1 6

7 Formal Definition of solution to problem /* solution(+problem,?solution) A seq of states is a solution to a problem iff The first state in the seq is the init state of the problem, The last state in the seq satisfies the goal test, & each state in the seq is a neighbor of its preceding state */ solution(problem(state, Goal), [State]) :- call(goal, State). %% executes Goal(State) solution(problem(state, Goal), [State RestOfSolution]) :- neighbor(state, Neighbor), solution(problem(neighbor, Goal), RestOfSolution). The above definition is a valid prolog program which can both check whether a given list of states is a solution to a given problem or if just given the problem will generate a solution to it. Need to define domain (neighbor/1) and your goal predicate Goal/1. 2nd Term 2011 Informed Search - Lecture 1 7

8 Example Domain Definition: neighbor(losangeles, sanfrancisco). neighbor(losangeles, sandiego). neighbor(sanfrancisco, portland). neighbor(sanfrancisco, lasvegas). neighbor(portland, seattle). Goal Definition: reachedhome(seattle).?- solution(problem(losangeles, reachedhome), Solution). Solution = [losangeles,sanfrancisco,portland,seattle]? 2nd Term 2011 Informed Search - Lecture 1 8

9 Run through example do example in emacs under SICStus 2nd Term 2011 Informed Search - Lecture 1 9

10 Search Space 2nd Term 2011 Informed Search - Lecture 1 10

11 What happens if clauses in different order 2nd Term 2011 Informed Search - Lecture 1 11

12 Tree Search Keeps record of current path and choice points along path (to visit if current path abandoned). [Can check for duplicate states along current path, avoid loops.] No global duplicate state checking. When goal state is found, solution is simply current path. 2nd Term 2011 Informed Search - Lecture 1 12

13 Naive solution implementation Prolog has its own search procedure for executing a program: depth-first search. Our naive solution s search strategy is Prolog s and has all the advantages & disadvantages of depth-first search. 2nd Term 2011 Informed Search - Lecture 1 13

14 Status of Tree Search Advantages: Only needs to store current path Linear memory costs Can use simpler logic (lower costs per node) Disadvantages Non-optimal solution Repeats search for duplicate states Incomplete (for infinite graphs) 2nd Term 2011 Informed Search - Lecture 1 14

15 Graph Search Primarily, does a type of breadth-first search. Does global check for duplicate states. Keeps whole search graph in memory. When goal state is found, solution needs to be extracted from search graph. 2nd Term 2011 Informed Search - Lecture 1 15

16 Graph search Notes: 1. Fringe is the set of leaf nodes 2. Remove-Front is the search strategy 3.Avoid redundant searches for duplicate states 2nd Term 2011 Informed Search - Lecture 1 16

17 Graph version of solution /* solution(+problem, -Solution) */ solution(problem(initialstate, Goal), Solution) :- solution(goal, [node(initialstate, nil)], [ ], Solution). /* solution(+goal, +Fringe, +Closed, -Solution) */ solution(goal, [node(state, ParentState) _], Closed, Solution) :- call(goal, State), extractsolution(parentstate, Closed, [State], Solution). solution(goal, [node(state, Parent) RestNodes], Closed, Solution) :- findall(neighbornode, newneighbornode(state, Closed, NeighborNode), NeighboringNodes), updateclosed(state, Closed, NewClosed), orderfringe(restnodes, NeighboringNodes, NewFringe), solution(goal, NewFringe, [node(state, Parent) NewClosed], Solution).d 2nd Term 2011 Informed Search - Lecture 1 17

18 Status of Graph Search Possible Advantages: Complete Optimal Only searches subspaces once These advantages depend upon strategy Disadvantages: Exponential memory costs More complex logic 2nd Term 2011 Informed Search - Lecture 1 18

19 Outline Review Best-first search Greedy search 2nd Term 2011 Informed Search - Lecture 1 19

20 Search strategies A search strategy is defined by picking the order of node expansion Let g(n) be the distance n s state is from the initial state. Depth-first search strategy is pick node with highest g-value. Breadth-first search strategy is pick node with lowest g-value. 2nd Term 2011 Informed Search - Lecture 1 20

21 Best-first search strategy Given a set of nodes on the fringe of a search, which one is best to expand next? Based on what criteria? Criteria: expand best nodes first, i.e., those along an optimal solution path How do we do that? Use additional information to suggest such nodes. 2nd Term 2011 Informed Search - Lecture 1 21

22 Informed Search Strategies Informed Search Strategies use information beyond the problem desc. We will only look at functions that guess distance from a state to nearest goal state. h(n) is the function that guesses how far n s state is from its nearest goal state. 2nd Term 2011 Informed Search - Lecture 1 22

23 Romania with step costs in km 2nd Term 2011 Informed Search - Lecture 1 23

24 Best-first search Idea: use a function f(n) for each node f(n) is an estimate of "desirability of a node Expand most desirable unexpanded node Implementation: Order the nodes in fringe in decreasing order of desirability (normally, higher f is then less desirable) Uninformed Search: Depth-first: f(n) = -g(n) Breadth-first: f(n) = g(n) 2nd Term 2011 Informed Search - Lecture 1 24

