Discrete Differential Geometry: An Applied Introduction

Size: px
Start display at page:

Download "Discrete Differential Geometry: An Applied Introduction"

Transcription

1 Discrete Differential Geometry: An Applied Introduction Eitan Grinspun with Mathieu Desbrun, Konrad Polthier, Peter Schröder, & Ari Stern 1

2 Differential Geometry Why do we care? geometry of surfaces Springborn Grape (u. of Bonn) mothertongue of physical theories computation: simulation/processing Elcott et al. Alliez et al. Grinspun et al. Desbrun 2

3 A Bit of History Geometry is the key! studied for centuries Hermann Schwarz, 1890 Cartan, Poincaré, Lie, Hodge, de Rham, Gauss, Noether, mostly differential geometry differential and integral calculus DiMarco, Physics, Montana The study of invariants and symmetries Bobenko and Suris 3

4 Getting Started How to apply DiffGeo ideas? surfaces as collections of samples and topology (connectivity) apply continuous ideas BUT: setting is discrete what is the right way? discrete vs. discretized 4

5 Getting Started How to apply DiffGeo ideas? surfaces as collections of samples and topology (connectivity) apply continuous ideas BUT: setting is discrete what is the right way? discrete vs. discretized 5

6 Discretized Build smooth manifold structure collection of charts mutually compatible on their overlaps form an atlas realize as smooth functions differentiate away 6

7 Discrete Geometry Basic tool differential geometry metric, curvature, etc. Discrete realizations meshes computational geom. graph theory Hermann Schwarz, 1890 Uli Heller, 2002 DiMarco, Physics, Montana Boy s Surface, Oberwolfach Black Rock City, 2003 Frei Otto, Munich

8 Discrete Diff.Geometry Building from the ground up discrete geometry given meshes: triangles, tets more general: cell complex how to do calculus? 8

9 Discr. Diff. Geometry Building from the top down high level theorems Riemann mapping Willmore energy Hamilton s prcple. Boy s Surface, Oberwolfach 9

10 What Matters? Structure preservation! symmetry groups rigid bodies: Euclidean group fluids: diffeomorphism group Accuracy Speed Size conformal geometry: Möbius group many more: symplectic, invariants, Stokes theorem, de Rham complex, etc. (pick your favorite ) 10

11 Warmup: Smooth Setting Univariate curves 11

12 Warmup: Smooth Setting Univariate curves secant tangent 12

13 Warmup: Smooth Setting Univariate curves secant tangent circle 13

14 Warmup: Smooth Setting Univariate curves secant tangent circle curvature signed 14

15 Gauß Map: tangent vector Map to unit circle shape operator arc length param 15

16 Turning Number Number of orbits in Gauß image 16

17 Turning Number Thm. For a closed curve 17

18 Warmup: Discr. Setting 18

19 Inscribed Polygon: Finite number of vertices on curve, ordered straight edges 19

20 Length Sum of edge lengths 20

21 Length Smooth curve limit of inscribed polygon lengths 21

22 Total Signed Curvature Sum of turning angles 22

23 Discrete Gauß Map Edges map to points, vertices map to arcs 23

24 Discrete Gauß Map Turning number well-defined for discrete curves 24

25 Turning Number Theorem Closed curve the total signed curvature is an integer multiple of 2π. proof: sum of exterior angles 25

26 Structure-Preservation Arbitrary discrete curve total signed curvature obeys discrete turning number theorem even coarse mesh which continuous theorems to preserve? that depends on the application 26

27 Convergence Consider refinement sequence length of inscribed polygon to length of smooth curve discrete measure approaches continuous analogue which refinement sequence? depends on discrete operator pathological sequences may exist 27

28 Recall: Total Signed Curvature Sum of turning angles 28

29 Another Definition Curvature normal signed curvature (scalar) unit normal (vector) 29

30 Curvature normal Gradient of length define discrete curvature 30

31 Gradient of Length 31

32 Gradient of Length 32

33 Gradient of Length 33

34 Gradient of Length + 34

35 Gradient of Length 35

36 Gradient of Length 36

37 Gradient of Length 37

38 Moral of the Story Structurepreservation For an arbitrary (even coarse) discrete curve, the discrete measure of curvature obeys the discrete turning number theorem. Convergence In the limit of a refinement sequence, discrete measures of length and curvature agree with continuous measures. 38

39 Themes for Today What characterizes structure(s)? what is shape? Euclidean invariance what is physics? conservation/balance laws what can we measure? mass, area, curvature, flux, circulation, 39

40 Themes for Today Invariant descriptions invariance under xforms symmetries give momenta Intrinsic descriptions coord. frame independence Variational principles solution as optimum 40

41 What it All Means Benefits everything is geometric often more straightforward tons of indices verboten! The story is not finished still many open questions in particular: numerical analysis 41

