Section 28. WDT and SLEEP Mode

Size: px
Start display at page:

Download "Section 28. WDT and SLEEP Mode"

Transcription

1 Section 28. WDT and SLEEP Mode HIGHLIGHTS This section of the manual contains the following major topics: Introduction Control Register Watchdog Timer (WDT) Operation SLEEP (Power-Down) Mode Initialization Design Tips Related Application Notes Revision History and Sleep Mode 2000 Microchip Technology Inc. DS39529A-page 28-1

2 PIC18C Reference Manual 28.1 Introduction The Watchdog Timer and SLEEP functions are two functions that can enhance the system. The Watchdog Timer may be used to return to operating mode, or to cause a controller RESET if the program begins to behave erratically. This enhances the overall operation of the system. The Watchdog Timer (WDT) is a free running on-chip RC oscillator that does not require any external components. The block diagram is shown in Figure This RC oscillator is separate from the device RC oscillator of the OSC1/CLKI pin. This means that the WDT will run, even if the clock on the OSC1/CLKI and OSC2/CLKO pins has been stopped, for example, by execution of a SLEEP instruction. The Watchdog Timer (WDT) is enabled/disabled by a device configuration bit. If the WDT is enabled, software execution may not disable this function. When the WDTEN configuration bit is cleared, the SWDTEN bit enables/disables the operation of the WDT. Figure 28-1: Watchdog Timer Block Diagram WDT Timer Postscaler to - 1 MUX WDTPS<2:0> WDTEN Configuration bit SWDTEN bit WDT Time-out Note: WDTPS2:WDTPS0 are bits in a configuration register. The SLEEP function halts controller activity and reduces current consumption to a minimum. The SLEEP mode is a reduced power state, where it is possible to halt almost all activity in the controller. In this mode, power consumption is very low, allowing for long term operation from battery powered applications. Normal operation may be resumed when any of several interrupts occur, the WDT times out, or a RESET occurs. DS39529A-page Microchip Technology Inc.

3 Section 28. Watchdog Timer and SLEEP Mode 28.2 Control Register Register 28-1 shows the WDTCON register. This is a readable and writable register that contains the SWDTEN control bit. If the WDT enable configuration bit has been cleared, this software controlled bit enables or disables the WDT. Register 28-1: WDTCON Register U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 SWDTEN bit 7 bit 0 bit 7:1 Unimplemented: Read as 0 bit 0 SWDTEN: Software Controlled Watchdog Timer Enable bit 1 = Watchdog Timer is on 0 = Watchdog Timer is turned off if the WDTEN configuration bit is 0 Legend R = Readable bit W = Writable bit U = Unimplemented bit, read as 0 - n = Value at POR reset 1 = bit is set 0 = bit is cleared x = bit is unknown 28 and Sleep Mode 2000 Microchip Technology Inc. DS39529A-page 28-3

4 PIC18C Reference Manual 28.3 Watchdog Timer (WDT) Operation WDT Period Clearing the WDT Counter WDT Considerations Effects of a RESET During normal operation, a WDT time-out generates a device RESET. If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation. This is known as a WDT wake-up. The WDT can be permanently enabled by setting the WDTEN configuration bit. If the WDT configuration bit disables the WDT, then software can be used to enable/disable the WDT through setting/clearing the SWDTEN bit. The WDT has a nominal time-out period of 18 ms with no postscaler (see the Electrical Specifications section, parameter 31). The time-out period varies with temperature, VDD and process variations from part to part (see DC parameters in the Electrical Specifications section). If longer time-outs are desired, a postscaler with a division ratio of up to 1:128 can be assigned to the WDT. Thus, time-out periods of up to 2.3 seconds can be realized. The postscaler assignment is specified at time of device programming through the device configuration bits. The CLRWDT and SLEEP instructions clear the WDT counter and the WDT postscaler which prevents it from timing out and generating a device RESET. When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared, but the prescaler assignment is not changed. The TO bit in the RCON register will be cleared upon a Watchdog Timer time-out (WDT Reset and WDT wake-up). The CLRWDT instruction will force the count value of the WDT counter to 0. When the WDT is disabled (WDTEN configuration bit = 0 and SWDTEN is clear), the WDT counter is forced to 0 and the internal WDT clock source is disabled. Then, when the WDT is enabled (setting the SWDTEN bit when previously cleared), the WDT counter starts from a value of 0. It should also be taken in account that under worst case conditions (VDD = Minimum, Temperature = Maximum, WDT postscaler = Maximum), it may take several seconds before a WDT time-out occurs. When a device RESET occurs, the Watchdog Timer counter and postscaler counter are cleared and the TO bit is set. Table 28-1: Summary of Watchdog Timer Registers Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 CONFIG2H WDTPS2 WDTPS1 WDTPS0 WDTEN WDTCON SWDTEN RCON IPEN LWRT RI TO PD POR BOR Legend: Shaded cells are not used by the Watchdog Timer. DS39529A-page Microchip Technology Inc.

5 Section 28. Watchdog Timer and SLEEP Mode 28.4 SLEEP (Power-Down) Mode Wake-up from SLEEP SLEEP (Power-down) mode is the lowest current consumption state and is entered by executing a SLEEP instruction. The device oscillator is turned off, so no system clocks are occurring in the device. If enabled, the Watchdog Timer will be cleared but keeps running, the PD bit in the RCON register is cleared, the TO bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, low, or hi-impedance). For lowest current consumption in this mode, all I/O pins should be either at VDD or VSS, withno external circuitry drawing current from the I/O pin and modules that are specified to have a delta SLEEP current, should be disabled. I/O pins that are hi-impedance inputs should be pulled high or low externally, to avoid switching currents caused by floating inputs. The contribution from on-chip pull-ups on PORTB should be considered. During SLEEP, the MCLR pinmustbeatavalidhigh. Some features of the device consume a delta current. These are enabled/disabled by device configuration bits. These features include the Watchdog Timer (WDT), LVD, and Brown-out Reset (BOR) circuitry modules. There are several ways to wake the controller from SLEEP. The WDT can wake-up the controller when it times out. A RESET will wake the controller and cause the program to restart, and interrupts (from peripherals or external sources) will wake the controller from SLEEP. The device can wake-up from SLEEP through one of the following events: 1. Any device RESET, such as MCLR pin = VIL, VDD =VBOR (if enabled). 2. Watchdog Timer Wake-up (if WDT was enabled). 3. Any peripheral module which can set its interrupt flag while in SLEEP, such as: - An external INT pin - Change on Port pin - Comparators -A/D -Timer1 -Timer3 -LVD - MSSP - Capture - PSP read or write - CCP1 - CCP2 - Addressable USART - PORTB Interrupt on Change - External Interrupts - Parallel Slave Port - Voltage Reference (bandgap) -WDT The first event will RESET the device upon wake-up. However, the latter two events will wake the device and then resume program execution. The TO and PD bits in the RCON register can be used to determine the cause of device RESET. The PD bit, which is set on power-up, is cleared when SLEEP is invoked. The TO bit is cleared if WDT time-out occurred (and caused a wake-up). When the SLEEP instruction is being executed, the next instruction (PC + 2) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction. 28 and Sleep Mode 2000 Microchip Technology Inc. DS39529A-page 28-5