25 Best-first informed search strategies Greedy Search A* Search Iterative Deepening A* (IDA*) Weighted A* Search 2nd Term 2011 Informed Search - Lecture 1 25

26 Outline Review Best-first search Greedy search 2nd Term 2011 Informed Search - Lecture 1 26

27 Greedy search Evaluation function: f(n) = h(n) h(n) = estimate of cost from n to goal e.g., h SLD (n) = straight-line distance from n to Bucharest Greedy search expands the node that appears to be closest to goal 2nd Term 2011 Informed Search - Lecture 1 27

28 Greedy best-first search example 2nd Term 2011 Informed Search - Lecture 1 28

29 Greedy best-first search example 2nd Term 2011 Informed Search - Lecture 1 29

30 Greedy best-first search example 2nd Term 2011 Informed Search - Lecture 1 30

31 Greedy best-first search example 2nd Term 2011 Informed Search - Lecture 1 31

32 Why greedy search is attractive With a decent enough heuristic, goes almost directly to goal. Best case: time and space are linear So, why not always do greedy search? 2nd Term 2011 Informed Search - Lecture 1 32

33 Properties of greedy best-first search Complete? No, has same problem with infinite graphs as depth-first search Time? O(b m ), but a good heuristic can give dramatic improvement Space? O(b m ) -- keeps all nodes in memory Optimal? No 2nd Term 2011 Informed Search - Lecture 1 33

34 Greedy Search in Prolog /* solution(+heuristic, +Goal, +Fringe, +Closed, -Solution) */ solution(_heuristic, Goal, [Node _], Closed, Solution) :- node(node, State, ParentState, _FValue), test(goal, State), extractsolution(parentstate, Closed, [State], Solution). solution(heuristic, Goal, [Node RestNodes], Closed, Solution) :- nodestate(node, State), findall(neighbornode, newneighbornode(state, Heuristic, [Node Closed], NeighborNode), NeighboringNodes), orderfringe(restnodes, NeighboringNodes, NewFringe), solution(heuristic, Goal, NewFringe, [Node Closed], Solution). 2nd Term 2011 Informed Search - Lecture 1 34

35 Summary Search strategy defines a traversal of the search space, e.g., pick lowest f(n). Informed search strategies use information outside of problem description. One such type of information is estimated distance to nearest goal: h(n). Greedy search: f(n) = h(n). 2nd Term 2011 Informed Search - Lecture 1 35

36 Challenge Can you create state space representation for following domains: scheduling taxi service in Auckland playing chess getting a degree at UofA enjoying your life You need to represent states of the world, actions that change states, problems, and solutions. 2nd Term 2011 Informed Search - Lecture 1 36

37 Next Time Look at: A* search IDA* Heuristics 2nd Term 2011 Informed Search - Lecture 1 37

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Informed Search and Exploration Chapter 4 (4.1 4.2) A General Search algorithm: Chapter 3: Search Strategies Task : Find a sequence of actions leading from the initial state to

More information

Problem Solving and Search

Problem Solving and Search Artificial Intelligence Problem Solving and Search Dae-Won Kim School of Computer Science & Engineering Chung-Ang University Outline Problem-solving agents Problem types Problem formulation Example problems

More information

Informed Search and Exploration for Agents

Informed Search and Exploration for Agents Informed Search and Exploration for Agents R&N: 3.5, 3.6 Michael Rovatsos University of Edinburgh 29 th January 2015 Outline Best-first search Greedy best-first search A * search Heuristics Admissibility

More information

HW#1 due today. HW#2 due Monday, 9/09/13, in class Continue reading Chapter 3

HW#1 due today. HW#2 due Monday, 9/09/13, in class Continue reading Chapter 3 9-04-2013 Uninformed (blind) search algorithms Breadth-First Search (BFS) Uniform-Cost Search Depth-First Search (DFS) Depth-Limited Search Iterative Deepening Best-First Search HW#1 due today HW#2 due

More information

Informed/Heuristic Search

Informed/Heuristic Search Informed/Heuristic Search Outline Limitations of uninformed search methods Informed (or heuristic) search uses problem-specific heuristics to improve efficiency Best-first A* Techniques for generating

More information

A.I.: Informed Search Algorithms. Chapter III: Part Deux

A.I.: Informed Search Algorithms. Chapter III: Part Deux A.I.: Informed Search Algorithms Chapter III: Part Deux Best-first search Greedy best-first search A * search Heuristics Outline Overview Informed Search: uses problem-specific knowledge. General approach:

More information

Outline. Best-first search

Outline. Best-first search Outline Best-first search Greedy best-first search A* search Heuristics Admissible Heuristics Graph Search Consistent Heuristics Local search algorithms Hill-climbing search Beam search Simulated annealing

More information

Outline. Best-first search

Outline. Best-first search Outline Best-first search Greedy best-first search A* search Heuristics Local search algorithms Hill-climbing search Beam search Simulated annealing search Genetic algorithms Constraint Satisfaction Problems

More information

Lecture 4: Search 3. Victor R. Lesser. CMPSCI 683 Fall 2010

Lecture 4: Search 3. Victor R. Lesser. CMPSCI 683 Fall 2010 Lecture 4: Search 3 Victor R. Lesser CMPSCI 683 Fall 2010 First Homework 1 st Programming Assignment 2 separate parts (homeworks) First part due on (9/27) at 5pm Second part due on 10/13 at 5pm Send homework