42 The Program for Today Things we will cover surfaces: some basic operators the discrete setting first principles ideas putting them to work 42

43 The Program for Today Things we will cover a first physics model deformation of a shape discrete shells discrete exterior calculus discrete fluids structure: vorticity 43

44 The Program for Today Things we will cover conformal geometry conformal parameterizations curvature energies structures in time variational principles discrete time 44

Discrete Differential Geometry. Differential Geometry

Discrete Differential Geometry. Differential Geometry Discrete Differential Geometry Yiying Tong CSE 891 Sect 004 Differential Geometry Why do we care? theory: special surfaces minimal, CMC, integrable, etc. computation: simulation/processing Grape (u. of

More information

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011 CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell 2/15/2011 1 Motivation Geometry processing: understand geometric characteristics,

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

04 - Normal Estimation, Curves

04 - Normal Estimation, Curves 04 - Normal Estimation, Curves Acknowledgements: Olga Sorkine-Hornung Normal Estimation Implicit Surface Reconstruction Implicit function from point clouds Need consistently oriented normals < 0 0 > 0

More information

Three Points Make a Triangle Or a Circle

Three Points Make a Triangle Or a Circle Three Points Make a Triangle Or a Circle Peter Schröder joint work with Liliya Kharevych, Boris Springborn, Alexander Bobenko 1 In This Section Circles as basic primitive it s all about the underlying

More information

Discrete Exterior Calculus

Discrete Exterior Calculus Discrete Exterior Calculus Peter Schröder with Mathieu Desbrun and the rest of the DEC crew 1 Big Picture Deriving a whole Discrete Calculus first: discrete domain notion of chains and discrete representation

More information

Discrete Exterior Calculus How to Turn Your Mesh into a Computational Structure. Discrete Differential Geometry

Discrete Exterior Calculus How to Turn Your Mesh into a Computational Structure. Discrete Differential Geometry Discrete Exterior Calculus How to Turn Your Mesh into a Computational Structure Discrete Differential Geometry Big Picture Deriving a whole Discrete Calculus you need first a discrete domain will induce

More information

Overview. Applications of DEC: Fluid Mechanics and Meshing. Fluid Models (I) Part I. Computational Fluids with DEC. Fluid Models (II) Fluid Models (I)

Overview. Applications of DEC: Fluid Mechanics and Meshing. Fluid Models (I) Part I. Computational Fluids with DEC. Fluid Models (II) Fluid Models (I) Applications of DEC: Fluid Mechanics and Meshing Mathieu Desbrun Applied Geometry Lab Overview Putting DEC to good use Fluids, fluids, fluids geometric interpretation of classical models discrete geometric

More information

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo 05 - Surfaces Acknowledgements: Olga Sorkine-Hornung Reminder Curves Turning Number Theorem Continuous world Discrete world k: Curvature is scale dependent is scale-independent Discrete Curvature Integrated

More information

Parameterization of Meshes

Parameterization of Meshes 2-Manifold Parameterization of Meshes What makes for a smooth manifold? locally looks like Euclidian space collection of charts mutually compatible on their overlaps form an atlas Parameterizations are

More information

Mathematical Research Letters 1, (1994) MÖBIUS CONE STRUCTURES ON 3-DIMENSIONAL MANIFOLDS. Feng Luo

Mathematical Research Letters 1, (1994) MÖBIUS CONE STRUCTURES ON 3-DIMENSIONAL MANIFOLDS. Feng Luo Mathematical Research Letters 1, 257 261 (1994) MÖBIUS CONE STRUCTURES ON 3-DIMENSIONAL MANIFOLDS Feng Luo Abstract. We show that for any given angle α (0, 2π), any closed 3- manifold has a Möbius cone

More information

274 Curves on Surfaces, Lecture 5

274 Curves on Surfaces, Lecture 5 274 Curves on Surfaces, Lecture 5 Dylan Thurston Notes by Qiaochu Yuan Fall 2012 5 Ideal polygons Previously we discussed three models of the hyperbolic plane: the Poincaré disk, the upper half-plane,

More information

Research in Computational Differential Geomet

Research in Computational Differential Geomet Research in Computational Differential Geometry November 5, 2014 Approximations Often we have a series of approximations which we think are getting close to looking like some shape. Approximations Often

More information

(Discrete) Differential Geometry

(Discrete) Differential Geometry (Discrete) Differential Geometry Motivation Understand the structure of the surface Properties: smoothness, curviness, important directions How to modify the surface to change these properties What properties

More information

Discrete differential geometry: Surfaces made from Circles

Discrete differential geometry: Surfaces made from Circles Discrete differential geometry: Alexander Bobenko (TU Berlin) with help of Tim Hoffmann, Boris Springborn, Ulrich Pinkall, Ulrike Scheerer, Daniel Matthes, Yuri Suris, Kevin Bauer Papers A.I. Bobenko,