6 PIC18C Reference Manual Wake-up Using Interrupts When interrupts are globally disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following events will occur: If an interrupt condition (interrupt flag bit and interrupt enable bits are set) occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bit will not be cleared. If the interrupt condition occurs during or after the execution of a SLEEP instruction, the device will immediately wake-up from SLEEP. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared. Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP. To ensure that the WDT is clear, a CLRWDT instruction should be executed before a SLEEP instruction. Figure 28-2: Wake-up from SLEEP Through Interrupt OSC1 CLKOUT (4) INT pin Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 TOST(2) INTF flag (INTCON<1>) Interrupt Latency (3) GIE bit (INTCON<7>) Processor in SLEEP INSTRUCTION FLOW PC PC PC+2 PC+4 PC+4 PC+4 INT_addr INT_addr + 1 Instruction fetched Inst(PC) = SLEEP Inst(PC + 2) Inst(PC + 4) Inst(INT_addr) Inst(INT_addr + 1) Instruction executed Inst(PC - 1) SLEEP Inst(PC + 2) Dummy cycle Dummy cycle Inst(INT_addr) Note 1: XT,HSorLPoscillatormodeassumed. 2: TOST =1024TOSC (drawing not to scale). This delay will not occur for RC and EC osc modes. 3: GIE = '1' assumed. In this case, after wake-up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line. 4: CLKOUT is not available in these osc modes, but shown here for timing reference. DS39529A-page Microchip Technology Inc.

7 Section 28. Watchdog Timer and SLEEP Mode Interrupt sources can wake the controller from SLEEP without actually causing an interrupt. The interrupt source must have its interrupt enable flag set, but GIE does not need to be set. If GIE is clear, the controller will wake without vectoring to an interrupt. If GIE is set, the controller will vector to an interrupt. If interrupt priority is not used, all interrupt priority bits are set. If interrupt priority is used (any interrupt priority bit is cleared), GIEH controls high priority interrupts and GIEL controls low priority interrupts. Table 28-2 shows the response to the interrupt flag bits depending on the state of the interrupt enable and priority bits. Table 28-2: Interrupt Source Any interrupt source that operates during SLEEP Legend: X is don t care. SLEEP Mode, Interrupt Enable Bits, and Interrupt Results GIE/GIEH PEIE/GIEL Interrupt Priority Peripheral Interrupt Flag Response to Interrupt X X X 0 SLEEP wake low priority wake high priority 0 0 X 1 wake High priority vector followed Low priority vector followed 28 and Sleep Mode 2000 Microchip Technology Inc. DS39529A-page 28-7

8 PIC18C Reference Manual Effects of SLEEP Mode on the On-Chip Oscillator When the device executes a SLEEP instruction, the Watchdog Timer and prescaler counter are cleared (if the WDT is enabled), the on-chip clocks and oscillator are turned off and the controller is held at the beginning of an instruction cycle (Q1 state). With the oscillator off, the OSC1 and OSC2 signals will stop oscillating. Since all the transistor switching currents have been removed, SLEEP mode achieves the lowest current consumption of the device (only leakage currents). Enabling any on-chip feature that will operate during SLEEP will increase the current consumed during SLEEP. The user can wake from SLEEP through external RESET, Brown-out Reset (if enabled), external interrupt, Watchdog Timer time-out or a peripheral interrupt. Table 28-3: OSC Mode Oscillator Selections, SLEEP Mode, and Waking from SLEEP OSC1 Pin in SLEEP OSC2 Pin in SLEEP Waking Delays OSC1 in Run OSC2 in Run RC Floating, pulled high At logic low None R and C set frequency RCIO Floating, pulled high Configured as I/O pin None R and C set frequency CLKO (4Tosc) Configured as I/O pin LP TOST (1) XTAL/res XTAL/res XT TOST (1) XTAL/res XTAL/res HS TOST (1) XTAL/res XTAL/res HS w/pll TOST (1) +TPLL (2) XTAL/res XTAL/res EC Driven by external clock source At logic low None Driven by external clock source CLKO (4TOSC) ECIO Driven by external clock source Configured as I/O pin None Driven by external clock source Configured as I/O pin Note 1: OST (Oscillator Start-up Timer) counts 1024 oscillator cycles before allowing controller clocks to resume. This provides time for the oscillator to start-up and stabilize. 2: ATPLL delay is required to allow the PLL to lock to the oscillator frequency. DS39529A-page Microchip Technology Inc.

9 Section 28. Watchdog Timer and SLEEP Mode Wake-up Delays Several factors affect how much time the controller requires to return to operating mode from SLEEP. These include oscillator mode and the use of the PLL. The Oscillator Start-up Timer, OST, counts 1024 oscillator cycles to allow the oscillator to start-up and stabilize before allowing system clocks to resume. The OST is not enabled for RC and EC oscillator modes Oscillator With PLL Enabled Time-out Sequence After Wake-up The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle delay after a wake-up from SLEEP has occurred oscillator cycles are not a sufficient amount of time to allow the PLL to lock at high frequencies. An additional TPLL time is required to allow the PLL to lock before allowing system clocks to resume. 28 and Sleep Mode 2000 Microchip Technology Inc. DS39529A-page 28-9

10 PIC18C Reference Manual Peripheral Module Operation During SLEEP Table 28-4 gives an overview of which devices operate during SLEEP. For further details, refer to the individual sections in this reference manual. Table 28-4: Peripheral Modules Active in SLEEP Mode Peripheral Module Operates During Mode of Operation Wakes from SLEEP? SLEEP? Timer1, Timer3 Yes External clock/u.s.c.g., Yes Asynchronous Counter mode A/D Yes A/D clock = RC clock Yes CCP1, CCP2 Yes Only capture available. Yes, do not rely on capture value MSSP Yes I 2 C Non-master modes SPI Slave mode Effects of a WDT Time-out Effects of a Device RESET Yes Yes Addressable USART Yes Synchronous slave mode Yes PORTB Interrupt on Yes All Yes Change External Interrupts Yes All Yes Parallel Slave Port Yes All Yes LVD Yes All Yes Volt Reference (bandgap) Yes If required to support LVD, and A/D No WDT Yes All Yes If the WDT has been enabled, either by the WDTEN configuration bit (= 1 ) or by the SWDTEN bit being set, the WDT will wake-up the controller from SLEEP mode and clear the TO bit. When MCLR is asserted, TO is set and PD is clear. All other bits in RCON are unchanged. The controller will resume code execution at the RESET vector address. DS39529A-page Microchip Technology Inc.

