Bayesian Networks, Winter Yoav Haimovitch & Ariel Raviv

Size: px
Start display at page:

Download "Bayesian Networks, Winter Yoav Haimovitch & Ariel Raviv"

Transcription

1 Bayesian Networks, Winter Yoav Haimovitch & Ariel Raviv 1

2 Chordal Graph Warm up Theorem 7 Perfect Vertex Elimination Scheme Maximal cliques Tree Bibliography M.C.Golumbic Algorithmic Graph Theory and Perfect Graphs. Second edition Pearl, J. Probabilistic Reasoning in Intelligent Systems. 2

3 Definition: Undirected graph G is chordal if every cycle of length greater than 3 has a chord. Remark: Chordality is a hereditary property, All induced subgraphs of a chordal graph are chordal! Chordal graphs are also called triangulated and perfect elimination graphs. 3

4 4

5 A vertex x of G is called simplicial if its adjacency set Adj(x) is a clique (not necessarily maximal) Lemma 1[Dirac 1961]: Each chordal graph has a simplicial vertex and if G is not a clique it has two non adjacent simplicial vertices. 5

6 If G is a clique, done. If not, assume that G has two non-adjacent nodes a and b and that the lemma is true to all graphs with fewer vertices than G. Let S be a minimal vertex separator for a and b. Let G a and G b be the connected components of a and b respectively. 6

7 S is a clique if not, then there exists x and y such that there is no edge between them, and because S is minimal vertex separator there is a cycle <a,,x,,b,,y,,a>. It is easy to show that there exist a minimal cycle with length no less then 4 with no chords in it, contradiction. 7

8 S is a clique. G A +S is smaller than G therefore by induction the lemma holds, i.e. G A +S is a clique or has two non adjacent simplicial vertices, one of which must be in G A. Any simplicial vertex in G A is a simplicial vertex in G because all elements of Adj(a) are inside G A +S. Thus from G A and G B we get two simplicial vertices in G. 8

9 Definition: The following are equivalent: 1. G is chordal 2. The edges of G can be directed acyclically so that every pair of converging arrows comes from two adjacent vertices. 3. G has a perfect vertex elimination scheme. 4. There is a tree T with maximal cliques of G as vertices. Any two cliques containing v are either adjacent in T or connected by a path of cliques that contain v. 9

10 By lemma 1 every chordal graph has a simplicial vertex Direct all of its edges to it Repeat the process with the rest of the graph (can be done because being chordal is hereditary) From the definition of simplicial vertex corollary that each two converging edges coming from adjacent vertices. 10

11 Let there be a cycle of size larger than 3. There exist a valid direction which is acyclic There are two converging edges, which come from two adjacent vertices The cycle has a chord. 11

12 Given a Markov network, we would like to calculate a probability function over its variables What if we want to calculate the probability of one variable? 12

13 P(X 1,X 2,X 3,X 4,X 5 )=K f 1 (X 1,X 2 )f 2 (X 2,X 3 )f 3 (X 3,X 4 )f 4 (X 4,X 5 )f 5 (X 5,X 1 ) P(X 1,X 2,X 3,X 4 )=Σ X5 K f 1 (X 1,X 2 )f2(x 2,X 3 )f 3 (X 3,X 4 )f 4 (X 4,X 5 )f 5 (X 5,X 1 )= =K f 1 (X 1,X 2 )f 2 (X 2,X 3 )f 3 (X 3,X 4 ) Σ X5 f 4 (X 4,X 5 )f 5 (X 5,X 1 ) = K` f 1 (X 1,X 2 )f 2 (X 2,X 3 )f 3 (X 3,X 4 ) F(X 4, X 1 ) Explanation: Each time we sum over a variable we automatically add edges between all its adjacent vertices (creating a clique) 13

14 Here is an example of how bad (i.e. big cliques) things can happen with incorrect order of summing P(X 1,X 2,X 3,X 4,X 5 )=Σ X0 K f 1 (X 0,X 1 )f 2 (X 0,X 2 )f 3 (X 0,X 3 )f 4 (X 0,X 4 )f 5 (X 0,X 5 ) = K` F(X 1,X 2,X 3,X 4,X 5 ) Explanation: For wrong order of summing we get big cliques and thus huge tables of probabilities to store, which are exponential in number of variables. 14

15 Let G=(V,E) be an undirected graph and let σ=[v 1,v 2,,v n ] be an ordering of the vertices. We say that σ is a perfect vertex elimination scheme if for each i: X i = { v j in Adj(v i ) j>i } is a clique. 15

16 Definition: The following are equivalent: 1. G is chordal 2. The edges of G can be directed acyclically so that every pair of converging arrows comes from two adjacent vertices. 3. G has a perfect vertex elimination scheme. 4. There is a tree T with maximal cliques of G as vertices. Any two cliques containing v are either adjacent in T or connected by a path of cliques that contain v. 16

17 By lemma 1, G has a simplicial vertex. The subgraph induced after removing this vertex is also chordal. By induction, there is an elimination order. 17

18 Let us assume a cycle of length 4 or greater. Let x be the first vertex on the elimination scheme of this cycle. x is simplicial at this point. Two vertices adjacent to x from the cycle are also adjacent between themselves. 18

