Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem

Size: px
Start display at page:

Download "Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem"

Transcription

1 Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem Jan Lellmann, Frank Lenzen, Christoph Schnörr Image and Pattern Analysis Group Universität Heidelberg EMMCVPR 2011 St. Petersburg, July 25, 2011 J. Lellmann Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem 1

2 Motivation Problem Labeling problem: Partition image domain Ω into L regions Discrete decision at each point in continuous domain Ω Variational Approach: min l s(l(x), x)dx Ω }{{} local data fidelity + J(l) }{{} regularizer J. Lellmann Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem 2

3 Motivation Multiclass Labeling I Applications: Denoising, segmentation, 3D reconstruction, depth from stereo, inpainting, photo montage, optical flow,... I Spatially continuous formulation avoids metrication artifacts: J. Lellmann Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem 3

4 Model Multi-Class Labeling Multi-class relaxation: [Lie et al. 06, Zach et al. 08, Lellmann et al. 09, Pock et al. 09] Embed labels into R L as E := {e 1,..., e L }, relax to the unit simplex: L := {x R L x 0, x i = 1} = conv E, i min f (u), f (u) := u(x), s(x) dx + Ψ(Du) u BV(Ω, L ) Ω Ω Advantages: No explicit parametrization, rotation invariance, convex J. Lellmann Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem 4

5 Model Rounding Fractional solutions may occur: Goal: Find rounding scheme u ū : Ω {e 1,..., e L } such that for some δ 0. f ( }{{} ū ) (1 + δ)f ( ue rounded relaxed solution }{{} best integral solution ). J. Lellmann Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem 5

6 Model Rounding A posteriori approaches: [BaeYuanTai10, LellmannSchnörr10] Require primal and/or dual solution Depend strongly on specific input data Existing a priori bounds: Discretized setting [Dahlhaus et al. 94, KleinbergTardos 99, Boykov et al. 01, KomodakisTziritas 07] Continuous two-class case [Strang 83, ChanEsedogluNikolova 06, Zach et al. 09, Olsson et al. 09] This talk: Spatially continuous, multi-class, a priori bounds J. Lellmann Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem 6

7 Rounding Two-Class Case Two-class case: Find region C Ω minimizing [ChanVese01] min (I c 1 ) 2 dx + (I c 2 ) 2 dx + λh d 1 ( C) C C Ω\C Reformulate using indicator function of C and relax: min u(i c 1 ) 2 + (1 u)(i c 2 ) 2 dx + λtv (u) u BV(Ω,[0,1]) Ω J. Lellmann Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem 7

8 Rounding Two-Class Case Two-class case: Generalized coarea formula f (u) = 1 0 f (ū α )dα, ū α := { 1, u(x) > α, 0, u(x) α. Also: Choquet integral, Lovász extension, levelable function,... Consequence: Global integral minimizer for a.e. α, f (ūα) = f (u ). This talk: multi-class generalization. J. Lellmann Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem 8

9 Rounding Multi-Class Case Probabilistic interpretation: f (u) = 1 0 f (ū α )dα = E α f (ū α ). Rounding step u ū α does not increase f in the mean Multi-class generalization (approximate generalized coarea formula): (1 + δ)f (u) f (ū γ )dµ(γ) = E γ f (ū γ ) Need to define: parameter space Γ parametrized rounding method u ūγ probability measure µ on Γ bound δ independent of input Γ J. Lellmann Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem 9

10 Optimality Randomized Rounding Algorithm 1 (Randomized Rounding in BV) 1. Input: u 0 BV(Ω, L ) 2. For k = 1, 2, Sample γ k = (i k, α k ) {1,..., L} [0, 1] uniformly 4. u k e i k 1 {u k 1 i k >α k } + uk 1 1 {u k 1 i k α k } 5. Output: Limit ū of (u k ) Parameter space: sequences γ Γ := ({1,..., L} [0, 1]) N J. Lellmann Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem 10