11 Section 28. Watchdog Timer and SLEEP Mode 28.5 Initialization No initialization code at this time. 28 and Sleep Mode 2000 Microchip Technology Inc. DS39529A-page 28-11

12 PIC18C Reference Manual 28.6 Design Tips Question 1: My system voltage drops and then returns to the specified device voltage range. The device is not operating correctly and the WDT does not reset and return the device to proper operation. Answer 1: The WDT was not designed to be a recovery from a brown-out condition. It was designed to recover from errant software operation (the device remaining in the specified operating ranges). If your system can be subjected to brown-outs, either the on-chip brown-out circuitry should be enabled or an external brown-out circuit should be implemented. Question 2: Device RESETS even though I do the CLRWDT instruction in my loop. Answer 2: Make sure that the loop with the CLRWDT instruction meets the minimum specification of the WDT (not the typical). Question 3: Device never gets out of RESETS. Answer 3: On power-up, you must take into account the Oscillator Start-up time (Tost). Sometimes it helps to put the CLRWDT instruction at the beginning of the loop, since this start-up time may be variable. DS39529A-page Microchip Technology Inc.

13 Section 28. Watchdog Timer and SLEEP Mode 28.7 Related Application Notes This section lists application notes that are related to this section of the manual. These application notes may not be written specifically for the Enhanced family (that is, they may be written for the Base-Line, the Mid-Range or High-End families), but the concepts are pertinent and could be used (with modification and possible limitations). The current application notes related to the WDT and SLEEP Mode are: Title Application Note # Power-up Trouble Shooting AN607 Note: Please visit the Microchip Web site for additional software code examples. These code examples are stand alone examples to assist in the understanding of the PIC18CXXX. The web address for these examples is: 28 and Sleep Mode 2000 Microchip Technology Inc. DS39529A-page 28-13

14 PIC18C Reference Manual 28.8 Revision History Revision A This is the initial released revision of the Enhanced MCU Watchdog Timer and SLEEP mode description. DS39529A-page Microchip Technology Inc.

Section 8. Reset. Reset HIGHLIGHTS. This section of the manual contains the following topics:

Section 8. Reset. Reset HIGHLIGHTS. This section of the manual contains the following topics: Section 8. HIGHLIGHTS This section of the manual contains the following topics: 8.1 Introduction... 8-2 8.2 Clock Source Selection at... 8-5 8.3 POR: Power-on... 8-5 8.4 External (EXTR)... 8-7 8.5 Software

More information

Section 8. Reset HIGHLIGHTS. Reset. This section of the manual contains the following major topics:

Section 8. Reset HIGHLIGHTS. Reset. This section of the manual contains the following major topics: Section 8. HIGHLIGHTS This section of the manual contains the following major topics: 8.1 Introduction... 8-2 8.2 Control Registers...8-3 8.3 System...8-6 8.4 Using the RCON Status Bits... 8-11 8.5 Device

More information

Section 10. Watchdog Timer and Power Saving Modes

Section 10. Watchdog Timer and Power Saving Modes Section 10. Watchdog Timer and Power Saving Modes HIGHLIGHTS This section of the manual contains the following topics: 10.1 Introduction... 10-2 10.2 Power Saving Modes... 10-2 10.3 Sleep Mode...10-2 10.4

More information

Section 11. Timer0. Timer0 HIGHLIGHTS. This section of the manual contains the following major topics:

Section 11. Timer0. Timer0 HIGHLIGHTS. This section of the manual contains the following major topics: M 11 Section 11. HIGHLIGHTS This section of the manual contains the following major topics: 11.1 Introduction...11-2 11.2 Control Register...11-3 11.3 Operation...11-4 11.4 TMR0 Interrupt...11-5 11.5 Using

More information

Section 9. Watchdog Timer (WDT)

Section 9. Watchdog Timer (WDT) Section 9. Watchdog Timer (WDT) HIGHLIGHTS This section of the manual contains the following major topics: 9.1 Introduction... 9-2 9.2 WDT Operation... 9-2 9.3 Register Maps...9-5 9.4 Design Tips... 9-6

More information

Section 13. Timer0 HIGHLIGHTS. Timer0. This section of the manual contains the following major topics:

Section 13. Timer0 HIGHLIGHTS. Timer0. This section of the manual contains the following major topics: Section 13. Timer0 HIGHLIGHTS This section of the manual contains the following major topics: 13.1 Introduction... 13-2 13.2 Control Register... 13-3 13.3 Operation... 13-4 13.4 Timer0 Interrupt... 13-5

More information

Section 9. Watchdog Timer (WDT) and Power-Saving Modes

Section 9. Watchdog Timer (WDT) and Power-Saving Modes Section 9. Watchdog Timer (WDT) and Power-Saving Modes HIGHLIGHTS This section of the manual contains the following topics: 9.1 Introduction... 9-2 9.2 Power-Saving Modes... 9-2 9.3 Watchdog Timer (WDT)...

More information

Section 10. Power-Saving Features

Section 10. Power-Saving Features Section 10. Power-Saving Features HIGHLIGHTS This section of the manual contains the following major topics: 10.1 Introduction... 10-2 10.2 Microcontroller Clock Manipulation... 10-2 10.3 Instruction-Based

More information

Section 29. Device Configuration Bits

Section 29. Device Configuration Bits Section 29. Device Configuration Bits HIGHLIGHTS This section of the manual contains the following major topics: 29.1 Introduction... 29-2 29.2 Configuration Word Bits... 29-3 29.3 Program Verification/Code

More information

Section 14. Timer1 HIGHLIGHTS. Timer1. This section of the manual contains the following major topics:

Section 14. Timer1 HIGHLIGHTS. Timer1. This section of the manual contains the following major topics: Section 14. Timer1 HIGHLIGHTS This section of the manual contains the following major topics: 14.1 Introduction... 14-2 14.2 Control Register... 14-4 14.3 Timer1 Operation in Timer Mode... 14-5 14.4 Timer1

More information

EE6008-Microcontroller Based System Design Department Of EEE/ DCE

EE6008-Microcontroller Based System Design Department Of EEE/ DCE UNIT- II INTERRUPTS AND TIMERS PART A 1. What are the interrupts available in PIC? (Jan 14) Interrupt Source Enabled by Completion Status External interrupt from INT INTE = 1 INTF = 1 TMR0 interrupt T0IE

More information

Section 24. Comparator

Section 24. Comparator Section 24. HIGHLIGHTS This section of the manual contains the following major topics: 24.1 Introduction... 24-2 24.2 Control Register... 24-3 24.3 Configuration... 24-4 24.4 Operation... 24-6 24.5 Reference...

More information

Section 9. Watchdog Timer and Power-up Timer

Section 9. Watchdog Timer and Power-up Timer Section 9. Watchdog Timer and Power-up Timer HIGHLIGHTS This section of the manual contains the following topics: 9.1 Introduction... 9-2 9.2 Watchdog Timer and Power-up Timer Control Registers... 9-3

More information

PIC16F87X. 28/40-pin 8-Bit CMOS FLASH Microcontrollers. Devices Included in this Data Sheet: Pin Diagram PDIP. Microcontroller Core Features:

PIC16F87X. 28/40-pin 8-Bit CMOS FLASH Microcontrollers. Devices Included in this Data Sheet: Pin Diagram PDIP. Microcontroller Core Features: PIC16F7X 2/40-pin -Bit CMOS FLASH Microcontrollers Devices Included in this Data Sheet: PIC16F7 PIC16F74 PIC16F76 PIC16F77 Microcontroller Core Features: High-performance RISC CPU Only 5 single word instructions

More information

Section 21. Addressable USART

Section 21. Addressable USART 21 Section 21. Addressable USART Addressable USART HIGHLIGHTS This section of the manual contains the following major topics: 21.1 Introduction... 21-2 21.2 Control Registers... 21-3 21.3 USART Baud Rate

More information

PIC Microcontroller Introduction

PIC Microcontroller Introduction PIC Microcontroller Introduction The real name of this microcontroller is PICmicro (Peripheral Interface Controller), but it is better known as PIC. Its first ancestor was designed in 1975 by General Instruments.