19 3. All vertices of G can be deleted by arranging them in separate piles, one for each clique, and then repeatedly applying the following two operations: Delete a vertex that occurs in only one pile. Delete a pile contained in another pile 19

20 A B C D E B A C B C D D E 20

21 A B C A B A C D E B D C D D E 21

22 Definition: The following are equivalent: 1. G is chordal 2. The edges of G can be directed acyclically so that every pair of converging arrows comes from two adjacent vertices. 3. G has a perfect vertex elimination scheme. 4. There is a tree T with maximal cliques of G as vertices. Any two cliques containing v are connected by a path of cliques that contain v. 22

23 a b a c C 1 b C 1 c C 2 C 2 C 3 b c e d d b C 3 e d 23

24 C 1 a b a C 1 b C 2 C 4 C 2 C 4 a b c d c d C 3 c d C 3 24

25 Lemma 2: A vertex is simplicial iff it belongs to exactly one maximal clique. Let G =(V,E) be a chordal graph and V =k Proof by induction: Assume the claim holds for all graphs of size < k. By Lemma 1 G has a simplicial vertex v. By Lemma 2 v belongs to exactly one clique C. 25

26 For G =(V\{v},E ) there exists a tree T which satisfies the claim. Split into two cases: C = C {v} is maximal in G. Add v to C to build T from T. T is a Clique-Tree as needed. b e C 2 a C 1 c d b a c C 1 b e d C 2 26

27 C = C {v} is not maximal in G. There is a maximal clique P in G such that C P. Add C to T to build T. T is a Clique-Tree as needed. a C 2 b a C 1 a b C 2 c C 1 d c d d 27

28 Let T be a Clique-Tree of graph G=(V,E) and V =k. Proof by induction: Assume the claim holds for all graphs of size < k. Let L be a leaf in T, and P its parent in T. Let v L\P (exists from maximality). v cannot be in any other clique. by Lemma 2, v is simplicial. 28

29 Let T be T with v removed. T is a Clique- Tree. By assumption G =(V\{v},E ) is chordal. By part 3 of Theorem 7, there exists σ, a Perfect Elimination Order for G. Let σ = [v, σ ] be a perfect elimination order for G. By the converse of part 3, we can conclude that G is chordal 29

Chordal Graphs: Theory and Algorithms

Chordal Graphs: Theory and Algorithms Chordal Graphs: Theory and Algorithms 1 Chordal graphs Chordal graph : Every cycle of four or more vertices has a chord in it, i.e. there is an edge between two non consecutive vertices of the cycle. Also

More information

These notes present some properties of chordal graphs, a set of undirected graphs that are important for undirected graphical models.

These notes present some properties of chordal graphs, a set of undirected graphs that are important for undirected graphical models. Undirected Graphical Models: Chordal Graphs, Decomposable Graphs, Junction Trees, and Factorizations Peter Bartlett. October 2003. These notes present some properties of chordal graphs, a set of undirected

More information

Chordal graphs MPRI

Chordal graphs MPRI Chordal graphs MPRI 2017 2018 Michel Habib habib@irif.fr http://www.irif.fr/~habib Sophie Germain, septembre 2017 Schedule Chordal graphs Representation of chordal graphs LBFS and chordal graphs More structural

More information

NOTE ON MINIMALLY k-connected GRAPHS

NOTE ON MINIMALLY k-connected GRAPHS NOTE ON MINIMALLY k-connected GRAPHS R. Rama a, Suresh Badarla a a Department of Mathematics, Indian Institute of Technology, Chennai, India ABSTRACT A k-tree is either a complete graph on (k+1) vertices

More information

EE512 Graphical Models Fall 2009

EE512 Graphical Models Fall 2009 EE512 Graphical Models Fall 2009 Prof. Jeff Bilmes University of Washington, Seattle Department of Electrical Engineering Fall Quarter, 2009 http://ssli.ee.washington.edu/~bilmes/ee512fa09 Lecture 11 -

More information

CS473-Algorithms I. Lecture 13-A. Graphs. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 13-A. Graphs. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorithms I Lecture 3-A Graphs Graphs A directed graph (or digraph) G is a pair (V, E), where V is a finite set, and E is a binary relation on V The set V: Vertex set of G The set E: Edge set of

More information

Definition: A graph G = (V, E) is called a tree if G is connected and acyclic. The following theorem captures many important facts about trees.

Definition: A graph G = (V, E) is called a tree if G is connected and acyclic. The following theorem captures many important facts about trees. Tree 1. Trees and their Properties. Spanning trees 3. Minimum Spanning Trees 4. Applications of Minimum Spanning Trees 5. Minimum Spanning Tree Algorithms 1.1 Properties of Trees: Definition: A graph G

More information

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE Professor Kindred Math 104, Graph Theory Homework 2 Solutions February 7, 2013 Introduction to Graph Theory, West Section 1.2: 26, 38, 42 Section 1.3: 14, 18 Section 2.1: 26, 29, 30 DO NOT RE-DISTRIBUTE

More information

A taste of perfect graphs (continued)

A taste of perfect graphs (continued) A taste of perfect graphs (continued) Recall two theorems from last class characterizing perfect graphs (and that we observed that the α ω theorem implied the Perfect Graph Theorem). Perfect Graph Theorem.