11 Optimality Example J. Lellmann Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem 11

12 Optimality Example J. Lellmann Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem 11

13 Optimality Example J. Lellmann Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem 11

14 Optimality Example J. Lellmann Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem 11

15 Optimality Example J. Lellmann Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem 11

16 Optimality Example J. Lellmann Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem 11

17 Optimality Example J. Lellmann Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem 11

18 Optimality Main Result Theorem (Optimality) Let u BV(Ω, L ), s L 1 (Ω) L, s 0, Ψ : R d l R 0 positively homogeneous, convex and continuous, and λ l > 0, λ u < such that Ψ(z = (z 1,..., z L 1 L L )) λ l z i 2 z R d L, z i = 0, 2 i=1 Ψ(ν(e i e j ) ) λ u i, j {1,..., L}, ν R d, ν 2 = 1. i=1 Then Ef (ū) 2 λ u λ l f (u) and Ef (ū ) 2 λ u λ l f (u E). Provides approximate generalized coarea formula J. Lellmann Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem 12

19 Optimality Metric Labeling Specially designed Ψ: Local envelope relaxation for metric interaction potentials [Chambolle et al. 08, LellmannSchnörr 10] For a given metric d, Ef (ū ) 2 max i j d(i, j) min i j d(i, j) f (u E). Compatible with bounds for finite-dimensional multiway cut, α-expansion, LP relaxation Formulated in BV, independent of discretization J. Lellmann Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem 13

20 Summary Motivation: Convex relaxation of multiclass image labeling Solutions may be fractional! Goal: A priori bounds for rounded solution Rounding Strategy: Probabilistic approach Motivated by LP framework Bounds: A priori bound Provides approximate generalized coarea formula Compatible with finite-dimensional results Fully spatially continuous BV framework J. Lellmann Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem 14

21 Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem Jan Lellmann, Frank Lenzen, Christoph Schnörr Image and Pattern Analysis Group Universität Heidelberg EMMCVPR 2011 St. Petersburg, July 25, 2011 J. Lellmann Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem 15

22 Optimality Termination Theorem (Termination) Let u BV(Ω, L ). Then (almost surely) Alg. 1 generates a sequence that becomes stationary in some ū BV(Ω, E). Result is in BV Independent of data term J. Lellmann Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem 16

23 Experiments Iterations J. Lellmann Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem 17

24 Experiments I J. Lellmann Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem 18

25 Experiments II J. Lellmann Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem 19

26 Experiments Results problem # points # labels mean # iter a priori ε a posteriori - first-max prob. best prob. mean J. Lellmann Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem 20

A Patch Prior for Dense 3D Reconstruction in Man-Made Environments

A Patch Prior for Dense 3D Reconstruction in Man-Made Environments A Patch Prior for Dense 3D Reconstruction in Man-Made Environments Christian Häne 1, Christopher Zach 2, Bernhard Zeisl 1, Marc Pollefeys 1 1 ETH Zürich 2 MSR Cambridge October 14, 2012 A Patch Prior for

More information

A Survey and Comparison of Discrete and Continuous Multi-label Optimization Approaches for the Potts Model

A Survey and Comparison of Discrete and Continuous Multi-label Optimization Approaches for the Potts Model DOI 10.1007/s1163-013-0619-y A Survey and Comparison of Discrete and Continuous Multi-label Optimization Approaches for the Potts Model Claudia Nieuwenhuis Eno Töppe Daniel Cremers Received: 16 December

More information

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER MÜNSTER Adaptive Discretization of Liftings for Curvature Regularization SIAM Conference on Imaging Science 2016, Albuquerque, NM Ulrich Hartleif, Prof. Dr. Benedikt Wirth May 23, 2016 Outline MÜNSTER

More information

A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem

A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem Presented by: Ted Ralphs Joint work with: Leo Kopman Les Trotter Bill Pulleyblank 1 Outline of Talk Introduction Description

More information

On a first-order primal-dual algorithm

On a first-order primal-dual algorithm On a first-order primal-dual algorithm Thomas Pock 1 and Antonin Chambolle 2 1 Institute for Computer Graphics and Vision, Graz University of Technology, 8010 Graz, Austria 2 Centre de Mathématiques Appliquées,

More information

HONOM EUROPEAN WORKSHOP on High Order Nonlinear Numerical Methods for Evolutionary PDEs, Bordeaux, March 18-22, 2013