More information

These 3 registers contain enable, priority,

These 3 registers contain enable, priority, 8.3.2) Registers Related to Interrupts These registers enable/disable the interrupts, set the priority of the interrupts, and record the status of each interrupt source. RCON INTCON, INTCON2, and INTCON3

More information

Section 16. Basic Sychronous Serial Port (BSSP)

Section 16. Basic Sychronous Serial Port (BSSP) M 16 Section 16. Basic Sychronous Serial Port (BSSP) BSSP HIGHLIGHTS This section of the manual contains the following major topics: 16.1 Introduction...16-2 16.2 Control Registers...16-3 16.3 SPI Mode...16-6

More information

Section 33. Device Configuration (Part II)

Section 33. Device Configuration (Part II) Section 33. Device Configuration (Part II) HIGHLIGHTS This section of the manual contains the following major topics: 33.1 Introduction... 33-2 33.2 Device Configuration Registers... 33-2 33.3 Configuration

More information

M PIC16F84A. 18-pinEnhanced FLASH/EEPROM 8-Bit Microcontroller. High Performance RISC CPU Features: Pin Diagrams. Peripheral Features:

M PIC16F84A. 18-pinEnhanced FLASH/EEPROM 8-Bit Microcontroller. High Performance RISC CPU Features: Pin Diagrams. Peripheral Features: M PIC6F84A 8-pinEnhanced FLASH/EEPROM 8-Bit Microcontroller High Performance RISC CPU Features: Pin Diagrams Only 35 single word instructions to learn All instructions single-cycle except for program branches

More information

Table of Contents COMPANY PROFILE 1-1 SECTION 1. INTRODUCTION 1-1

Table of Contents COMPANY PROFILE 1-1 SECTION 1. INTRODUCTION 1-1 COMPANY PROFILE 1-1 SECTION 1. INTRODUCTION 1-1 Introduction... 1-2 Manual Objective... 1-3 Device Structure... 1-4 Development Support... 1-6 Device Varieties... 1-7 Style and Symbol Conventions... 1-12

More information

#pragma config Usage. #pragma config Settings. #pragma config <setting>=<named value>

#pragma config Usage. #pragma config Settings. #pragma config <setting>=<named value> 1 z 6 27.3.2015 17:21 #pragma config Usage #pragma config = // Oscillator Selection bits: 11XX External RC oscillator, CLKO function on RA6 // Fail-Safe Clock Monitor Enable bit:

More information

Section 32. High-Level Device Integration

Section 32. High-Level Device Integration HIGHLIGHTS Section 32. High-Level Device Integration This section of the manual contains the following topics: 32 32.1 Introduction... 32-2 32.2 Device Configuration... 32-2 32.3 Device Identification...

More information

EE 361L Digital Systems and Computer Design Laboratory

EE 361L Digital Systems and Computer Design Laboratory EE 361L Digital Systems and Computer Design Laboratory University of Hawaii Department of Electrical Engineering by Galen Sasaki and Ashok Balusubramaniam Quick Overview of PIC16F8X Version 1.0 Date: 9/4/01

More information

Section 30. In-Circuit Serial Programming (ICSP )

Section 30. In-Circuit Serial Programming (ICSP ) Section 30. In-Circuit Serial Programming (ICSP ) HIGHLIGHTS This section of the manual contains the following major topics: 30. Introduction... 30-2 30.2 Entering In-Circuit Serial Programming Mode...

More information

PIC18CXX2. High Performance Microcontrollers with 10-bit A/D. High Performance RISC CPU: Pin Diagrams PIC18C4X2. Analog Features: Peripheral Features:

PIC18CXX2. High Performance Microcontrollers with 10-bit A/D. High Performance RISC CPU: Pin Diagrams PIC18C4X2. Analog Features: Peripheral Features: High Performance Microcontrollers with 10-bit A/D High Performance RISC CPU: C compiler optimized architecture/instruction set - Source code compatible with the PIC16CXX instruction set Linear program

More information

Section 7. Oscillator

Section 7. Oscillator Section 7. HIGHLIGHTS This section of the manual contains the following topics: 7 7.1 Introduction... 7-2 7.2 CPU Clocking...7-4 7.3 Configuration Registers... 7-5 7.4 Special Function Registers... 7-8

More information

Section 20. Comparator Voltage Reference Module

Section 20. Comparator Voltage Reference Module Section 20. Comparator Voltage eference Module HIGHLIGHTS This section of the manual contains the following major topics: 20.1 Introduction... 20-2 20.2 Configuring the Comparator Voltage eference... 20-3

More information

PIC18CXX2. High-Performance Microcontrollers with 10-Bit A/D * * High Performance RISC CPU: Pin Diagrams PIC18C4X2.

PIC18CXX2. High-Performance Microcontrollers with 10-Bit A/D * * High Performance RISC CPU: Pin Diagrams PIC18C4X2. High-Performance Microcontrollers with 10-Bit A/D * * * * High Performance RISC CPU: C-compiler optimized architecture/instruction set - Source code compatible with the PIC16CXX instruction set Linear

More information

PIC18CXX2 Data Sheet. High Performance Microcontrollers with 10-bit A/D Microchip Technology Inc. DS39026C

PIC18CXX2 Data Sheet. High Performance Microcontrollers with 10-bit A/D Microchip Technology Inc. DS39026C Data Sheet High Performance Microcontrollers with 10-bit A/D 2001 Microchip Technology Inc. DS39026C All rights reserved. Copyright 2001, Microchip Technology Incorporated, USA. Information contained in

More information

AVR XMEGA Product Line Introduction AVR XMEGA TM. Product Introduction.