More information

Graph Definitions. In a directed graph the edges have directions (ordered pairs). A weighted graph includes a weight function.

Graph Definitions. In a directed graph the edges have directions (ordered pairs). A weighted graph includes a weight function. Graph Definitions Definition 1. (V,E) where An undirected graph G is a pair V is the set of vertices, E V 2 is the set of edges (unordered pairs) E = {(u, v) u, v V }. In a directed graph the edges have

More information

Ch9: Exact Inference: Variable Elimination. Shimi Salant, Barak Sternberg

Ch9: Exact Inference: Variable Elimination. Shimi Salant, Barak Sternberg Ch9: Exact Inference: Variable Elimination Shimi Salant Barak Sternberg Part 1 Reminder introduction (1/3) We saw two ways to represent (finite discrete) distributions via graphical data structures: Bayesian

More information

Faster parameterized algorithms for Minimum Fill-In

Faster parameterized algorithms for Minimum Fill-In Faster parameterized algorithms for Minimum Fill-In Hans L. Bodlaender Pinar Heggernes Yngve Villanger Abstract We present two parameterized algorithms for the Minimum Fill-In problem, also known as Chordal

More information

Faster parameterized algorithms for Minimum Fill-In

Faster parameterized algorithms for Minimum Fill-In Faster parameterized algorithms for Minimum Fill-In Hans L. Bodlaender Pinar Heggernes Yngve Villanger Technical Report UU-CS-2008-042 December 2008 Department of Information and Computing Sciences Utrecht

More information

On a perfect problem

On a perfect problem R u t c o r Research R e p o r t On a perfect problem Igor E. Zverovich a RRR 26-2005, September 2005 RUTCOR Rutgers Center for Operations Research Rutgers University 640 Bartholomew Road Piscataway, New

More information

Professor: Padraic Bartlett. Lecture 9: Trees and Art Galleries. Week 10 UCSB 2015

Professor: Padraic Bartlett. Lecture 9: Trees and Art Galleries. Week 10 UCSB 2015 Math 7H Professor: Padraic Bartlett Lecture 9: Trees and Art Galleries Week 10 UCSB 2015 1 Prelude: Graph Theory This talk uses the mathematical concepts of graphs from our previous class. In particular,

More information

9 About Intersection Graphs

9 About Intersection Graphs 9 About Intersection Graphs Since this lecture we focus on selected detailed topics in Graph theory that are close to your teacher s heart... The first selected topic is that of intersection graphs, i.e.

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014 Suggested Reading: Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 Probabilistic Modelling and Reasoning: The Junction

More information

Section 3.1: Nonseparable Graphs Cut vertex of a connected graph G: A vertex x G such that G x is not connected. Theorem 3.1, p. 57: Every connected

Section 3.1: Nonseparable Graphs Cut vertex of a connected graph G: A vertex x G such that G x is not connected. Theorem 3.1, p. 57: Every connected Section 3.1: Nonseparable Graphs Cut vertex of a connected graph G: A vertex x G such that G x is not connected. Theorem 3.1, p. 57: Every connected graph G with at least 2 vertices contains at least 2

More information

Block Duplicate Graphs and a Hierarchy of Chordal Graphs

Block Duplicate Graphs and a Hierarchy of Chordal Graphs Block Duplicate Graphs and a Hierarchy of Chordal Graphs Martin Charles Golumbic Uri N. Peled August 18, 1998 Revised October 24, 2000 and March 15, 2001 Abstract A block graph is a graph whose blocks

More information

Dirac-type characterizations of graphs without long chordless cycles

Dirac-type characterizations of graphs without long chordless cycles Dirac-type characterizations of graphs without long chordless cycles Vašek Chvátal Department of Computer Science Rutgers University chvatal@cs.rutgers.edu Irena Rusu LIFO Université de Orléans irusu@lifo.univ-orleans.fr

More information

HW Graph Theory SOLUTIONS (hbovik) - Q

HW Graph Theory SOLUTIONS (hbovik) - Q 1, Diestel 9.3: An arithmetic progression is an increasing sequence of numbers of the form a, a+d, a+ d, a + 3d.... Van der Waerden s theorem says that no matter how we partition the natural numbers into

More information

Enumeration of Perfect Sequences in Chordal Graphs

Enumeration of Perfect Sequences in Chordal Graphs Enumeration of Perfect Sequences in Chordal Graphs Yasuko Matsui, Ryuhei Uehara, Takeaki Uno Center for Computational Epidemiology and Response Analysis University of North Texas May 4, 20 (CeCERA) GSCM

More information

Graphs and Discrete Structures

Graphs and Discrete Structures Graphs and Discrete Structures Nicolas Bousquet Louis Esperet Fall 2018 Abstract Brief summary of the first and second course. É 1 Chromatic number, independence number and clique number The chromatic

More information

Small Survey on Perfect Graphs

Small Survey on Perfect Graphs Small Survey on Perfect Graphs Michele Alberti ENS Lyon December 8, 2010 Abstract This is a small survey on the exciting world of Perfect Graphs. We will see when a graph is perfect and which are families

More information

Lecture 19 Thursday, March 29. Examples of isomorphic, and non-isomorphic graphs will be given in class.