More information

DISCRETE DIFFERENTIAL GEOMETRY

DISCRETE DIFFERENTIAL GEOMETRY AMS SHORT COURSE DISCRETE DIFFERENTIAL GEOMETRY Joint Mathematics Meeting San Diego, CA January 2018 DISCRETE CONFORMAL GEOMETRY AMS SHORT COURSE DISCRETE DIFFERENTIAL GEOMETRY Joint Mathematics Meeting

More information

From isothermic triangulated surfaces to discrete holomorphicity

From isothermic triangulated surfaces to discrete holomorphicity From isothermic triangulated surfaces to discrete holomorphicity Wai Yeung Lam TU Berlin Oberwolfach, 2 March 2015 Joint work with Ulrich Pinkall Wai Yeung Lam (TU Berlin) isothermic triangulated surfaces

More information

Surfaces: notes on Geometry & Topology

Surfaces: notes on Geometry & Topology Surfaces: notes on Geometry & Topology 1 Surfaces A 2-dimensional region of 3D space A portion of space having length and breadth but no thickness 2 Defining Surfaces Analytically... Parametric surfaces

More information

Teichmüller Space and Fenchel-Nielsen Coordinates

Teichmüller Space and Fenchel-Nielsen Coordinates Teichmüller Space and Fenchel-Nielsen Coordinates Nathan Lopez November 30, 2015 Abstract Here we give an overview of Teichmüller space and its realization as a smooth manifold through Fenchel- Nielsen

More information

Topic: Orientation, Surfaces, and Euler characteristic

Topic: Orientation, Surfaces, and Euler characteristic Topic: Orientation, Surfaces, and Euler characteristic The material in these notes is motivated by Chapter 2 of Cromwell. A source I used for smooth manifolds is do Carmo s Riemannian Geometry. Ideas of

More information

A Conformal Energy for Simplicial Surfaces

A Conformal Energy for Simplicial Surfaces Combinatorial and Computational Geometry MSRI Publications Volume 52, 2005 A Conformal Energy for Simplicial Surfaces ALEXANDER I. BOBENKO Abstract. A new functional for simplicial surfaces is suggested.

More information

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder]

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Preliminaries Recall: Given a smooth function f:r R, the function

More information

CS 523: Computer Graphics, Spring Differential Geometry of Surfaces

CS 523: Computer Graphics, Spring Differential Geometry of Surfaces CS 523: Computer Graphics, Spring 2009 Shape Modeling Differential Geometry of Surfaces Andrew Nealen, Rutgers, 2009 3/4/2009 Recap Differential Geometry of Curves Andrew Nealen, Rutgers, 2009 3/4/2009

More information

Differential Geometry: Circle Packings. [A Circle Packing Algorithm, Collins and Stephenson] [CirclePack, Ken Stephenson]

Differential Geometry: Circle Packings. [A Circle Packing Algorithm, Collins and Stephenson] [CirclePack, Ken Stephenson] Differential Geometry: Circle Packings [A Circle Packing Algorithm, Collins and Stephenson] [CirclePack, Ken Stephenson] Conformal Maps Recall: Given a domain Ω R 2, the map F:Ω R 2 is conformal if it

More information

Lectures in Discrete Differential Geometry 3 Discrete Surfaces

Lectures in Discrete Differential Geometry 3 Discrete Surfaces Lectures in Discrete Differential Geometry 3 Discrete Surfaces Etienne Vouga March 19, 2014 1 Triangle Meshes We will now study discrete surfaces and build up a parallel theory of curvature that mimics

More information

CS 468 (Spring 2013) Discrete Differential Geometry

CS 468 (Spring 2013) Discrete Differential Geometry CS 468 (Spring 2013) Discrete Differential Geometry 1 Math Review Lecture 14 15 May 2013 Discrete Exterior Calculus Lecturer: Justin Solomon Scribe: Cassidy Saenz Before we dive into Discrete Exterior

More information

Geometry and Gravitation

Geometry and Gravitation Chapter 15 Geometry and Gravitation 15.1 Introduction to Geometry Geometry is one of the oldest branches of mathematics, competing with number theory for historical primacy. Like all good science, its

More information

Geometrization and the Poincaré conjecture

Geometrization and the Poincaré conjecture Geometrization and the Poincaré conjecture Jan Metzger BRIGFOS, 2008 History of the Poincaré conjecture In 1904 Poincaré formulated his conjecture. It is a statement about three dimensional geometric objects,

More information

Geometry Processing TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAA

Geometry Processing TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAA Geometry Processing What is Geometry Processing? Understanding the math of 3D shape What is Geometry Processing? Understanding the math of 3D shape and applying that math to discrete shape What is Geometry

More information

Invariant Measures. The Smooth Approach

Invariant Measures. The Smooth Approach Invariant Measures Mathieu Desbrun & Peter Schröder 1 The Smooth Approach On this show lots of derivatives tedious expressions in coordinates For what? only to discover that there are invariant measures