More information

Informed search algorithms. (Based on slides by Oren Etzioni, Stuart Russell)

Informed search algorithms. (Based on slides by Oren Etzioni, Stuart Russell) Informed search algorithms (Based on slides by Oren Etzioni, Stuart Russell) Outline Greedy best-first search A * search Heuristics Local search algorithms Hill-climbing search Simulated annealing search

More information

Informed search algorithms. Chapter 3 (Based on Slides by Stuart Russell, Dan Klein, Richard Korf, Subbarao Kambhampati, and UW-AI faculty)

Informed search algorithms. Chapter 3 (Based on Slides by Stuart Russell, Dan Klein, Richard Korf, Subbarao Kambhampati, and UW-AI faculty) Informed search algorithms Chapter 3 (Based on Slides by Stuart Russell, Dan Klein, Richard Korf, Subbarao Kambhampati, and UW-AI faculty) Intuition, like the rays of the sun, acts only in an inflexibly

More information

ARTIFICIAL INTELLIGENCE (CSC9YE ) LECTURES 2 AND 3: PROBLEM SOLVING

ARTIFICIAL INTELLIGENCE (CSC9YE ) LECTURES 2 AND 3: PROBLEM SOLVING ARTIFICIAL INTELLIGENCE (CSC9YE ) LECTURES 2 AND 3: PROBLEM SOLVING BY SEARCH Gabriela Ochoa http://www.cs.stir.ac.uk/~goc/ OUTLINE Problem solving by searching Problem formulation Example problems Search

More information

Informed Search. CS 486/686 University of Waterloo May 10. cs486/686 Lecture Slides 2005 (c) K. Larson and P. Poupart

Informed Search. CS 486/686 University of Waterloo May 10. cs486/686 Lecture Slides 2005 (c) K. Larson and P. Poupart Informed Search CS 486/686 University of Waterloo May 0 Outline Using knowledge Heuristics Best-first search Greedy best-first search A* search Other variations of A* Back to heuristics 2 Recall from last

More information

Solving problems by searching

Solving problems by searching Solving problems by searching Chapter 3 Some slide credits to Hwee Tou Ng (Singapore) Outline Problem-solving agents Problem types Problem formulation Example problems Basic search algorithms Heuristics

More information

CSE 473. Chapter 4 Informed Search. CSE AI Faculty. Last Time. Blind Search BFS UC-BFS DFS DLS Iterative Deepening Bidirectional Search

CSE 473. Chapter 4 Informed Search. CSE AI Faculty. Last Time. Blind Search BFS UC-BFS DFS DLS Iterative Deepening Bidirectional Search CSE 473 Chapter 4 Informed Search CSE AI Faculty Blind Search BFS UC-BFS DFS DLS Iterative Deepening Bidirectional Search Last Time 2 1 Repeated States Failure to detect repeated states can turn a linear

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Search Marc Toussaint University of Stuttgart Winter 2015/16 (slides based on Stuart Russell s AI course) Outline Problem formulation & examples Basic search algorithms 2/100 Example:

More information

Informed search algorithms

Informed search algorithms Artificial Intelligence Topic 4 Informed search algorithms Best-first search Greedy search A search Admissible heuristics Memory-bounded search IDA SMA Reading: Russell and Norvig, Chapter 4, Sections

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence CSC348 Unit 3: Problem Solving and Search Syedur Rahman Lecturer, CSE Department North South University syedur.rahman@wolfson.oxon.org Artificial Intelligence: Lecture Notes The

More information

Informed search algorithms. Chapter 4

Informed search algorithms. Chapter 4 Informed search algorithms Chapter 4 Material Chapter 4 Section 1 - Exclude memory-bounded heuristic search 3 Outline Best-first search Greedy best-first search A * search Heuristics Local search algorithms

More information

Informed search algorithms. Chapter 4, Sections 1 2 1

Informed search algorithms. Chapter 4, Sections 1 2 1 Informed search algorithms Chapter 4, Sections 1 2 Chapter 4, Sections 1 2 1 Outline Best-first search A search Heuristics Chapter 4, Sections 1 2 2 Review: Tree search function Tree-Search( problem, fringe)

More information

Today s s lecture. Lecture 3: Search - 2. Problem Solving by Search. Agent vs. Conventional AI View. Victor R. Lesser. CMPSCI 683 Fall 2004

Today s s lecture. Lecture 3: Search - 2. Problem Solving by Search. Agent vs. Conventional AI View. Victor R. Lesser. CMPSCI 683 Fall 2004 Today s s lecture Search and Agents Material at the end of last lecture Lecture 3: Search - 2 Victor R. Lesser CMPSCI 683 Fall 2004 Continuation of Simple Search The use of background knowledge to accelerate

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Dr Ahmed Rafat Abas Computer Science Dept, Faculty of Computers and Informatics, Zagazig University arabas@zu.edu.eg http://www.arsaliem.faculty.zu.edu.eg/ Informed search algorithms

More information

Outline. Informed search algorithms. Best-first search. Review: Tree search. A search Heuristics. Chapter 4, Sections 1 2 4

Outline. Informed search algorithms. Best-first search. Review: Tree search. A search Heuristics. Chapter 4, Sections 1 2 4 Outline Best-first search Informed search algorithms A search Heuristics Chapter 4, Sections 1 2 Chapter 4, Sections 1 2 1 Chapter 4, Sections 1 2 2 Review: Tree search function Tree-Search( problem, fringe)

More information

Informed (Heuristic) Search. Idea: be smart about what paths to try.