Lecture 19 Thursday, March 29. Examples of isomorphic, and non-isomorphic graphs will be given in class. CIS 160 - Spring 2018 (instructor Val Tannen) Lecture 19 Thursday, March 29 GRAPH THEORY Graph isomorphism Definition 19.1 Two graphs G 1 = (V 1, E 1 ) and G 2 = (V 2, E 2 ) are isomorphic, write G 1 G

More information

THE LEAFAGE OF A CHORDAL GRAPH

THE LEAFAGE OF A CHORDAL GRAPH Discussiones Mathematicae Graph Theory 18 (1998 ) 23 48 THE LEAFAGE OF A CHORDAL GRAPH In-Jen Lin National Ocean University, Taipei, Taiwan Terry A. McKee 1 Wright State University, Dayton, OH 45435-0001,

More information

Vertex coloring, chromatic number

Vertex coloring, chromatic number Vertex coloring, chromatic number A k-coloring of a graph G is a labeling f : V (G) S, where S = k. The labels are called colors; the vertices of one color form a color class. A k-coloring is proper if

More information

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points MC 0 GRAPH THEORY 0// Solutions to HW # 0 points + XC points ) [CH] p.,..7. This problem introduces an important class of graphs called the hypercubes or k-cubes, Q, Q, Q, etc. I suggest that before you

More information

Lecture 4: Trees and Art Galleries

Lecture 4: Trees and Art Galleries Math 7H: Honors Seminar Professor: Padraic Bartlett Lecture 4: Trees and Art Galleries Week 2 UCSB 2014 1 Prelude: Graph Theory In this talk, we re going to refer frequently to things called graphs and

More information

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2 Graph Theory S I I S S I I S Graphs Definition A graph G is a pair consisting of a vertex set V (G), and an edge set E(G) ( ) V (G). x and y are the endpoints of edge e = {x, y}. They are called adjacent

More information

Vertex coloring, chromatic number

Vertex coloring, chromatic number Vertex coloring, chromatic number A k-coloring of a graph G is a labeling f : V (G) S, where S = k. The labels are called colors; the vertices of one color form a color class. A k-coloring is proper if

More information

Bipartite Roots of Graphs

Bipartite Roots of Graphs Bipartite Roots of Graphs Lap Chi Lau Department of Computer Science University of Toronto Graph H is a root of graph G if there exists a positive integer k such that x and y are adjacent in G if and only

More information

Solutions to In-Class Problems Week 4, Fri

Solutions to In-Class Problems Week 4, Fri Massachusetts Institute of Technology 6.042J/18.062J, Fall 02: Mathematics for Computer Science Professor Albert Meyer and Dr. Radhika Nagpal Solutions to In-Class Problems Week 4, Fri Definition: The

More information

P = NP; P NP. Intuition of the reduction idea:

P = NP; P NP. Intuition of the reduction idea: 1 Polynomial Time Reducibility The question of whether P = NP is one of the greatest unsolved problems in the theoretical computer science. Two possibilities of relationship between P and N P P = NP; P

More information

Contracting Chordal Graphs and Bipartite Graphs to Paths and Trees

Contracting Chordal Graphs and Bipartite Graphs to Paths and Trees Contracting Chordal Graphs and Bipartite Graphs to Paths and Trees Pinar Heggernes Pim van t Hof Benjamin Léveque Christophe Paul Abstract We study the following two graph modification problems: given

More information

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings On the Relationships between Zero Forcing Numbers and Certain Graph Coverings Fatemeh Alinaghipour Taklimi, Shaun Fallat 1,, Karen Meagher 2 Department of Mathematics and Statistics, University of Regina,

More information

NP Completeness. Andreas Klappenecker [partially based on slides by Jennifer Welch]

NP Completeness. Andreas Klappenecker [partially based on slides by Jennifer Welch] NP Completeness Andreas Klappenecker [partially based on slides by Jennifer Welch] Overview We already know the following examples of NPC problems: SAT 3SAT We are going to show that the following are

More information

Matching Algorithms. Proof. If a bipartite graph has a perfect matching, then it is easy to see that the right hand side is a necessary condition.

Matching Algorithms. Proof. If a bipartite graph has a perfect matching, then it is easy to see that the right hand side is a necessary condition. 18.433 Combinatorial Optimization Matching Algorithms September 9,14,16 Lecturer: Santosh Vempala Given a graph G = (V, E), a matching M is a set of edges with the property that no two of the edges have

More information

Two Characterizations of Hypercubes

Two Characterizations of Hypercubes Two Characterizations of Hypercubes Juhani Nieminen, Matti Peltola and Pasi Ruotsalainen Department of Mathematics, University of Oulu University of Oulu, Faculty of Technology, Mathematics Division, P.O.