More information

Computational Conformal Geometry and Its Applications

Computational Conformal Geometry and Its Applications Computational Conformal Geometry and Its Applications Wei Zeng Institute of Computing Technology Chinese Academy of Sciences zengwei@cs.sunysb.edu Thesis Proposal Advisor: Harry Shum Co-advisor: Xianfeng

More information

Greedy Routing with Guaranteed Delivery Using Ricci Flow

Greedy Routing with Guaranteed Delivery Using Ricci Flow Greedy Routing with Guaranteed Delivery Using Ricci Flow Jie Gao Stony Brook University Joint work with Rik Sarkar, Xiaotian Yin, Wei Zeng, Feng Luo, Xianfeng David Gu Greedy Routing Assign coordinatesto

More information

Introduction to geometry

Introduction to geometry 1 2 Manifolds A topological space in which every point has a neighborhood homeomorphic to (topological disc) is called an n-dimensional (or n-) manifold Introduction to geometry The German way 2-manifold

More information

Module 1 Session 1 HS. Critical Areas for Traditional Geometry Page 1 of 6

Module 1 Session 1 HS. Critical Areas for Traditional Geometry Page 1 of 6 Critical Areas for Traditional Geometry Page 1 of 6 There are six critical areas (units) for Traditional Geometry: Critical Area 1: Congruence, Proof, and Constructions In previous grades, students were

More information

STATISTICS AND ANALYSIS OF SHAPE

STATISTICS AND ANALYSIS OF SHAPE Control and Cybernetics vol. 36 (2007) No. 2 Book review: STATISTICS AND ANALYSIS OF SHAPE by H. Krim, A. Yezzi, Jr., eds. There are numerous definitions of a notion of shape of an object. These definitions

More information

Diamonds: Finite Element/Discrete Mechanics schemes with guaranteed optimal convergence

Diamonds: Finite Element/Discrete Mechanics schemes with guaranteed optimal convergence Diamonds: Finite Element/Discrete Mechanics schemes with guaranteed optimal convergence M. Ortiz California Institute of Technology In collaboration with: P. Hauret and E. Kuhl International Conference

More information

10.5 Warmup. Find the indicated measure. Thursday, March 23, 2:46. Geometry 10.5 Angle Relationships in Circles 1

10.5 Warmup. Find the indicated measure. Thursday, March 23, 2:46. Geometry 10.5 Angle Relationships in Circles 1 0.5 Warmup Find the indicated measure. 0.5 Warmup Solve each equation. Use Factoring. ) x 2 + 4x + 40 = 0 2) x 2 36 = 0 3) x 2 + 5x = 0 4) x 2 + 5x = 24 5) 3x 2 + 24x = 48 6) 5x 2 = 20 2 0.5 Warmup (Answers)

More information

Simplicial Hyperbolic Surfaces

Simplicial Hyperbolic Surfaces Simplicial Hyperbolic Surfaces Talk by Ken Bromberg August 21, 2007 1-Lipschitz Surfaces- In this lecture we will discuss geometrically meaningful ways of mapping a surface S into a hyperbolic manifold

More information

Geometric structures on manifolds

Geometric structures on manifolds CHAPTER 3 Geometric structures on manifolds In this chapter, we give our first examples of hyperbolic manifolds, combining ideas from the previous two chapters. 3.1. Geometric structures 3.1.1. Introductory

More information

Digital Geometry Processing Parameterization I

Digital Geometry Processing Parameterization I Problem Definition Given a surface (mesh) S in R 3 and a domain find a bective F: S Typical Domains Cutting to a Disk disk = genus zero + boundary sphere = closed genus zero Creates artificial boundary

More information

Dual Interpolants for Finite Element Methods

Dual Interpolants for Finite Element Methods Dual Interpolants for Finite Element Methods Andrew Gillette joint work with Chandrajit Bajaj and Alexander Rand Department of Mathematics Institute of Computational Engineering and Sciences University

More information

Mesh Processing Pipeline

Mesh Processing Pipeline Mesh Smoothing 1 Mesh Processing Pipeline... Scan Reconstruct Clean Remesh 2 Mesh Quality Visual inspection of sensitive attributes Specular shading Flat Shading Gouraud Shading Phong Shading 3 Mesh Quality

More information

Möbius Transformations in Scientific Computing. David Eppstein

Möbius Transformations in Scientific Computing. David Eppstein Möbius Transformations in Scientific Computing David Eppstein Univ. of California, Irvine School of Information and Computer Science (including joint work with Marshall Bern from WADS 01 and SODA 03) Outline

More information

Subdivision. Outline. Key Questions. Subdivision Surfaces. Advanced Computer Graphics (Spring 2013) Video: Geri s Game (outside link)