AVR XMEGA Product Line Introduction AVR XMEGA TM. Product Introduction. AVR XMEGA TM Product Introduction 32-bit AVR UC3 AVR Flash Microcontrollers The highest performance AVR in the world 8/16-bit AVR XMEGA Peripheral Performance 8-bit megaavr The world s most successful

More information

Section 7. Oscillator

Section 7. Oscillator HIGHLIGHTS Section 7. This section of the manual contains the following topics: 7 7.1 Introduction... 7-2 7.2 CPU Clocking...7-4 7.3 Configuration Registers... 7-5 7.4 Special Function Registers... 7-8

More information

Section 7. Oscillator

Section 7. Oscillator HIGHLIGHTS Section 7. This section of the manual contains the following topics: 7 7.1 Introduction... 7-2 7.2 CPU Clocking...7-3 7.3 Configuration Registers... 7-4 7.4 Special Function Registers... 7-7

More information

Embedded Systems. PIC16F84A Internal Architecture. Eng. Anis Nazer First Semester

Embedded Systems. PIC16F84A Internal Architecture. Eng. Anis Nazer First Semester Embedded Systems PIC16F84A Internal Architecture Eng. Anis Nazer First Semester 2017-2018 Review Computer system basic components? CPU? Memory? I/O? buses? Instruction? Program? Instruction set? CISC,

More information

PIC18FXX2 Data Sheet. High Performance, Enhanced FLASH Microcontrollers with 10-Bit A/D Microchip Technology Inc. Advance Information DS39564A

PIC18FXX2 Data Sheet. High Performance, Enhanced FLASH Microcontrollers with 10-Bit A/D Microchip Technology Inc. Advance Information DS39564A Data Sheet High Performance, Enhanced FLASH Microcontrollers with 10-Bit A/D 2001 Microchip Technology Inc. Advance Information DS39564A te the following details of the code protection feature on PICmicro

More information

Section 4. Architecture

Section 4. Architecture M Section 4. Architecture HIGHLIGHTS This section of the manual contains the following major topics: 4. Introduction...4-2 4.2 Clocking Scheme/Instruction Cycle...4-5 4.3 Instruction Flow/Pipelining...4-6

More information

n/a PIC12F629-I/P (RC) n/a PIC12F629-I/SN (RC) n/a PIC12F675-I/P (RC) n/a PIC12F675-I/SN MICROCONTROLLER (RC)

n/a PIC12F629-I/P (RC) n/a PIC12F629-I/SN (RC) n/a PIC12F675-I/P (RC) n/a PIC12F675-I/SN MICROCONTROLLER (RC) DATA SHEET PIC Microcontrollers Order code Manufacturer code Description 73-36 n/a PICF69-I/P (RC) 73-364 n/a PICF69-I/SN (RC) 73-34 n/a PICF675-I/P (RC) 73-36 n/a PICF675-I/SN MICROCONTROLLER (RC) PIC

More information

NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL

NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL NH-67, TRICHY MAIN ROAD, PULIYUR, C.F. 639 114, KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL Subject Name : Embedded System Class/Sem : BE (ECE) / VII Subject Code

More information

Section 42. Oscillators with Enhanced PLL

Section 42. Oscillators with Enhanced PLL Section 42. Oscillators with Enhanced PLL HIGHLIGHTS This section of the manual contains the following major topics: 42.1 Introduction... 42-2 42.2 Control Registers... 42-4 42.3 Operation: Clock Generation

More information

Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan

Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan Interrupts and Resets Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan chanhl@mail.cgu.edu.twcgu Interrupts An event that will cause the CPU to stop the normal program execution

More information

Section 46. Scalable Comparator Module

Section 46. Scalable Comparator Module 46 Section 46. Scalable Module Scalable Module HIGHLIGHTS This section of the manual contains the following major topics: 46.1 Introduction... 46-2 46.2 Control Register... 46-4 46.3 Operation... 46-7

More information

Mod-5: PIC 18 Introduction 1. Module 5

Mod-5: PIC 18 Introduction 1. Module 5 Mod-5: PIC 18 Introduction 1 Module 5 Contents: Overview of PIC 18, memory organisation, CPU, registers, pipelining, instruction format, addressing modes, instruction set, interrupts, interrupt operation,

More information

PIC16F84A. 18-pin Enhanced Flash/EEPROM 8-Bit Microcontroller. Devices Included in this Data Sheet: Pin Diagrams. High Performance RISC CPU Features:

PIC16F84A. 18-pin Enhanced Flash/EEPROM 8-Bit Microcontroller. Devices Included in this Data Sheet: Pin Diagrams. High Performance RISC CPU Features: M PIC6F84A 8-pin Enhanced Flash/EEPROM 8-Bit Microcontroller Devices Included in this Data Sheet: PIC6F84A Extended voltage range device available (PIC6LF84A) High Performance RISC CPU Features: Only 35

More information

PIC18FXX2 Data Sheet. High Performance, Enhanced FLASH Microcontrollers with 10-Bit A/D Microchip Technology Inc. DS39564B

PIC18FXX2 Data Sheet. High Performance, Enhanced FLASH Microcontrollers with 10-Bit A/D Microchip Technology Inc. DS39564B M PIC18FXX2 Data Sheet High Performance, Enhanced FLASH Microcontrollers with 10-Bit A/D 2002 Microchip Technology Inc. DS39564B te the following details of the code protection feature on PICmicro MCUs.

More information

Micro-Controller: PIC16C74 < Part 5: Interrupt >

Micro-Controller: PIC16C74 < Part 5: Interrupt > Micro-Controller: PIC16C74 < Part 5: Interrupt > I. Overview Introduction PIC16c74 can have many sources of interrupt. These sources generally include one interrupt source for each peripheral module, though

More information

CENG-336 Introduction to Embedded Systems Development. Timers

CENG-336 Introduction to Embedded Systems Development. Timers CENG-336 Introduction to Embedded Systems Development Timers Definitions A counter counts (possibly asynchronous) input pulses from an external signal A timer counts pulses of a fixed, known frequency

More information

Programming for PIC18FXX2/FXX8 FLASH MCUs PIN DESCRIPTIONS (DURING PROGRAMMING): PIC18FXX2/XX8. During Programming. Pin Name Pin Type Pin Description

Programming for PIC18FXX2/FXX8 FLASH MCUs PIN DESCRIPTIONS (DURING PROGRAMMING): PIC18FXX2/XX8. During Programming. Pin Name Pin Type Pin Description M Programming for PIC18FXX2/FXX8 FLASH MCUs 1.0 DEVICE OVERVIEW This document includes the programming specifications for the following devices: PIC18F242 PIC18F248 PIC18F252 PIC18F258 PIC18F442 PIC18F448

More information

PIC12C5XX. 8-Pin, 8-Bit CMOS Microcontroller. CMOS Technology: Devices included in this Data Sheet: High-Performance RISC CPU: Pin Diagram

PIC12C5XX. 8-Pin, 8-Bit CMOS Microcontroller. CMOS Technology: Devices included in this Data Sheet: High-Performance RISC CPU: Pin Diagram This document was created with FrameMaker 404 8-Pin, 8-Bit CMOS Microcontroller PIC12C5XX Devices included in this Data Sheet: PIC12C508 and PIC12C509 are 8-bit microcontrollers packaged in 8-lead packages.

More information

Lecture (03) PIC16F84 (2)

Lecture (03) PIC16F84 (2) Lecture (03) PIC16F84 (2) By: Dr. Ahmed ElShafee ١ PIC16F84 has a RISC architecture, or Harvard architecture in another word ٢ PIC16F84 belongs to a class of 8 bit microcontrollers of RISC architecture.