More information

Lecture 11: May 1, 2000

Lecture 11: May 1, 2000 / EE596 Pat. Recog. II: Introduction to Graphical Models Spring 2000 Lecturer: Jeff Bilmes Lecture 11: May 1, 2000 University of Washington Dept. of Electrical Engineering Scribe: David Palmer 11.1 Graph

More information

Number Theory and Graph Theory

Number Theory and Graph Theory 1 Number Theory and Graph Theory Chapter 6 Basic concepts and definitions of graph theory By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com

More information

Chordal Probe Graphs (extended abstract)

Chordal Probe Graphs (extended abstract) Chordal Probe Graphs (extended abstract) Martin Charles Golumbic Marina Lipshteyn Abstract. In this paper, we introduce the class of chordal probe graphs which are a generalization of both interval probe

More information

Coloring edges and vertices of graphs without short or long cycles

Coloring edges and vertices of graphs without short or long cycles Coloring edges and vertices of graphs without short or long cycles Marcin Kamiński and Vadim Lozin Abstract Vertex and edge colorability are two graph problems that are NPhard in general. We show that

More information

Kyle Gettig. Mentor Benjamin Iriarte Fourth Annual MIT PRIMES Conference May 17, 2014

Kyle Gettig. Mentor Benjamin Iriarte Fourth Annual MIT PRIMES Conference May 17, 2014 Linear Extensions of Directed Acyclic Graphs Kyle Gettig Mentor Benjamin Iriarte Fourth Annual MIT PRIMES Conference May 17, 2014 Motivation Individuals can be modeled as vertices of a graph, with edges

More information

Loopy Belief Propagation

Loopy Belief Propagation Loopy Belief Propagation Research Exam Kristin Branson September 29, 2003 Loopy Belief Propagation p.1/73 Problem Formalization Reasoning about any real-world problem requires assumptions about the structure

More information

Lecture 3: Conditional Independence - Undirected

Lecture 3: Conditional Independence - Undirected CS598: Graphical Models, Fall 2016 Lecture 3: Conditional Independence - Undirected Lecturer: Sanmi Koyejo Scribe: Nate Bowman and Erin Carrier, Aug. 30, 2016 1 Review for the Bayes-Ball Algorithm Recall

More information

Graph Algorithms Using Depth First Search

Graph Algorithms Using Depth First Search Graph Algorithms Using Depth First Search Analysis of Algorithms Week 8, Lecture 1 Prepared by John Reif, Ph.D. Distinguished Professor of Computer Science Duke University Graph Algorithms Using Depth

More information

Ma/CS 6b Class 5: Graph Connectivity

Ma/CS 6b Class 5: Graph Connectivity Ma/CS 6b Class 5: Graph Connectivity By Adam Sheffer Communications Network We are given a set of routers and wish to connect pairs of them to obtain a connected communications network. The network should

More information

NP-Completeness. Algorithms

NP-Completeness. Algorithms NP-Completeness Algorithms The NP-Completeness Theory Objective: Identify a class of problems that are hard to solve. Exponential time is hard. Polynomial time is easy. Why: Do not try to find efficient

More information

Minimal Dominating Sets in Graphs: Enumeration, Combinatorial Bounds and Graph Classes

Minimal Dominating Sets in Graphs: Enumeration, Combinatorial Bounds and Graph Classes Minimal Dominating Sets in Graphs: Enumeration, Combinatorial Bounds and Graph Classes J.-F. Couturier 1 P. Heggernes 2 D. Kratsch 1 P. van t Hof 2 1 LITA Université de Lorraine F-57045 Metz France 2 University

More information

6 : Factor Graphs, Message Passing and Junction Trees

6 : Factor Graphs, Message Passing and Junction Trees 10-708: Probabilistic Graphical Models 10-708, Spring 2018 6 : Factor Graphs, Message Passing and Junction Trees Lecturer: Kayhan Batmanghelich Scribes: Sarthak Garg 1 Factor Graphs Factor Graphs are graphical

More information

A generalization of Mader s theorem

A generalization of Mader s theorem A generalization of Mader s theorem Ajit A. Diwan Department of Computer Science and Engineering Indian Institute of Technology, Bombay Mumbai, 4000076, India. email: aad@cse.iitb.ac.in 18 June 2007 Abstract

More information

Matching Theory. Figure 1: Is this graph bipartite?

Matching Theory. Figure 1: Is this graph bipartite? Matching Theory 1 Introduction A matching M of a graph is a subset of E such that no two edges in M share a vertex; edges which have this property are called independent edges. A matching M is said to

More information

Approximation slides 1. An optimal polynomial algorithm for the Vertex Cover and matching in Bipartite graphs

Approximation slides 1. An optimal polynomial algorithm for the Vertex Cover and matching in Bipartite graphs Approximation slides 1 An optimal polynomial algorithm for the Vertex Cover and matching in Bipartite graphs Approximation slides 2 Linear independence A collection of row vectors {v T i } are independent

More information

RECOGNIZING CHORDAL PROBE GRAPHS AND CYCLE-BICOLORABLE GRAPHS

RECOGNIZING CHORDAL PROBE GRAPHS AND CYCLE-BICOLORABLE GRAPHS SIAM J. DISCRETE MATH. Vol. 21, No. 3, pp. 573 591 c 2007 Society for Industrial and Applied Mathematics RECOGNIZING CHORDAL PROBE GRAPHS AND CYCLE-BICOLORABLE GRAPHS ANNE BERRY, MARTIN CHARLES GOLUMBIC,

More information

COLORING EDGES AND VERTICES OF GRAPHS WITHOUT SHORT OR LONG CYCLES

COLORING EDGES AND VERTICES OF GRAPHS WITHOUT SHORT OR LONG CYCLES Volume 2, Number 1, Pages 61 66 ISSN 1715-0868 COLORING EDGES AND VERTICES OF GRAPHS WITHOUT SHORT OR LONG CYCLES MARCIN KAMIŃSKI AND VADIM LOZIN Abstract. Vertex and edge colorability are two graph problems