Subdivision. Outline. Key Questions. Subdivision Surfaces. Advanced Computer Graphics (Spring 2013) Video: Geri s Game (outside link) Advanced Computer Graphics (Spring 03) CS 83, Lecture 7: Subdivision Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs83/sp3 Slides courtesy of Szymon Rusinkiewicz, James O Brien with material from Denis

More information

Computational QC Geometry: A tool for Medical Morphometry, Computer Graphics & Vision

Computational QC Geometry: A tool for Medical Morphometry, Computer Graphics & Vision Computational QC Geometry: A tool for Medical Morphometry, Computer Graphics & Vision Part II of the sequel of 2 talks. Computation C/QC geometry was presented by Tony F. Chan Ronald Lok Ming Lui Department

More information

Discrete Conformal Structures

Discrete Conformal Structures Discrete Conformal Structures Boris Springborn (TUB) Ulrich Pinkall (TUB) Peter Schröder (Caltech) 1 The Problem Find nice texture maps simplicial surface metric data satisfy triangle inequality 2 The

More information

Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia

Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia 2008 1 Non-Convex Non Convex Boundary Convex boundary creates significant distortion Free boundary is better 2 Fixed

More information

Cambridge University Press Hyperbolic Geometry from a Local Viewpoint Linda Keen and Nikola Lakic Excerpt More information

Cambridge University Press Hyperbolic Geometry from a Local Viewpoint Linda Keen and Nikola Lakic Excerpt More information Introduction Geometry is the study of spatial relationships, such as the familiar assertion from elementary plane Euclidean geometry that, if two triangles have sides of the same lengths, then they are

More information

Optimizing triangular meshes to have the incrircle packing property

Optimizing triangular meshes to have the incrircle packing property Packing Circles and Spheres on Surfaces Ali Mahdavi-Amiri Introduction Optimizing triangular meshes to have p g g the incrircle packing property Our Motivation PYXIS project Geometry Nature Geometry Isoperimetry

More information

Surface Parameterization

Surface Parameterization Surface Parameterization A Tutorial and Survey Michael Floater and Kai Hormann Presented by Afra Zomorodian CS 468 10/19/5 1 Problem 1-1 mapping from domain to surface Original application: Texture mapping

More information

Edexcel Linear GCSE Higher Checklist

Edexcel Linear GCSE Higher Checklist Number Add, subtract, multiply and divide whole numbers integers and decimals Multiply and divide fractions Order integers and decimals Order rational numbers Use the concepts and vocabulary of factor

More information

NFC ACADEMY COURSE OVERVIEW

NFC ACADEMY COURSE OVERVIEW NFC ACADEMY COURSE OVERVIEW Geometry Honors is a full year, high school math course for the student who has successfully completed the prerequisite course, Algebra I. The course focuses on the skills and

More information

Let be a function. We say, is a plane curve given by the. Let a curve be given by function where is differentiable with continuous.

Let be a function. We say, is a plane curve given by the. Let a curve be given by function where is differentiable with continuous. Module 8 : Applications of Integration - II Lecture 22 : Arc Length of a Plane Curve [Section 221] Objectives In this section you will learn the following : How to find the length of a plane curve 221

More information

Calculus on the complex plane C

Calculus on the complex plane C Calculus on the complex plane C Let z = x + iy be the complex variable on the complex plane C == R ir where i = 1. Definition A function f : C C is holomorphic if it is complex differentiable, i.e., for

More information

Ph.D. Student Vintescu Ana-Maria

Ph.D. Student Vintescu Ana-Maria Ph.D. Student Vintescu Ana-Maria Context Background Problem Statement Strategy Metric Distortion Conformal parameterization techniques Cone singularities Our algorithm Experiments Perspectives Digital

More information

Geometric structures on 2-orbifolds

Geometric structures on 2-orbifolds Geometric structures on 2-orbifolds Section 1: Manifolds and differentiable structures S. Choi Department of Mathematical Science KAIST, Daejeon, South Korea 2010 Fall, Lectures at KAIST S. Choi (KAIST)

More information

Greedy Routing in Wireless Networks. Jie Gao Stony Brook University

Greedy Routing in Wireless Networks. Jie Gao Stony Brook University Greedy Routing in Wireless Networks Jie Gao Stony Brook University A generic sensor node CPU. On-board flash memory or external memory Sensors: thermometer, camera, motion, light sensor, etc. Wireless

More information

Computing Curvature CS468 Lecture 8 Notes

Computing Curvature CS468 Lecture 8 Notes Computing Curvature CS468 Lecture 8 Notes Scribe: Andy Nguyen April 4, 013 1 Motivation In the previous lecture we developed the notion of the curvature of a surface, showing a bunch of nice theoretical