Informed (Heuristic) Search. Idea: be smart about what paths to try. Informed (Heuristic) Search Idea: be smart about what paths to try. 1 Blind Search vs. Informed Search What s the difference? How do we formally specify this? A node is selected for expansion based on

More information

CS 4700: Foundations of Artificial Intelligence. Bart Selman. Search Techniques R&N: Chapter 3

CS 4700: Foundations of Artificial Intelligence. Bart Selman. Search Techniques R&N: Chapter 3 CS 4700: Foundations of Artificial Intelligence Bart Selman Search Techniques R&N: Chapter 3 Outline Search: tree search and graph search Uninformed search: very briefly (covered before in other prerequisite

More information

Informed Search. CS 486/686: Introduction to Artificial Intelligence Fall 2013

Informed Search. CS 486/686: Introduction to Artificial Intelligence Fall 2013 Informed Search CS 486/686: Introduction to Artificial Intelligence Fall 2013 1 Outline Using knowledge Heuristics Bestfirst search Greedy bestfirst search A* search Variations of A* Back to heuristics

More information

Solving Problems by Searching

Solving Problems by Searching INF5390 Kunstig intelligens Sony Vaio VPC-Z12 Solving Problems by Searching Roar Fjellheim Outline Problem-solving agents Example problems Search programs Uninformed search Informed search Summary AIMA

More information

Solving Problems by Searching

Solving Problems by Searching INF5390 Kunstig intelligens Solving Problems by Searching Roar Fjellheim Outline Problem-solving agents Example problems Search programs Uninformed search Informed search Summary AIMA Chapter 3: Solving

More information

Informed Search Methods

Informed Search Methods Informed Search Methods How can we improve searching strategy by using intelligence? Map example: Heuristic: Expand those nodes closest in as the crow flies distance to goal 8-puzzle: Heuristic: Expand

More information

CS:4420 Artificial Intelligence

CS:4420 Artificial Intelligence CS:4420 Artificial Intelligence Spring 2018 Informed Search Cesare Tinelli The University of Iowa Copyright 2004 18, Cesare Tinelli and Stuart Russell a a These notes were originally developed by Stuart

More information

Problem solving and search

Problem solving and search Problem solving and search Chapter 3 Chapter 3 1 Outline Problem-solving agents Problem types Problem formulation Example problems Uninformed search algorithms Informed search algorithms Chapter 3 2 Restricted

More information

Artificial Intelligence: Search Part 2: Heuristic search

Artificial Intelligence: Search Part 2: Heuristic search Artificial Intelligence: Search Part 2: Heuristic search Thomas Trappenberg January 16, 2009 Based on the slides provided by Russell and Norvig, Chapter 4, Section 1 2,(4) Outline Best-first search A search

More information

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 4, 4/11/2005 University of Washington, Department of Electrical Engineering Spring 2005 Instructor: Professor Jeff A. Bilmes Today: Informed search algorithms

More information

DFS. Depth-limited Search

DFS. Depth-limited Search DFS Completeness? No, fails in infinite depth spaces or spaces with loops Yes, assuming state space finite. Time complexity? O(b m ), terrible if m is much bigger than d. can do well if lots of goals Space

More information

Chapter 3: Informed Search and Exploration. Dr. Daisy Tang

Chapter 3: Informed Search and Exploration. Dr. Daisy Tang Chapter 3: Informed Search and Exploration Dr. Daisy Tang Informed Search Definition: Use problem-specific knowledge beyond the definition of the problem itself Can find solutions more efficiently Best-first

More information

3 SOLVING PROBLEMS BY SEARCHING

3 SOLVING PROBLEMS BY SEARCHING 48 3 SOLVING PROBLEMS BY SEARCHING A goal-based agent aims at solving problems by performing actions that lead to desirable states Let us first consider the uninformed situation in which the agent is not

More information

CS 380: Artificial Intelligence Lecture #4

CS 380: Artificial Intelligence Lecture #4 CS 380: Artificial Intelligence Lecture #4 William Regli Material Chapter 4 Section 1-3 1 Outline Best-first search Greedy best-first search A * search Heuristics Local search algorithms Hill-climbing

More information

Outline for today s lecture. Informed Search I. One issue: How to search backwards? Very briefly: Bidirectional search. Outline for today s lecture

Outline for today s lecture. Informed Search I. One issue: How to search backwards? Very briefly: Bidirectional search. Outline for today s lecture Outline for today s lecture Informed Search I Uninformed Search Briefly: Bidirectional Search (AIMA 3.4.6) Uniform Cost Search (UCS) Informed Search Introduction to Informed search Heuristics 1 st attempt:

More information

Informed search algorithms

Informed search algorithms Informed search algorithms Chapter 4, Sections 1 2 Chapter 4, Sections 1 2 1 Outline Best-first search A search Heuristics Chapter 4, Sections 1 2 2 Review: Tree search function Tree-Search( problem, fringe)

More information

Lecture 2: Fun with Search. Rachel Greenstadt CS 510, October 5, 2017

Lecture 2: Fun with Search. Rachel Greenstadt CS 510, October 5, 2017 Lecture 2: Fun with Search Rachel Greenstadt CS 510, October 5, 2017 Reminder! Project pre-proposals due tonight Overview Uninformed search BFS, DFS, Uniform-Cost, Graph-Search Informed search Heuristics,

More information

ARTIFICIAL INTELLIGENCE. Informed search

ARTIFICIAL INTELLIGENCE. Informed search INFOB2KI 2017-2018 Utrecht University The Netherlands ARTIFICIAL INTELLIGENCE Informed search Lecturer: Silja Renooij These slides are part of the INFOB2KI Course Notes available from www.cs.uu.nl/docs/vakken/b2ki/schema.html

More information

mywbut.com Informed Search Strategies-I

mywbut.com Informed Search Strategies-I Informed Search Strategies-I 1 3.1 Introduction We have outlined the different types of search strategies. In the earlier chapter we have looked at different blind search strategies. Uninformed search

More information

Informed Search. Best-first search. Greedy best-first search. Intelligent Systems and HCI D7023E. Romania with step costs in km

Informed Search. Best-first search. Greedy best-first search. Intelligent Systems and HCI D7023E. Romania with step costs in km Informed Search Intelligent Systems and HCI D7023E Lecture 5: Informed Search (heuristics) Paweł Pietrzak [Sec 3.5-3.6,Ch.4] A search strategy which searches the most promising branches of the state-space

More information

Informed search methods

Informed search methods Informed search methods Tuomas Sandholm Computer Science Department Carnegie Mellon University Read Section 3.5-3.7 of Russell and Norvig Informed Search Methods Heuristic = to find, to discover Heuristic

More information

Lecture 4: Informed/Heuristic Search

Lecture 4: Informed/Heuristic Search Lecture 4: Informed/Heuristic Search Outline Limitations of uninformed search methods Informed (or heuristic) search uses problem-specific heuristics to improve efficiency Best-first A* RBFS SMA* Techniques

More information

CSE 40171: Artificial Intelligence. Informed Search: A* Search

CSE 40171: Artificial Intelligence. Informed Search: A* Search CSE 40171: Artificial Intelligence Informed Search: A* Search 1 Homework #1 has been released. It is due at 11:59PM on 9/10. 2 Quick Recap: Search Quick Recap: Search Search problem: States (configurations

More information

Introduction to Artificial Intelligence. Informed Search

Introduction to Artificial Intelligence. Informed Search Introduction to Artificial Intelligence Informed Search Bernhard Beckert UNIVERSITÄT KOBLENZ-LANDAU Winter Term 2004/2005 B. Beckert: KI für IM p.1 Outline Best-first search A search Heuristics B. Beckert:

More information

Informed Search Algorithms

Informed Search Algorithms Informed Search Algorithms CITS3001 Algorithms, Agents and Artificial Intelligence Tim French School of Computer Science and Software Engineering The University of Western Australia 2017, Semester 2 Introduction

More information

PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE

PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE Artificial Intelligence, Computational Logic PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE Lecture 3 Informed Search Sarah Gaggl Dresden, 22th April 2014 Agenda 1 Introduction 2 Uninformed Search

More information

Artificial Intelligence. Informed search methods

Artificial Intelligence. Informed search methods Artificial Intelligence Informed search methods In which we see how information about the state space can prevent algorithms from blundering about in the dark. 2 Uninformed vs. Informed Search Uninformed

More information

AI: Week 2. Tom Henderson. Fall 2014 CS 5300

AI: Week 2. Tom Henderson. Fall 2014 CS 5300 AI: Week 2 Tom Henderson Fall 2014 What s a Problem? Initial state Actions Transition model Goal Test Path Cost Does this apply to: Problem: Get A in CS5300 Solution: action sequence from initial to goal

More information

Informed search. Soleymani. CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2016

Informed search. Soleymani. CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2016 Informed search CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2016 Soleymani Artificial Intelligence: A Modern Approach, Chapter 3 Outline Best-first search Greedy

More information

Multiagent Systems Problem Solving and Uninformed Search

Multiagent Systems Problem Solving and Uninformed Search Multiagent Systems Problem Solving and Uninformed Search Viviana Mascardi viviana.mascardi@unige.it MAS, University of Genoa, DIBRIS Classical AI 1 / 36 Disclaimer This presentation may contain material

More information

Mustafa Jarrar: Lecture Notes on Artificial Intelligence Birzeit University, Chapter 3 Informed Searching. Mustafa Jarrar. University of Birzeit

Mustafa Jarrar: Lecture Notes on Artificial Intelligence Birzeit University, Chapter 3 Informed Searching. Mustafa Jarrar. University of Birzeit Mustafa Jarrar: Lecture Notes on Artificial Intelligence Birzeit University, 2018 Chapter 3 Informed Searching Mustafa Jarrar University of Birzeit Jarrar 2018 1 Watch this lecture and download the slides