More information

arxiv: v1 [math.co] 20 Nov 2018

arxiv: v1 [math.co] 20 Nov 2018 A remark on the characterization of triangulated graphs arxiv:1811.08411v1 [math.co] 20 Nov 2018 R. GARGOURI a H. NAJAR b a Taibah University, College of Sciences, Department of Mathematics Madinah, Saudi

More information

Lecture 22 Tuesday, April 10

Lecture 22 Tuesday, April 10 CIS 160 - Spring 2018 (instructor Val Tannen) Lecture 22 Tuesday, April 10 GRAPH THEORY Directed Graphs Directed graphs (a.k.a. digraphs) are an important mathematical modeling tool in Computer Science,

More information

Chordal deletion is fixed-parameter tractable

Chordal deletion is fixed-parameter tractable Chordal deletion is fixed-parameter tractable Dániel Marx Institut für Informatik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany. dmarx@informatik.hu-berlin.de Abstract. It

More information

Ma/CS 6b Class 4: Matchings in General Graphs

Ma/CS 6b Class 4: Matchings in General Graphs Ma/CS 6b Class 4: Matchings in General Graphs By Adam Sheffer Reminder: Hall's Marriage Theorem Theorem. Let G = V 1 V 2, E be a bipartite graph. There exists a matching of size V 1 in G if and only if

More information

Part II. C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS

Part II. C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS Part II C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS Converting Directed to Undirected Graphs (1) Converting Directed to Undirected Graphs (2) Add extra links between

More information

arxiv: v1 [cs.ds] 8 Jan 2019

arxiv: v1 [cs.ds] 8 Jan 2019 Subset Feedback Vertex Set in Chordal and Split Graphs Geevarghese Philip 1, Varun Rajan 2, Saket Saurabh 3,4, and Prafullkumar Tale 5 arxiv:1901.02209v1 [cs.ds] 8 Jan 2019 1 Chennai Mathematical Institute,

More information

List of Theorems. Mat 416, Introduction to Graph Theory. Theorem 1 The numbers R(p, q) exist and for p, q 2,

List of Theorems. Mat 416, Introduction to Graph Theory. Theorem 1 The numbers R(p, q) exist and for p, q 2, List of Theorems Mat 416, Introduction to Graph Theory 1. Ramsey s Theorem for graphs 8.3.11. Theorem 1 The numbers R(p, q) exist and for p, q 2, R(p, q) R(p 1, q) + R(p, q 1). If both summands on the

More information

Last course. Last course. Michel Habib 28 octobre 2016

Last course. Last course. Michel Habib  28 octobre 2016 Last course Michel Habib habib@irif.fr http://www.irif.fr/~habib 28 octobre 2016 Schedule Introduction More structural insights on chordal graphs Properties of reduced clique graphs Exercises Interval

More information

Treewidth and graph minors

Treewidth and graph minors Treewidth and graph minors Lectures 9 and 10, December 29, 2011, January 5, 2012 We shall touch upon the theory of Graph Minors by Robertson and Seymour. This theory gives a very general condition under

More information

STAT 598L Probabilistic Graphical Models. Instructor: Sergey Kirshner. Exact Inference

STAT 598L Probabilistic Graphical Models. Instructor: Sergey Kirshner. Exact Inference STAT 598L Probabilistic Graphical Models Instructor: Sergey Kirshner Exact Inference What To Do With Bayesian/Markov Network? Compact representation of a complex model, but Goal: efficient extraction of

More information

Forensic Statistics and Graphical Models (2) Richard Gill Spring Semester

Forensic Statistics and Graphical Models (2) Richard Gill Spring Semester Forensic Statistics and Graphical Models (2) Richard Gill Spring Semester 2015 http://www.math.leidenuniv.nl/~gill/teaching/graphical Graph Theory An undirected graph consists of a set of vertices and

More information

Characterizations of Trees

Characterizations of Trees Characterizations of Trees Lemma Every tree with at least two vertices has at least two leaves. Proof. 1. A connected graph with at least two vertices has an edge. 2. In an acyclic graph, an end point

More information

Ma/CS 6b Class 26: Art Galleries and Politicians

Ma/CS 6b Class 26: Art Galleries and Politicians Ma/CS 6b Class 26: Art Galleries and Politicians By Adam Sheffer The Art Gallery Problem Problem. We wish to place security cameras at a gallery, such that they cover it completely. Every camera can cover

More information

Masakuni TAKI. Application of Transitive Graph for Education Support System 69

Masakuni TAKI. Application of Transitive Graph for Education Support System 69 Application of Transitive Graph for Education Support System 69 Masakuni TAKI This paper reports an education support system to take required credits from entrance to graduation in a college. This system

More information

Lecture 4: Walks, Trails, Paths and Connectivity

Lecture 4: Walks, Trails, Paths and Connectivity Lecture 4: Walks, Trails, Paths and Connectivity Rosa Orellana Math 38 April 6, 2015 Graph Decompositions Def: A decomposition of a graph is a list of subgraphs such that each edge appears in exactly one

More information

CS242: Probabilistic Graphical Models Lecture 2B: Loopy Belief Propagation & Junction Trees