More information

Weighted Triangulations for Geometry Processing

Weighted Triangulations for Geometry Processing Weighted Triangulations for Geometry Processing Fernando de Goes Caltech and Pooran Memari CNRS-LTCI Telecom ParisTech and Patrick Mullen Caltech and Mathieu Desbrun Caltech In this paper, we investigate

More information

Lectures 19: The Gauss-Bonnet Theorem I. Table of contents

Lectures 19: The Gauss-Bonnet Theorem I. Table of contents Math 348 Fall 07 Lectures 9: The Gauss-Bonnet Theorem I Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only. It should not be relied on when preparing for exams. In

More information

In this lecture we introduce the Gauss-Bonnet theorem. The required section is The optional sections are

In this lecture we introduce the Gauss-Bonnet theorem. The required section is The optional sections are Math 348 Fall 2017 Lectures 20: The Gauss-Bonnet Theorem II Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only. It should not be relied on when preparing for exams.

More information

Point A location in geometry. A point has no dimensions without any length, width, or depth. This is represented by a dot and is usually labelled.

Point A location in geometry. A point has no dimensions without any length, width, or depth. This is represented by a dot and is usually labelled. Test Date: November 3, 2016 Format: Scored out of 100 points. 8 Multiple Choice (40) / 8 Short Response (60) Topics: Points, Angles, Linear Objects, and Planes Recognizing the steps and procedures for

More information

What is Geometry Processing? Understanding the math of 3D shape and applying that math to discrete shape

What is Geometry Processing? Understanding the math of 3D shape and applying that math to discrete shape Geometry Processing What is Geometry Processing? Understanding the math of 3D shape and applying that math to discrete shape What is Geometry Processing? Understanding the math of 3D shape and applying

More information

Geometric Modeling Mortenson Chapter 11. Complex Model Construction

Geometric Modeling Mortenson Chapter 11. Complex Model Construction Geometric Modeling 91.580.201 Mortenson Chapter 11 Complex Model Construction Topics Topology of Models Connectivity and other intrinsic properties Graph-Based Models Emphasize topological structure Boolean

More information

Curriki Geometry Glossary

Curriki Geometry Glossary Curriki Geometry Glossary The following terms are used throughout the Curriki Geometry projects and represent the core vocabulary and concepts that students should know to meet Common Core State Standards.

More information

Subdivision in Willmore Flow Problems

Subdivision in Willmore Flow Problems Subdivision in Willmore Flow Problems Jingmin Chen 1 Sara Grundel 2 Rob Kusner 3 Thomas Yu 1 Andrew Zigerelli 1 1 Drexel University, Philadelphia 2 New York University and Max Planck Institute Magdeburg

More information

Invariant Measures of Convex Sets. Eitan Grinspun, Columbia University Peter Schröder, Caltech

Invariant Measures of Convex Sets. Eitan Grinspun, Columbia University Peter Schröder, Caltech Invariant Measures of Convex Sets Eitan Grinspun, Columbia University Peter Schröder, Caltech What will we measure? Subject to be measured, S an object living in n-dim space convex, compact subset of R

More information

AQA GCSE Maths - Higher Self-Assessment Checklist

AQA GCSE Maths - Higher Self-Assessment Checklist AQA GCSE Maths - Higher Self-Assessment Checklist Number 1 Use place value when calculating with decimals. 1 Order positive and negative integers and decimals using the symbols =,, , and. 1 Round to

More information

A Flavor of Topology. Shireen Elhabian and Aly A. Farag University of Louisville January 2010

A Flavor of Topology. Shireen Elhabian and Aly A. Farag University of Louisville January 2010 A Flavor of Topology Shireen Elhabian and Aly A. Farag University of Louisville January 2010 In 1670 s I believe that we need another analysis properly geometric or linear, which treats place directly

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

Two Connections between Combinatorial and Differential Geometry

Two Connections between Combinatorial and Differential Geometry Two Connections between Combinatorial and Differential Geometry John M. Sullivan Institut für Mathematik, Technische Universität Berlin Berlin Mathematical School DFG Research Group Polyhedral Surfaces

More information

Geometric structures on manifolds

Geometric structures on manifolds CHAPTER 3 Geometric structures on manifolds In this chapter, we give our first examples of hyperbolic manifolds, combining ideas from the previous two chapters. 3.1. Geometric structures 3.1.1. Introductory

More information

As we come to each Math Notes box, you need to copy it onto paper in your Math Notes Section of your binder. As we come to each Learning Log Entry,

As we come to each Math Notes box, you need to copy it onto paper in your Math Notes Section of your binder. As we come to each Learning Log Entry, Chapter 1: Math Notes Page/Problem # Lesson 1.1.1 Lines of Symmetry 6 Lesson 1.1.2 The Investigative Process 11 Lesson 1.1.3 The Perimeter and Area of a Figure 16 Lesson 1.1.4 Solving Linear Equations