More information

COMP9414/ 9814/ 3411: Artificial Intelligence. 5. Informed Search. Russell & Norvig, Chapter 3. UNSW c Alan Blair,

COMP9414/ 9814/ 3411: Artificial Intelligence. 5. Informed Search. Russell & Norvig, Chapter 3. UNSW c Alan Blair, COMP9414/ 9814/ 3411: Artificial Intelligence 5. Informed Search Russell & Norvig, Chapter 3. COMP9414/9814/3411 15s1 Informed Search 1 Search Strategies General Search algorithm: add initial state to

More information

Informed Search and Exploration

Informed Search and Exploration Ch. 03 p.1/47 Informed Search and Exploration Sections 3.5 and 3.6 Ch. 03 p.2/47 Outline Best-first search A search Heuristics, pattern databases IDA search (Recursive Best-First Search (RBFS), MA and

More information

Artificial Intelligence Problem Solving and Uninformed Search

Artificial Intelligence Problem Solving and Uninformed Search Artificial Intelligence Problem Solving and Uninformed Search Maurizio Martelli, Viviana Mascardi {martelli, mascardi}@disi.unige.it University of Genoa Department of Computer and Information Science AI,

More information

Informed search strategies (Section ) Source: Fotolia

Informed search strategies (Section ) Source: Fotolia Informed search strategies (Section 3.5-3.6) Source: Fotolia Review: Tree search Initialize the frontier using the starting state While the frontier is not empty Choose a frontier node to expand according

More information

4 INFORMED SEARCH AND EXPLORATION. 4.1 Heuristic Search Strategies

4 INFORMED SEARCH AND EXPLORATION. 4.1 Heuristic Search Strategies 55 4 INFORMED SEARCH AND EXPLORATION We now consider informed search that uses problem-specific knowledge beyond the definition of the problem itself This information helps to find solutions more efficiently

More information

Outline. Solving problems by searching. Problem-solving agents. Example: Romania

Outline. Solving problems by searching. Problem-solving agents. Example: Romania Outline Solving problems by searching Chapter 3 Problem-solving agents Problem types Problem formulation Example problems Basic search algorithms Systems 1 Systems 2 Problem-solving agents Example: Romania

More information

Problem solving and search

Problem solving and search Problem solving and search Chapter 3 TB Artificial Intelligence Slides from AIMA http://aima.cs.berkeley.edu 1 /1 Outline Problem-solving agents Problem types Problem formulation Example problems Basic

More information

Last time: Problem-Solving

Last time: Problem-Solving Last time: Problem-Solving Problem solving: Goal formulation Problem formulation (states, operators) Search for solution Problem formulation: Initial state??? 1 Last time: Problem-Solving Problem types:

More information

Informed Search. Notes about the assignment. Outline. Tree search: Reminder. Heuristics. Best-first search. Russell and Norvig chap.

Informed Search. Notes about the assignment. Outline. Tree search: Reminder. Heuristics. Best-first search. Russell and Norvig chap. Notes about the assignment Informed Search Russell and Norvig chap. 4 If it says return True or False, return True or False, not "True" or "False Comment out or remove print statements before submitting.

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence hapter 1 hapter 1 1 Iterative deepening search function Iterative-Deepening-Search( problem) returns a solution inputs: problem, a problem for depth 0 to do result Depth-Limited-Search(

More information

CS 331: Artificial Intelligence Informed Search. Informed Search

CS 331: Artificial Intelligence Informed Search. Informed Search CS 331: Artificial Intelligence Informed Search 1 Informed Search How can we make search smarter? Use problem-specific knowledge beyond the definition of the problem itself Specifically, incorporate knowledge

More information

CS 331: Artificial Intelligence Informed Search. Informed Search

CS 331: Artificial Intelligence Informed Search. Informed Search CS 331: Artificial Intelligence Informed Search 1 Informed Search How can we make search smarter? Use problem-specific knowledge beyond the definition of the problem itself Specifically, incorporate knowledge

More information

CS 8520: Artificial Intelligence

CS 8520: Artificial Intelligence CS 8520: Artificial Intelligence Solving Problems by Searching Paula Matuszek Spring, 2013 Slides based on Hwee Tou Ng, aima.eecs.berkeley.edu/slides-ppt, which are in turn based on Russell, aima.eecs.berkeley.edu/slides-pdf.

More information

ITCS 6150 Intelligent Systems. Lecture 3 Uninformed Searches

ITCS 6150 Intelligent Systems. Lecture 3 Uninformed Searches ITCS 6150 Intelligent Systems Lecture 3 Uninformed Searches Outline Problem Solving Agents Restricted form of general agent Problem Types Fully vs. partially observable, deterministic vs. stochastic Problem

More information

CS 380: Artificial Intelligence Lecture #3

CS 380: Artificial Intelligence Lecture #3 CS 380: Artificial Intelligence Lecture #3 William Regli Outline Problem-solving agents Problem types Problem formulation Example problems Basic search algorithms 1 Problem-solving agents Example: Romania

More information

Solving problems by searching

Solving problems by searching Solving problems by searching Chapter 3 Systems 1 Outline Problem-solving agents Problem types Problem formulation Example problems Basic search algorithms Systems 2 Problem-solving agents Systems 3 Example:

More information

Problem Solving & Heuristic Search

Problem Solving & Heuristic Search 190.08 Artificial 2016-Spring Problem Solving & Heuristic Search Byoung-Tak Zhang School of Computer Science and Engineering Seoul National University 190.08 Artificial (2016-Spring) http://www.cs.duke.edu/courses/fall08/cps270/

More information

ARTIFICIAL INTELLIGENCE LECTURE 3. Ph. D. Lect. Horia Popa Andreescu rd year, semester 5

ARTIFICIAL INTELLIGENCE LECTURE 3. Ph. D. Lect. Horia Popa Andreescu rd year, semester 5 ARTIFICIAL INTELLIGENCE LECTURE 3 Ph. D. Lect. Horia Popa Andreescu 2012-2013 3 rd year, semester 5 The slides for this lecture are based (partially) on chapter 4 of the Stuart Russel Lecture Notes [R,

More information

Informed Search and Exploration

Informed Search and Exploration Informed Search and Exploration Chapter 4 (4.1-4.3) CS 2710 1 Introduction Ch.3 searches good building blocks for learning about search But vastly inefficient eg: Can we do better? Breadth Depth Uniform

More information

Dr. Mustafa Jarrar. Chapter 4 Informed Searching. Artificial Intelligence. Sina Institute, University of Birzeit

Dr. Mustafa Jarrar. Chapter 4 Informed Searching. Artificial Intelligence. Sina Institute, University of Birzeit Lecture Notes on Informed Searching University of Birzeit, Palestine 1 st Semester, 2014 Artificial Intelligence Chapter 4 Informed Searching Dr. Mustafa Jarrar Sina Institute, University of Birzeit mjarrar@birzeit.edu

More information

Informed search methods

Informed search methods CS 2710 Foundations of AI Lecture 5 Informed search methods Milos Hauskrecht milos@pitt.edu 5329 Sennott Square Announcements Homework assignment 2 is out Due on Tuesday, September 19, 2017 before the

More information

Robot Programming with Lisp

Robot Programming with Lisp 6. Search Algorithms Gayane Kazhoyan (Stuart Russell, Peter Norvig) Institute for University of Bremen Contents Problem Definition Uninformed search strategies BFS Uniform-Cost DFS Depth-Limited Iterative

More information

Artificial Intelligence CS 6364

Artificial Intelligence CS 6364 Artificial Intelligence CS 6364 Professor Dan Moldovan Section 4 Informed Search and Adversarial Search Outline Best-first search Greedy best-first search A* search Heuristics revisited Minimax search

More information

Informed Search and Exploration

Informed Search and Exploration Ch. 03b p.1/51 Informed Search and Exploration Sections 3.5 and 3.6 Nilufer Onder Department of Computer Science Michigan Technological University Ch. 03b p.2/51 Outline Best-first search A search Heuristics,

More information

DIT411/TIN175, Artificial Intelligence. Peter Ljunglöf. 19 January, 2018

DIT411/TIN175, Artificial Intelligence. Peter Ljunglöf. 19 January, 2018 DIT411/TIN175, Artificial Intelligence Chapter 3: Classical search algorithms CHAPTER 3: CLASSICAL SEARCH ALGORITHMS DIT411/TIN175, Artificial Intelligence Peter Ljunglöf 19 January, 2018 1 DEADLINE FOR

More information

S A E RC R H C I H NG N G IN N S T S A T T A E E G R G A R PH P S

S A E RC R H C I H NG N G IN N S T S A T T A E E G R G A R PH P S LECTURE 2 SEARCHING IN STATE GRAPHS Introduction Idea: Problem Solving as Search Basic formalism as State-Space Graph Graph explored by Tree Search Different algorithms to explore the graph Slides mainly

More information

Solving problems by searching

Solving problems by searching Solving problems by searching 1 C H A P T E R 3 Problem-solving agents Problem types Problem formulation Example problems Basic search algorithms Outline 2 Problem-solving agents 3 Note: this is offline

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Lesson 1 1 About Lecturer: Prof. Sarit Kraus TA: Galit Haim: haimga@cs.biu.ac.il (almost) All you need can be found on the course website: http://u.cs.biu.ac.il/~haimga/teaching/ai/

More information

Lecture 3 of 42. Lecture 3 of 42

Lecture 3 of 42. Lecture 3 of 42 Search Problems Discussion: Term Projects 3 of 5 William H. Hsu Department of Computing and Information Sciences, KSU KSOL course page: http://snipurl.com/v9v3 Course web site: http://www.kddresearch.org/courses/cis730

More information

Heuristic Search. CPSC 470/570 Artificial Intelligence Brian Scassellati

Heuristic Search. CPSC 470/570 Artificial Intelligence Brian Scassellati Heuristic Search CPSC 470/570 Artificial Intelligence Brian Scassellati Goal Formulation 200 Denver 300 200 200 Chicago 150 200 Boston 50 1200 210 75 320 255 Key West New York Well-defined function that

More information

Informed search algorithms. (Based on slides by Oren Etzioni, Stuart Russell)