CS242: Probabilistic Graphical Models Lecture 2B: Loopy Belief Propagation & Junction Trees CS242: Probabilistic Graphical Models Lecture 2B: Loopy Belief Propagation & Junction Trees Professor Erik Sudderth Brown University Computer Science September 22, 2016 Some figures and materials courtesy

More information

arxiv: v1 [cs.ds] 14 Dec 2018

arxiv: v1 [cs.ds] 14 Dec 2018 Graph classes and forbidden patterns on three vertices Laurent Feuilloley 1,2,3 and Michel Habib 1,3 arxiv:1812.05913v1 [cs.ds] 14 Dec 2018 1 IRIF, UMR 8243 CNRS & Paris Diderot University, Paris, France

More information

CSC 373: Algorithm Design and Analysis Lecture 4

CSC 373: Algorithm Design and Analysis Lecture 4 CSC 373: Algorithm Design and Analysis Lecture 4 Allan Borodin January 14, 2013 1 / 16 Lecture 4: Outline (for this lecture and next lecture) Some concluding comments on optimality of EST Greedy Interval

More information

The strong chromatic number of a graph

The strong chromatic number of a graph The strong chromatic number of a graph Noga Alon Abstract It is shown that there is an absolute constant c with the following property: For any two graphs G 1 = (V, E 1 ) and G 2 = (V, E 2 ) on the same

More information

Problem Set 3. MATH 776, Fall 2009, Mohr. November 30, 2009

Problem Set 3. MATH 776, Fall 2009, Mohr. November 30, 2009 Problem Set 3 MATH 776, Fall 009, Mohr November 30, 009 1 Problem Proposition 1.1. Adding a new edge to a maximal planar graph of order at least 6 always produces both a T K 5 and a T K 3,3 subgraph. Proof.

More information

Some results on Interval probe graphs

Some results on Interval probe graphs Some results on Interval probe graphs In-Jen Lin and C H Wu Department of Computer science Science National Taiwan Ocean University, Keelung, Taiwan ijlin@mail.ntou.edu.tw Abstract Interval Probe Graphs

More information

Discharging and reducible configurations

Discharging and reducible configurations Discharging and reducible configurations Zdeněk Dvořák March 24, 2018 Suppose we want to show that graphs from some hereditary class G are k- colorable. Clearly, we can restrict our attention to graphs

More information

DFS & STRONGLY CONNECTED COMPONENTS

DFS & STRONGLY CONNECTED COMPONENTS DFS & STRONGLY CONNECTED COMPONENTS CS 4407 Search Tree Breadth-First Search (BFS) Depth-First Search (DFS) Depth-First Search (DFS) u d[u]: when u is discovered f[u]: when searching adj of u is finished

More information

Problem Set 2 Solutions

Problem Set 2 Solutions Problem Set 2 Solutions Graph Theory 2016 EPFL Frank de Zeeuw & Claudiu Valculescu 1. Prove that the following statements about a graph G are equivalent. - G is a tree; - G is minimally connected (it is

More information

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 9 Notes. Class URL:

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 9 Notes. Class URL: Notes slides from before lecture CSE 21, Winter 2017, Section A00 Lecture 9 Notes Class URL: http://vlsicad.ucsd.edu/courses/cse21-w17/ Notes slides from before lecture Notes February 8 (1) HW4 is due

More information

K 4 C 5. Figure 4.5: Some well known family of graphs

K 4 C 5. Figure 4.5: Some well known family of graphs 08 CHAPTER. TOPICS IN CLASSICAL GRAPH THEORY K, K K K, K K, K K, K C C C C 6 6 P P P P P. Graph Operations Figure.: Some well known family of graphs A graph Y = (V,E ) is said to be a subgraph of a graph

More information

Discrete mathematics , Fall Instructor: prof. János Pach

Discrete mathematics , Fall Instructor: prof. János Pach Discrete mathematics 2016-2017, Fall Instructor: prof. János Pach - covered material - Lecture 1. Counting problems To read: [Lov]: 1.2. Sets, 1.3. Number of subsets, 1.5. Sequences, 1.6. Permutations,

More information

A NEW TEST FOR INTERVAL GRAPHS. Wen-Lian Hsu 1

A NEW TEST FOR INTERVAL GRAPHS. Wen-Lian Hsu 1 A NEW TEST FOR INTERVAL GRAPHS Wen-Lian Hsu 1 Institute of Information Science, Academia Sinica Taipei, Taiwan, Republic of China hsu@iis.sinica.edu.tw Abstract An interval graph is the intersection graph

More information

Lecture 13: May 10, 2002

Lecture 13: May 10, 2002 EE96 Pat. Recog. II: Introduction to Graphical Models University of Washington Spring 00 Dept. of Electrical Engineering Lecture : May 0, 00 Lecturer: Jeff Bilmes Scribe: Arindam Mandal, David Palmer(000).

More information

Graph Theory. Probabilistic Graphical Models. L. Enrique Sucar, INAOE. Definitions. Types of Graphs. Trajectories and Circuits.