More information

PIC18F010/020 Data Sheet

PIC18F010/020 Data Sheet Data Sheet High Performance Microcontrollers 2001 Microchip Technology Inc. Preliminary DS41142A All rights reserved. Copyright 2001, Microchip Technology Incorporated, USA. Information contained in this

More information

PIC16C84. 8-bit CMOS EEPROM Microcontroller PIC16C84. Pin Diagram. High Performance RISC CPU Features: CMOS Technology: Peripheral Features:

PIC16C84. 8-bit CMOS EEPROM Microcontroller PIC16C84. Pin Diagram. High Performance RISC CPU Features: CMOS Technology: Peripheral Features: 8-bit CMOS EEPROM Microcontroller High Performance RISC CPU Features: Only 35 single word instructions to learn All instructions single cycle (400 ns @ 10 MHz) except for program branches which are two-cycle

More information

which means that writing to a port implies that the port pins are first read, then this value is modified and then written to the port data latch.

which means that writing to a port implies that the port pins are first read, then this value is modified and then written to the port data latch. Introduction to microprocessors Feisal Mohammed 3rd January 2001 Additional features 1 Input/Output Ports One of the features that differentiates a microcontroller from a microprocessor is the presence

More information

PIC18F2XJXX/4XJXX FAMILY

PIC18F2XJXX/4XJXX FAMILY Flash Microcontroller Programming Specification 1.0 DEVICE OVERVIEW This document includes the programming specifications for the following devices: PIC18F24J10 PIC18F25J10 PIC18F44J10 PIC18F45J10 PIC18F24J11

More information

Real Time Embedded Systems. Lecture 1 January 17, 2012

Real Time Embedded Systems.  Lecture 1 January 17, 2012 Low-Power & Reset Real Time Embedded Systems www.atomicrhubarb.com/embedded Lecture 1 January 17, 2012 Topic Section Topic Where in the books Catsoulis chapter/page Simon chapter/page Zilog UM197 (ZNEO

More information

PIC16C52. EPROM-Based 8-Bit CMOS Microcontroller PIC16C52. Pin Diagrams. Feature Highlights. High-Performance RISC CPU. Peripheral Features

PIC16C52. EPROM-Based 8-Bit CMOS Microcontroller PIC16C52. Pin Diagrams. Feature Highlights. High-Performance RISC CPU. Peripheral Features This document was created with FrameMaker 404 PIC16C52 EPROM-Based 8-Bit CMOS Microcontroller Feature Highlights Pin Diagrams Program Memory Data Memory I/O PDIP, SOIC 384 25 12 High-Performance RISC CPU

More information

Enhanced FLASH Microcontrollers with Single Phase Induction Motor Control Kernel. I/O Pins. 10-bit A/D (ch) EEPROM

Enhanced FLASH Microcontrollers with Single Phase Induction Motor Control Kernel. I/O Pins. 10-bit A/D (ch) EEPROM Enhanced FLASH Microcontrollers with Single Phase Induction Motor Control Kernel High Performance RISC CPU: Linear program memory addressing to 24 Kbytes Linear data memory addressing to 1.4 Kbytes 20

More information

PIC18C601/801. High-Performance ROM-less Microcontrollers with External Memory Bus. Advanced Analog Features: High Performance RISC CPU:

PIC18C601/801. High-Performance ROM-less Microcontrollers with External Memory Bus. Advanced Analog Features: High Performance RISC CPU: High-Performance ROM-less Microcontrollers with External Memory Bus High Performance RISC CPU: C compiler optimized architecture instruction set Linear program memory addressing up to 2 Mbytes Linear data

More information

PIC16C Pin, 8-Bit CMOS Microcontroller. Device included in this Data Sheet: Special Microcontroller Features: High-Performance RISC CPU:

PIC16C Pin, 8-Bit CMOS Microcontroller. Device included in this Data Sheet: Special Microcontroller Features: High-Performance RISC CPU: 14-Pin, 8-Bit CMOS Microcontroller Device included in this Data Sheet: PIC16C505 High-Performance RISC CPU: Only 33 instructions to learn Operating speed: - DC - 20 MHz clock input - DC - 200 ns instruction

More information

Microcomputers. C and Embedded Systems

Microcomputers. C and Embedded Systems Microcomputers PIC24 Startup Lecture 5-1 C and Embedded Systems A P-based system used in a device (i.e, a car engine) performing control and monitoring functions is referred to as an embedded system. The

More information

MC68331 DEVICE INFORMATION (Issue 6-17 August, 1995) Rev. A and B Silicon E95B, E93N and F43E Mask Set

MC68331 DEVICE INFORMATION (Issue 6-17 August, 1995) Rev. A and B Silicon E95B, E93N and F43E Mask Set MC68331 DEVICE INFORMATION (Issue 6-17 August, 1995) Rev. A and B Silicon E95B, E93N and F43E Mask Set The following information and errata pertain to Revision A and B samples of the 68331 microcontroller.

More information

PIC18LF46K50. Flash Memory Programming Specification 1.0 DEVICE OVERVIEW 2.0 PROGRAMMING OVERVIEW. 2.2 Dedicated ICSP/ICD Port (44-Pin TQFP Only)

PIC18LF46K50. Flash Memory Programming Specification 1.0 DEVICE OVERVIEW 2.0 PROGRAMMING OVERVIEW. 2.2 Dedicated ICSP/ICD Port (44-Pin TQFP Only) Flash Memory Programming Specification 1.0 DEVICE OVERVIEW This document includes the programming specifications for the following devices: PIC18F24K50 PIC18F25K50 PIC18F26K50 PIC18F45K50 PIC18F46K50 PIC18LF24K50

More information

Remote Keyless Entry In a Body Controller Unit Application

Remote Keyless Entry In a Body Controller Unit Application 38 Petr Cholasta Remote Keyless Entry In a Body Controller Unit Application Many of us know this situation. When we leave the car, with a single click of a remote control we lock and secure it until we

More information

PIC16C Pin, 8-Bit CMOS Microcontroller. Device included in this Data Sheet: Special Microcontroller Features: High-Performance RISC CPU:

PIC16C Pin, 8-Bit CMOS Microcontroller. Device included in this Data Sheet: Special Microcontroller Features: High-Performance RISC CPU: 14-Pin, 8-Bit CMOS Microcontroller Device included in this Data Sheet: PIC16C505 High-Performance RISC CPU: Only 33 instructions to learn Operating speed: - DC - 20 MHz clock input - DC - 200 ns instruction

More information

PIC16C7X 11.0 SYNCHRONOUS SERIAL PORT (SSP) MODULE SSP Module Overview. Applicable Devices

PIC16C7X 11.0 SYNCHRONOUS SERIAL PORT (SSP) MODULE SSP Module Overview. Applicable Devices Applicable Devices PIC16C7X 11.0 SYNCHRONOUS SERIAL PORT (SSP) MODULE 11.1 SSP Module Overview The Synchronous Serial Port (SSP) module is a serial interface useful for communicating with other peripheral

More information

MDT10P General Description. 2. Features. 3. Applications

MDT10P General Description. 2. Features. 3. Applications 1. General This EPROM-Based 8-bit micro-controller uses a fully static CMOS design technology combines higher speed and smaller size with the low power and high noise immunity of CMOS. On chip memory system

More information

FLASH Microcontroller Programming Specification PIN DESCRIPTIONS (DURING PROGRAMMING): PIC18FXX2/XX8. During Programming

FLASH Microcontroller Programming Specification PIN DESCRIPTIONS (DURING PROGRAMMING): PIC18FXX2/XX8. During Programming FLASH Microcontroller Programming Specification 1.0 DEVICE OVERVIEW This document includes the programming specifications for the following devices: PIC18F242 PIC18F248 PIC18F252 PIC18F258 PIC18F442 PIC18F448

More information

8. Power Management and Sleep Modes

8. Power Management and Sleep Modes 8. Power Management and Sleep Modes 8.1 Features Power management for adjusting power consumption and functions Five sleep modes Idle Power down Power save Standby Extended standby Power reduction register

More information

PIC18FXX8 Data Sheet. 28/40-Pin High-Performance, Enhanced Flash Microcontrollers with CAN Module Microchip Technology Inc.