Informed search algorithms. (Based on slides by Oren Etzioni, Stuart Russell) Informed search algorithms (Based on slides by Oren Etzioni, Stuart Russell) The problem # Unique board configurations in search space 8-puzzle 9! = 362880 15-puzzle 16! = 20922789888000 10 13 24-puzzle

More information

Artificial Intelligence: Search Part 1: Uninformed graph search

Artificial Intelligence: Search Part 1: Uninformed graph search rtificial Intelligence: Search Part 1: Uninformed graph search Thomas Trappenberg January 8, 2009 ased on the slides provided by Russell and Norvig, hapter 3 Search outline Part 1: Uninformed search (tree

More information

CS 151: Intelligent Agents, Problem Formulation and Search

CS 151: Intelligent Agents, Problem Formulation and Search CS 151: Intelligent Agents, Problem Formulation and Search How do we make a computer "smart?" Computer, clean the house! Um OK?? This one's got no chance How do we represent this problem? Hmmm where to

More information

Informed Search Algorithms. Chapter 4

Informed Search Algorithms. Chapter 4 Informed Search Algorithms Chapter 4 Outline Informed Search and Heuristic Functions For informed search, we use problem-specific knowledge to guide the search. Topics: Best-first search A search Heuristics

More information

Problem Solving: Informed Search

Problem Solving: Informed Search Problem Solving: Informed Search References Russell and Norvig, Artificial Intelligence: A modern approach, 2nd ed. Prentice Hall, 2003 (Chapters 1,2, and 4) Nilsson, Artificial intelligence: A New synthesis.

More information

Part I. Instructor: Dr. Wei Ding. Uninformed Search Strategies can find solutions to problems by. Informed Search Strategies

Part I. Instructor: Dr. Wei Ding. Uninformed Search Strategies can find solutions to problems by. Informed Search Strategies Informed Search and Exploration Part I Instructor: Dr. Wei Ding Fall 2010 1 Motivation Uninformed Search Strategies can find solutions to problems by Systematically generating new states Testing them against

More information

COMP219: Artificial Intelligence. Lecture 10: Heuristic Search

COMP219: Artificial Intelligence. Lecture 10: Heuristic Search COMP219: Artificial Intelligence Lecture 10: Heuristic Search 1 Class Tests Class Test 1 (Prolog): Friday 17th November (Week 8), 15:00-17:00. Class Test 2 (Everything but Prolog) Friday 15th December

More information

Problem Solving and Search. Geraint A. Wiggins Professor of Computational Creativity Department of Computer Science Vrije Universiteit Brussel

Problem Solving and Search. Geraint A. Wiggins Professor of Computational Creativity Department of Computer Science Vrije Universiteit Brussel Problem Solving and Search Geraint A. Wiggins Professor of Computational Creativity Department of Computer Science Vrije Universiteit Brussel What is problem solving? An agent can act by establishing goals

More information

Artificial Intelligence

Artificial Intelligence COMP224 Artificial Intelligence The Meaning of earch in AI The terms search, search space, search problem, search algorithm are widely used in computer science and especially in AI. In this context the

More information

Artificial Intelligence Informed search. Peter Antal

Artificial Intelligence Informed search. Peter Antal Artificial Intelligence Informed search Peter Antal antal@mit.bme.hu 1 Informed = use problem-specific knowledge Which search strategies? Best-first search and its variants Heuristic functions? How to

More information

521495A: Artificial Intelligence

521495A: Artificial Intelligence 521495A: Artificial Intelligence Search Lectured by Abdenour Hadid Associate Professor, CMVS, University of Oulu Slides adopted from http://ai.berkeley.edu Agent An agent is an entity that perceives the

More information

Planning, Execution & Learning 1. Heuristic Search Planning

Planning, Execution & Learning 1. Heuristic Search Planning Planning, Execution & Learning 1. Heuristic Search Planning Reid Simmons Planning, Execution & Learning: Heuristic 1 Simmons, Veloso : Fall 2001 Basic Idea Heuristic Search Planning Automatically Analyze

More information

Heuristic Search. Rob Platt Northeastern University. Some images and slides are used from: AIMA

Heuristic Search. Rob Platt Northeastern University. Some images and slides are used from: AIMA Heuristic Search Rob Platt Northeastern University Some images and slides are used from: AIMA Recap: What is graph search? Start state Goal state Graph search: find a path from start to goal what are the

More information

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 3, 4/6/2005 University of Washington, Department of Electrical Engineering Spring 2005 Instructor: Professor Jeff A. Bilmes 4/6/2005 EE562 1 Today: Basic

More information

Outline for today s lecture. Informed Search. Informed Search II. Review: Properties of greedy best-first search. Review: Greedy best-first search:

Outline for today s lecture. Informed Search. Informed Search II. Review: Properties of greedy best-first search. Review: Greedy best-first search: Outline for today s lecture Informed Search II Informed Search Optimal informed search: A* (AIMA 3.5.2) Creating good heuristic functions Hill Climbing 2 Review: Greedy best-first search: f(n): estimated

More information

Solving Problem by Searching. Chapter 3

Solving Problem by Searching. Chapter 3 Solving Problem by Searching Chapter 3 Outline Problem-solving agents Problem formulation Example problems Basic search algorithms blind search Heuristic search strategies Heuristic functions Problem-solving

More information