Graph Theory. Probabilistic Graphical Models. L. Enrique Sucar, INAOE. Definitions. Types of Graphs. Trajectories and Circuits. Theory Probabilistic ical Models L. Enrique Sucar, INAOE and (INAOE) 1 / 32 Outline and 1 2 3 4 5 6 7 8 and 9 (INAOE) 2 / 32 A graph provides a compact way to represent binary relations between a set of

More information

P and NP (Millenium problem)

P and NP (Millenium problem) CMPS 2200 Fall 2017 P and NP (Millenium problem) Carola Wenk Slides courtesy of Piotr Indyk with additions by Carola Wenk CMPS 2200 Introduction to Algorithms 1 We have seen so far Algorithms for various

More information

Minimal dominating sets in graph classes: combinatorial bounds and enumeration

Minimal dominating sets in graph classes: combinatorial bounds and enumeration Minimal dominating sets in graph classes: combinatorial bounds and enumeration Jean-François Couturier 1, Pinar Heggernes 2, Pim van t Hof 2, and Dieter Kratsch 1 1 LITA, Université Paul Verlaine - Metz,

More information

Extremal Graph Theory: Turán s Theorem

Extremal Graph Theory: Turán s Theorem Bridgewater State University Virtual Commons - Bridgewater State University Honors Program Theses and Projects Undergraduate Honors Program 5-9-07 Extremal Graph Theory: Turán s Theorem Vincent Vascimini

More information

Maximal Label Search algorithms to compute perfect and minimal elimination orderings

Maximal Label Search algorithms to compute perfect and minimal elimination orderings Author manuscript, published in "SIAM Journal on Discrete Mathematics 23, 1 (2009) 428-446" Maximal Label Search algorithms to compute perfect and minimal elimination orderings A. Berry R. Krueger G. Simonet

More information

Fully dynamic algorithm for recognition and modular decomposition of permutation graphs

Fully dynamic algorithm for recognition and modular decomposition of permutation graphs Fully dynamic algorithm for recognition and modular decomposition of permutation graphs Christophe Crespelle Christophe Paul CNRS - Département Informatique, LIRMM, Montpellier {crespell,paul}@lirmm.fr

More information

CMPSCI 250: Introduction to Computation. Lecture #22: Graphs, Paths, and Trees David Mix Barrington 12 March 2014

CMPSCI 250: Introduction to Computation. Lecture #22: Graphs, Paths, and Trees David Mix Barrington 12 March 2014 CMPSCI 250: Introduction to Computation Lecture #22: Graphs, Paths, and Trees David Mix Barrington 12 March 2014 Graphs, Paths, and Trees Graph Definitions Paths and the Path Predicate Cycles, Directed

More information

1 Matching in Non-Bipartite Graphs

1 Matching in Non-Bipartite Graphs CS 369P: Polyhedral techniques in combinatorial optimization Instructor: Jan Vondrák Lecture date: September 30, 2010 Scribe: David Tobin 1 Matching in Non-Bipartite Graphs There are several differences

More information

Probe Distance-Hereditary Graphs

Probe Distance-Hereditary Graphs Proc. 16th Computing: The Australasian Theory Symposium (CATS 2010), Brisbane, Australia Probe Distance-Hereditary Graphs Maw-Shang Chang 1 Ling-Ju Hung 1 Peter Rossmanith 2 1 Department of Computer Science

More information

Minimal comparability completions of arbitrary graphs

Minimal comparability completions of arbitrary graphs Minimal comparability completions of arbitrary graphs Pinar Heggernes Federico Mancini Charis Papadopoulos Abstract A transitive orientation of an undirected graph is an assignment of directions to its

More information

Chapter 4. Triangular Sum Labeling

Chapter 4. Triangular Sum Labeling Chapter 4 Triangular Sum Labeling 32 Chapter 4. Triangular Sum Graphs 33 4.1 Introduction This chapter is focused on triangular sum labeling of graphs. As every graph is not a triangular sum graph it is

More information

γ(ɛ) (a, b) (a, d) (d, a) (a, b) (c, d) (d, d) (e, e) (e, a) (e, e) (a) Draw a picture of G.

γ(ɛ) (a, b) (a, d) (d, a) (a, b) (c, d) (d, d) (e, e) (e, a) (e, e) (a) Draw a picture of G. MAD 3105 Spring 2006 Solutions for Review for Test 2 1. Define a graph G with V (G) = {a, b, c, d, e}, E(G) = {r, s, t, u, v, w, x, y, z} and γ, the function defining the edges, is given by the table ɛ

More information

Computer Science 280 Fall 2002 Homework 10 Solutions

Computer Science 280 Fall 2002 Homework 10 Solutions Computer Science 280 Fall 2002 Homework 10 Solutions Part A 1. How many nonisomorphic subgraphs does W 4 have? W 4 is the wheel graph obtained by adding a central vertex and 4 additional "spoke" edges

More information

Algorithm design in Perfect Graphs N.S. Narayanaswamy IIT Madras

Algorithm design in Perfect Graphs N.S. Narayanaswamy IIT Madras Algorithm design in Perfect Graphs N.S. Narayanaswamy IIT Madras What is it to be Perfect? Introduced by Claude Berge in early 1960s Coloring number and clique number are one and the same for all induced

More information

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge.

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge. 1 Graph Basics What is a graph? Graph: a graph G consists of a set of vertices, denoted V (G), a set of edges, denoted E(G), and a relation called incidence so that each edge is incident with either one

More information