PIC18FXX8 Data Sheet. 28/40-Pin High-Performance, Enhanced Flash Microcontrollers with CAN Module Microchip Technology Inc. Data Sheet 28/40-Pin High-Performance, Enhanced Flash Microcontrollers with CAN Module 2006 Microchip Technology Inc. DS41159E te the following details of the code protection feature on Microchip devices:

More information

PIC10F200/202/204/206 Data Sheet

PIC10F200/202/204/206 Data Sheet Data Sheet 6-Pin, 8-Bit Flash Microcontrollers DS4239A 6-Pin, 8-Bit Flash Microcontrollers Devices Included In ThisData Sheet: PIC0F200 PIC0F202 PIC0F204 PIC0F206 High-Performance RISC CPU: Only 33 single-word

More information

Advanced CUSTOMER ERRATA AND INFORMATION SHEET Page 1 MCU Part: V Mask Set: 00F98R Division Report Generated: Aug 27, 96 17:37

Advanced CUSTOMER ERRATA AND INFORMATION SHEET Page 1 MCU Part: V Mask Set: 00F98R Division Report Generated: Aug 27, 96 17:37 Advanced CUSTOMER ERRATA AND INFORMATION SHEET Page 1 ========================================= 68332.V 00F98R Modules ========================================= Current Module Revision =========================================

More information

AVR XMEGA TM. A New Reference for 8/16-bit Microcontrollers. Ingar Fredriksen AVR Product Marketing Director

AVR XMEGA TM. A New Reference for 8/16-bit Microcontrollers. Ingar Fredriksen AVR Product Marketing Director AVR XMEGA TM A New Reference for 8/16-bit Microcontrollers Ingar Fredriksen AVR Product Marketing Director Kristian Saether AVR Product Marketing Manager Atmel AVR Success Through Innovation First Flash

More information

CHAPTER 6 CONCLUSION AND SCOPE FOR FUTURE WORK

CHAPTER 6 CONCLUSION AND SCOPE FOR FUTURE WORK 134 CHAPTER 6 CONCLUSION AND SCOPE FOR FUTURE WORK 6.1 CONCLUSION Many industrial processes such as assembly lines have to operate at different speeds for different products. Process control may demand

More information

FLASH Microcontroller Programming Specification PIN DESCRIPTIONS (DURING PROGRAMMING): PIC18FXX20. During Programming

FLASH Microcontroller Programming Specification PIN DESCRIPTIONS (DURING PROGRAMMING): PIC18FXX20. During Programming FLASH Microcontroller Programming Specification 1.0 DEVICE OVERVIEW This document includes the programming specifications for the following devices: PIC18F6520 PIC18F6620 PIC18F6720 PIC18F8520 PIC18F8620

More information

OTP-Based 8-Bit Microcontroller

OTP-Based 8-Bit Microcontroller Devices Included in this Data Sheet: : OTP device FEATURES OTP-Based 8-Bit Microcontroller 1K-Word on chip OTP 49-Bytes on chip general purpose registers (SRAM) 8-bit wide data path 5-level deep hardware

More information

PIC16C432 OTP 8-Bit CMOS MCU with LIN bus Transceiver

PIC16C432 OTP 8-Bit CMOS MCU with LIN bus Transceiver OTP 8-Bit CMOS MCU with LIN bus Transceiver Devices included in this Data Sheet: High Performance RISC CPU: Only 35 instructions to learn All single cycle instructions (200 ns), except for program branches

More information

Section 7. Reset HIGHLIGHTS. Reset

Section 7. Reset HIGHLIGHTS. Reset Section 7. Reset HIGHLIGHTS This section of the manual contains the following topics: 7.1 Introduction... 7-2 7.2 Clock Source Selection at Reset... 7-6 7.3 Power-on Reset (POR)... 7-6 7.4 MCLR Reset...

More information

Microcontroller Overview

Microcontroller Overview Microcontroller Overview Microprocessors/Microcontrollers/DSP Microcontroller components Bus Memory CPU Peripherals Programming Microcontrollers vs. µproc. and DSP Microprocessors High-speed information

More information

1 Introduction to Computers and Computer Terminology Programs Memory Processor Data Sheet... 4

1 Introduction to Computers and Computer Terminology Programs Memory Processor Data Sheet... 4 Overview of the PIC 16F648A Processor: Part 1 EE 361L Lab 2.1 Last update: August 1, 2016 Abstract: This report is the first of a three part series that discusses the features of the PIC 16F648A processor,

More information

Microcontroller basics

Microcontroller basics FYS3240 PC-based instrumentation and microcontrollers Microcontroller basics Spring 2017 Lecture #4 Bekkeng, 30.01.2017 Lab: AVR Studio Microcontrollers can be programmed using Assembly or C language In

More information

Embedded System Design

Embedded System Design ĐẠI HỌC QUỐC GIA TP.HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA ĐIỆN-ĐIỆN TỬ BỘ MÔN KỸ THUẬT ĐIỆN TỬ Embedded System Design : Microcontroller 1. Introduction to PIC microcontroller 2. PIC16F84 3. PIC16F877

More information

AM18X5. 1. Introduction. 2. System Power Control Applications. Application Note. AM18X5 Family System Power Management

AM18X5. 1. Introduction. 2. System Power Control Applications. Application Note. AM18X5 Family System Power Management Application Note Family System Power Management 1. Introduction In addition to fundamentally low power RTC operation, the Ambiq includes the capability to effectively manage the power of other devices

More information

EPROM/ROM-Based 8-Bit Microcontroller Series

EPROM/ROM-Based 8-Bit Microcontroller Series 查询 FM8P54 供应商 捷多邦, 专业 PCB 打样工厂,24 小时加急出货 EPROM/ROM-Based 8-Bit Microcontroller Series Devices Included in this Data Sheet: FM8P54E/56E : EPROM devices : Mask ROM devices FEATURES Only 42 single word instructions

More information

Section 32. Interrupts (Part III)

Section 32. Interrupts (Part III) HIGHLIGHTS Section 32. Interrupts (Part III) This section of the manual contains the following topics: 32 32.1 Introduction... 32-2 32.2 Non-Maskable Traps... 32-7 32.3 Interrupt Processing Timing... 32-13