More information

Discrete minimal surfaces of Koebe type

Discrete minimal surfaces of Koebe type Discrete minimal surfaces of Koebe type Alexander I. Bobenko, Ulrike Bücking, Stefan Sechelmann March 5, 2018 1 Introduction Minimal surfaces have been studied for a long time, but still contain unsolved

More information

GAUSS-BONNET FOR DISCRETE SURFACES

GAUSS-BONNET FOR DISCRETE SURFACES GAUSS-BONNET FOR DISCRETE SURFACES SOHINI UPADHYAY Abstract. Gauss-Bonnet is a deep result in differential geometry that illustrates a fundamental relationship between the curvature of a surface and its

More information

DEPARTMENT - Mathematics. Coding: N Number. A Algebra. G&M Geometry and Measure. S Statistics. P - Probability. R&P Ratio and Proportion

DEPARTMENT - Mathematics. Coding: N Number. A Algebra. G&M Geometry and Measure. S Statistics. P - Probability. R&P Ratio and Proportion DEPARTMENT - Mathematics Coding: N Number A Algebra G&M Geometry and Measure S Statistics P - Probability R&P Ratio and Proportion YEAR 7 YEAR 8 N1 Integers A 1 Simplifying G&M1 2D Shapes N2 Decimals S1

More information

Glossary of dictionary terms in the AP geometry units

Glossary of dictionary terms in the AP geometry units Glossary of dictionary terms in the AP geometry units affine linear equation: an equation in which both sides are sums of terms that are either a number times y or a number times x or just a number [SlL2-D5]

More information

A Primer on Laplacians. Max Wardetzky. Institute for Numerical and Applied Mathematics Georg-August Universität Göttingen, Germany

A Primer on Laplacians. Max Wardetzky. Institute for Numerical and Applied Mathematics Georg-August Universität Göttingen, Germany A Primer on Laplacians Max Wardetzky Institute for Numerical and Applied Mathematics Georg-August Universität Göttingen, Germany Warm-up: Euclidean case Warm-up The Euclidean case Chladni s vibrating plates

More information

Escher s Circle Limit Anneke Bart Saint Louis University Introduction

Escher s Circle Limit Anneke Bart Saint Louis University  Introduction Escher s Circle Limit Anneke Bart Saint Louis University http://math.slu.edu/escher/ Introduction What are some of the most fundamental things we do in geometry? In the beginning we mainly look at lines,

More information

Introduction to Immersion, Embedding, and the Whitney Embedding Theorems

Introduction to Immersion, Embedding, and the Whitney Embedding Theorems Introduction to Immersion, Embedding, and the Whitney Embedding Theorems Paul Rapoport November 23, 2015 Abstract We give an overview of immersion in order to present the idea of embedding, then discuss

More information

Manifolds Pt. 1. PHYS Southern Illinois University. August 24, 2016

Manifolds Pt. 1. PHYS Southern Illinois University. August 24, 2016 Manifolds Pt. 1 PHYS 500 - Southern Illinois University August 24, 2016 PHYS 500 - Southern Illinois University Manifolds Pt. 1 August 24, 2016 1 / 20 Motivating Example: Pendulum Example Consider a pendulum

More information

Introduction to Computational Manifolds and Applications

Introduction to Computational Manifolds and Applications IMPA - Instituto de Matemática Pura e Aplicada, Rio de Janeiro, RJ, Brazil Introduction to Computational Manifolds and Applications Part 1 - Foundations Prof. Jean Gallier jean@cis.upenn.edu Department

More information

CAT(0)-spaces. Münster, June 22, 2004

CAT(0)-spaces. Münster, June 22, 2004 CAT(0)-spaces Münster, June 22, 2004 CAT(0)-space is a term invented by Gromov. Also, called Hadamard space. Roughly, a space which is nonpositively curved and simply connected. C = Comparison or Cartan

More information

Potato Theory. (Following Bangert, Franks, Hingston and J. Danforth Quayle)

Potato Theory. (Following Bangert, Franks, Hingston and J. Danforth Quayle) Potato Theory (Following Bangert, Franks, Hingston and J. Danforth Quayle) Ben McKay [27-Feb-2001] (Following Bangert, Franks, Hingston and J. Danforth Quayle) Shine a laser on a thin curved layer of glass

More information

Content Standard 1: Numbers, Number Sense, and Computation

Content Standard 1: Numbers, Number Sense, and Computation Content Standard 1: Numbers, Number Sense, and Computation Place Value Fractions Comparing and Ordering Counting Facts Estimating and Estimation Strategies Determine an approximate value of radical and

More information

X Std. Topic Content Expected Learning Outcomes Mode of Transaction

X Std. Topic Content Expected Learning Outcomes Mode of Transaction X Std COMMON SYLLABUS 2009 - MATHEMATICS I. Theory of Sets ii. Properties of operations on sets iii. De Morgan s lawsverification using example Venn diagram iv. Formula for n( AÈBÈ C) v. Functions To revise