HONOM EUROPEAN WORKSHOP on High Order Nonlinear Numerical Methods for Evolutionary PDEs, Bordeaux, March 18-22, 2013 HONOM 2013 EUROPEAN WORKSHOP on High Order Nonlinear Numerical Methods for Evolutionary PDEs, Bordeaux, March 18-22, 2013 A priori-based mesh adaptation for third-order accurate Euler simulation Alexandre

More information

Inter and Intra-Modal Deformable Registration:

Inter and Intra-Modal Deformable Registration: Inter and Intra-Modal Deformable Registration: Continuous Deformations Meet Efficient Optimal Linear Programming Ben Glocker 1,2, Nikos Komodakis 1,3, Nikos Paragios 1, Georgios Tziritas 3, Nassir Navab

More information

Extensions of submodularity and their application in computer vision

Extensions of submodularity and their application in computer vision Extensions of submodularity and their application in computer vision Vladimir Kolmogorov IST Austria Oxford, 20 January 2014 Linear Programming relaxation Popular approach: Basic LP relaxation (BLP) -

More information

Geometric and Semantic 3D Reconstruction: Part 4A: Volumetric Semantic 3D Reconstruction. CVPR 2017 Tutorial Christian Häne UC Berkeley

Geometric and Semantic 3D Reconstruction: Part 4A: Volumetric Semantic 3D Reconstruction. CVPR 2017 Tutorial Christian Häne UC Berkeley Geometric and Semantic 3D Reconstruction: Part 4A: Volumetric Semantic 3D Reconstruction CVPR 2017 Tutorial Christian Häne UC Berkeley Dense Multi-View Reconstruction Goal: 3D Model from Images (Depth

More information

Fast and Exact Primal-Dual Iterations for Variational Problems in Computer Vision

Fast and Exact Primal-Dual Iterations for Variational Problems in Computer Vision Fast and Exact Primal-Dual Iterations for Variational Problems in Computer Vision Jan Lellmann, Dirk Breitenreicher, and Christoph Schnörr Image and Pattern Analysis Group & HCI Dept. of Mathematics and

More information

Convex Optimization for Scene Understanding

Convex Optimization for Scene Understanding Convex Optimization for Scene Understanding Mohamed Souiai 1, Claudia Nieuwenhuis 2, Evgeny Strekalovskiy 1 and Daniel Cremers 1 1 Technical University of Munich 2 UC Berkeley, ICSI, USA Abstract In this

More information

Lagrangian Relaxation: An overview

Lagrangian Relaxation: An overview Discrete Math for Bioinformatics WS 11/12:, by A. Bockmayr/K. Reinert, 22. Januar 2013, 13:27 4001 Lagrangian Relaxation: An overview Sources for this lecture: D. Bertsimas and J. Tsitsiklis: Introduction

More information

Integer Programming Theory

Integer Programming Theory Integer Programming Theory Laura Galli October 24, 2016 In the following we assume all functions are linear, hence we often drop the term linear. In discrete optimization, we seek to find a solution x

More information

Real-Time Minimization of the Piecewise Smooth Mumford-Shah Functional

Real-Time Minimization of the Piecewise Smooth Mumford-Shah Functional Real-Time Minimization of the Piecewise Smooth Mumford-Shah Functional Evgeny Strekalovskiy and Daniel Cremers? TU Munich, Germany Abstract. We propose an algorithm for e ciently minimizing the piecewise

More information

Sublabel Accurate Relaxation of Nonconvex Energies

Sublabel Accurate Relaxation of Nonconvex Energies Sublabel Accurate Relaxation of Nonconvex Energies Thomas Möllenhoff TU München moellenh@in.tum.de Emanuel Laude TU München laudee@in.tum.de Jan Lellmann University of Lübeck lellmann@mic.uni-luebeck.de

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 19: Graph Cuts source S sink T Readings Szeliski, Chapter 11.2 11.5 Stereo results with window search problems in areas of uniform texture Window-based matching

More information

On the Global Solution of Linear Programs with Linear Complementarity Constraints