More information

DRPIC166X IP Core. High Performance 8-bit RISC Microcontroller v. 2.17

DRPIC166X IP Core. High Performance 8-bit RISC Microcontroller v. 2.17 2017 DRPIC166X IP Core High Performance 8-bit RISC Microcontroller v. 2.17 C O M P A N Y O V E R V I E W Digital Core Design is a leading IP Core provider and a System-on-Chip design house. The company

More information

Flash Microcontroller Programming Specification PIN DESCRIPTIONS (DURING PROGRAMMING): PIC18F872X FAMILY. During Programming

Flash Microcontroller Programming Specification PIN DESCRIPTIONS (DURING PROGRAMMING): PIC18F872X FAMILY. During Programming Flash Microcontroller Programming Specification 10 DEVICE OVERVIEW This document includes the programming specifications for the following devices: PIC18F6527 PIC18F6622 PIC18F6627 PIC18F6628 PIC18F6722

More information

1 Introduction to Computers and Computer Terminology Programs Memory Processor Data Sheet Example Application...

1 Introduction to Computers and Computer Terminology Programs Memory Processor Data Sheet Example Application... Overview of the PIC 16F648A Processor: Part 1 EE 361L Lab 2.1 Last update: August 19, 2011 Abstract: This report is the first of a three part series that discusses the features of the PIC 16F684A processor,

More information

MicroProcessor. MicroProcessor. MicroProcessor. MicroProcessor

MicroProcessor. MicroProcessor. MicroProcessor. MicroProcessor 1 2 A microprocessor is a single, very-large-scale-integration (VLSI) chip that contains many digital circuits that perform arithmetic, logic, communication, and control functions. When a microprocessor

More information

Section 6. Interrupts

Section 6. Interrupts Section. Interrupts Interrupts HIGHLIGHTS This section of the manual contains the following topics:.1 Introduction... -2.2 Non-Maskable Traps... -7.3 Interrupt Processing Timing...-13.4 Interrupt Control

More information

SH69P21 EVB. Application Note for SH69P21 EVB SH69P21 EVB SH69P21

SH69P21 EVB. Application Note for SH69P21 EVB SH69P21 EVB SH69P21 SH69P21 EVB Application Note for SH69P21 EVB The SH69P21 EVB is used to evaluate the SH69P21 chip's function for the development of application program. It contains of a SH69V21 chip to evaluate the functions

More information

Hello, and welcome to this presentation of the STM32L4 power controller. The STM32L4 s power management functions and all power modes will also be

Hello, and welcome to this presentation of the STM32L4 power controller. The STM32L4 s power management functions and all power modes will also be Hello, and welcome to this presentation of the STM32L4 power controller. The STM32L4 s power management functions and all power modes will also be covered in this presentation. 1 Please note that this

More information

Introduction to Embedded Systems

Introduction to Embedded Systems Stefan Kowalewski, 4. November 25 Introduction to Embedded Systems Part 2: Microcontrollers. Basics 2. Structure/elements 3. Digital I/O 4. Interrupts 5. Timers/Counters Introduction to Embedded Systems

More information

CW2013. Low-Cost 1s Fuel Gauge IC with Low-SOC Alert. General Description. Features. Applications. Order Information

CW2013. Low-Cost 1s Fuel Gauge IC with Low-SOC Alert. General Description. Features. Applications. Order Information CW2013 Low-Cost 1s Fuel Gauge IC with Low-SOC Alert Features System Side used Fuel Gauging 3% Maximum Total SOC Measurement Error 14 bit Delta Sigma ADC for Temperature and Cell Voltage Measurement Precision

More information

Section 37. Real-Time Clock and Calendar (RTCC)

Section 37. Real-Time Clock and Calendar (RTCC) Section 37. Real-Time Clock and Calendar (RTCC) HIGHLIGHTS This section of the manual contains the following major topics: 37 37.1 Introduction... 37-2 37.2 RTCC Module Registers... 37-3 37.3 RTCC Operation...

More information

University of Jordan Faculty of Engineering and Technology Department of Computer Engineering Embedded Systems Laboratory

University of Jordan Faculty of Engineering and Technology Department of Computer Engineering Embedded Systems Laboratory University of Jordan Faculty of Engineering and Technology Department of Computer Engineering Embedded Systems Laboratory 0907334 6 Experiment 6:Timers Objectives To become familiar with hardware timing

More information

Hello, and welcome to this presentation of the STM32 Reset and Clock Controller.

Hello, and welcome to this presentation of the STM32 Reset and Clock Controller. Hello, and welcome to this presentation of the STM32 Reset and Clock Controller. 1 The RCC controller integrated inside STM32 products manages system and peripheral clocks. STM32F7 devices embed two internal

More information

PIC 16F84A programming (II)

PIC 16F84A programming (II) Lecture (05) PIC 16F84A programming (II) Dr. Ahmed M. ElShafee ١ Introduction to 16F84 ٣ PIC16F84 belongs to a class of 8-bit microcontrollers of RISC architecture. Program memory (FLASH) EEPROM RAM PORTA

More information

STM8L and STM32 L1 series. Ultra-low-power platform

STM8L and STM32 L1 series. Ultra-low-power platform STM8L and STM32 L1 series Ultra-low-power platform 8-bit and 32-bit MCU families 2 Flash (bytes) 2 M 1 M 128 K 16 K 8-bit Core STM8S Mainstream STM8A F and STM8AL Automotive STM8L Ultra-low-power 32-bit

More information

Hello and welcome to this Renesas Interactive module that covers the Independent watchdog timer found on RX MCUs.

Hello and welcome to this Renesas Interactive module that covers the Independent watchdog timer found on RX MCUs. Hello and welcome to this Renesas Interactive module that covers the Independent watchdog timer found on RX MCUs. 1 This course covers specific features of the independent watchdog timer on RX MCUs. If

More information

SH69P48A EVB. Application Notes for SH69P48A EVB SH69V48A JP2 J4(ICE_J4) S1 IDD TEST JP1 74HC273 JP4 JP3 74HC273 JP6 STKOVE JP7 SW1 J5(ICE_J5)

SH69P48A EVB. Application Notes for SH69P48A EVB SH69V48A JP2 J4(ICE_J4) S1 IDD TEST JP1 74HC273 JP4 JP3 74HC273 JP6 STKOVE JP7 SW1 J5(ICE_J5) SH69P48A EVB Application Notes for SH69P48A EVB The SH69P48A EVB is used to evaluate the SH69P48A chip's function for the development of application program. It contains of a SH69V48A chip to evaluate

More information

Hong Kong Institute of Vocational Education Digital Electronics & Microcontroller. 8. Microcontroller

Hong Kong Institute of Vocational Education Digital Electronics & Microcontroller. 8. Microcontroller 8. Microcontroller Textbook Programming Robot Controllers, Myke Predko, McGraw Hill. Reference PIC Robotics: A Beginner's Guide to Robotics Projects Using the PIC Micro, John Iovine, McGraw Hill. Embedded

More information