More information

Generalized Barycentric Coordinates

Generalized Barycentric Coordinates Generalized Barycentric Coordinates Kai Hormann Faculty of Informatics University of Lugano Cartesian coordinates y 3 2 ( 3,1) 1 3 2 1 1 2 3 (2,2) (0,0) 1 2 3 (1, 2) x René Descartes (1596 1650) Appendix

More information

EXPERIENCING GEOMETRY

EXPERIENCING GEOMETRY EXPERIENCING GEOMETRY EUCLIDEAN AND NON-EUCLIDEAN WITH HISTORY THIRD EDITION David W. Henderson Daina Taimina Cornell University, Ithaca, New York PEARSON Prentice Hall Upper Saddle River, New Jersey 07458

More information

THE HALF-EDGE DATA STRUCTURE MODELING AND ANIMATION

THE HALF-EDGE DATA STRUCTURE MODELING AND ANIMATION THE HALF-EDGE DATA STRUCTURE MODELING AND ANIMATION Dan Englesson danen344@student.liu.se Sunday 12th April, 2011 Abstract In this lab assignment which was done in the course TNM079, Modeling and animation,

More information

Justin Solomon MIT, Spring Numerical Geometry of Nonrigid Shapes

Justin Solomon MIT, Spring Numerical Geometry of Nonrigid Shapes Justin Solomon MIT, Spring 2017 Numerical Geometry of Nonrigid Shapes Intrinsically far Extrinsically close Geodesic distance [jee-uh-des-ik dis-tuh-ns]: Length of the shortest path, constrained not to

More information

Justin Solomon MIT, Spring 2017

Justin Solomon MIT, Spring 2017 http://www.alvinomassage.com/images/knot.jpg Justin Solomon MIT, Spring 2017 Some materials from Stanford CS 468, spring 2013 (Butscher & Solomon) What is a curve? A function? Not a curve Jams on accelerator

More information

Introduction to Rational Billiards II. Talk by John Smillie. August 21, 2007

Introduction to Rational Billiards II. Talk by John Smillie. August 21, 2007 Introduction to Rational Billiards II Talk by John Smillie August 21, 2007 Translation surfaces and their singularities Last time we described the Zemlyakov-Katok construction for billiards on a triangular

More information

Freeform Architecture and Discrete Differential Geometry. Helmut Pottmann, KAUST

Freeform Architecture and Discrete Differential Geometry. Helmut Pottmann, KAUST Freeform Architecture and Discrete Differential Geometry Helmut Pottmann, KAUST Freeform Architecture Motivation: Large scale architectural projects, involving complex freeform geometry Realization challenging

More information

Distance Functions 1

Distance Functions 1 Distance Functions 1 Distance function Given: geometric object F (curve, surface, solid, ) Assigns to each point the shortest distance from F Level sets of the distance function are trimmed offsets F p

More information

Correspondence. CS 468 Geometry Processing Algorithms. Maks Ovsjanikov

Correspondence. CS 468 Geometry Processing Algorithms. Maks Ovsjanikov Shape Matching & Correspondence CS 468 Geometry Processing Algorithms Maks Ovsjanikov Wednesday, October 27 th 2010 Overall Goal Given two shapes, find correspondences between them. Overall Goal Given

More information

Justin Solomon MIT, Spring

Justin Solomon MIT, Spring Justin Solomon MIT, Spring 2017 http://www.gogeometry.com Instructor: Justin Solomon Email: jsolomon@mit.edu Office: 32-D460 Office hours: Wednesdays, 1pm-3pm Geometric Data Processing

More information

Digital Geometry Processing

Digital Geometry Processing Digital Geometry Processing 1. Research Team Project Leader: Graduate Students: Industrial Partner(s): Prof. Mathieu Desbrun, Computer Science Sean Cahill, Maithili Dandige, Ilya Eckstein, Yiying Tong

More information

7. The Gauss-Bonnet theorem

7. The Gauss-Bonnet theorem 7. The Gauss-Bonnet theorem 7.1 Hyperbolic polygons In Euclidean geometry, an n-sided polygon is a subset of the Euclidean plane bounded by n straight lines. Thus the edges of a Euclidean polygon are formed

More information

Lecture 2 Unstructured Mesh Generation

Lecture 2 Unstructured Mesh Generation Lecture 2 Unstructured Mesh Generation MIT 16.930 Advanced Topics in Numerical Methods for Partial Differential Equations Per-Olof Persson (persson@mit.edu) February 13, 2006 1 Mesh Generation Given a

More information

A Toolbox of Level Set Methods

A Toolbox of Level Set Methods A Toolbox of Level Set Methods Ian Mitchell Department of Computer Science University of British Columbia http://www.cs.ubc.ca/~mitchell mitchell@cs.ubc.ca research supported by the Natural Science and

More information