On the Global Solution of Linear Programs with Linear Complementarity Constraints On the Global Solution of Linear Programs with Linear Complementarity Constraints J. E. Mitchell 1 J. Hu 1 J.-S. Pang 2 K. P. Bennett 1 G. Kunapuli 1 1 Department of Mathematical Sciences RPI, Troy, NY

More information

4/13/ Introduction. 1. Introduction. 2. Formulation. 2. Formulation. 2. Formulation

4/13/ Introduction. 1. Introduction. 2. Formulation. 2. Formulation. 2. Formulation 1. Introduction Motivation: Beijing Jiaotong University 1 Lotus Hill Research Institute University of California, Los Angeles 3 CO 3 for Ultra-fast and Accurate Interactive Image Segmentation This paper

More information

Improved Gomory Cuts for Primal Cutting Plane Algorithms

Improved Gomory Cuts for Primal Cutting Plane Algorithms Improved Gomory Cuts for Primal Cutting Plane Algorithms S. Dey J-P. Richard Industrial Engineering Purdue University INFORMS, 2005 Outline 1 Motivation The Basic Idea Set up the Lifting Problem How to

More information

A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation [Wen,Yin,Goldfarb,Zhang 2009]

A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation [Wen,Yin,Goldfarb,Zhang 2009] A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation [Wen,Yin,Goldfarb,Zhang 2009] Yongjia Song University of Wisconsin-Madison April 22, 2010 Yongjia Song

More information

Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity

Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity Marc Uetz University of Twente m.uetz@utwente.nl Lecture 5: sheet 1 / 26 Marc Uetz Discrete Optimization Outline 1 Min-Cost Flows

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

Solving Vision Tasks with variational methods on the GPU

Solving Vision Tasks with variational methods on the GPU Solving Vision Tasks with variational methods on the GPU Horst Bischof Inst. f. Computer Graphics and Vision Graz University of Technology Joint work with Thomas Pock, Markus Unger, Arnold Irschara and

More information

1. Lecture notes on bipartite matching February 4th,

1. Lecture notes on bipartite matching February 4th, 1. Lecture notes on bipartite matching February 4th, 2015 6 1.1.1 Hall s Theorem Hall s theorem gives a necessary and sufficient condition for a bipartite graph to have a matching which saturates (or matches)

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Frédéric Giroire FG Simplex 1/11 Motivation Goal: Find good solutions for difficult problems (NP-hard). Be able to quantify the goodness of the given solution. Presentation of

More information

COT 6936: Topics in Algorithms! Giri Narasimhan. ECS 254A / EC 2443; Phone: x3748

COT 6936: Topics in Algorithms! Giri Narasimhan. ECS 254A / EC 2443; Phone: x3748 COT 6936: Topics in Algorithms! Giri Narasimhan ECS 254A / EC 2443; Phone: x3748 giri@cs.fiu.edu http://www.cs.fiu.edu/~giri/teach/cot6936_s12.html https://moodle.cis.fiu.edu/v2.1/course/view.php?id=174

More information

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 2 Review Dr. Ted Ralphs IE316 Quiz 2 Review 1 Reading for The Quiz Material covered in detail in lecture Bertsimas 4.1-4.5, 4.8, 5.1-5.5, 6.1-6.3 Material

More information

Integer Programming ISE 418. Lecture 7. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 7. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 7 Dr. Ted Ralphs ISE 418 Lecture 7 1 Reading for This Lecture Nemhauser and Wolsey Sections II.3.1, II.3.6, II.4.1, II.4.2, II.5.4 Wolsey Chapter 7 CCZ Chapter 1 Constraint

More information

A Continuous Max-Flow Approach to Potts Model

A Continuous Max-Flow Approach to Potts Model A Continuous Max-Flow Approach to Potts Model Jing Yuan 1, Egil Bae 2, Xue-Cheng Tai 2,3, and Yuri Boykov 1 1 Computer Science Department, University of Western Ontario, London Ontario, Canada N6A 5B7

More information

Robust Poisson Surface Reconstruction

Robust Poisson Surface Reconstruction Robust Poisson Surface Reconstruction V. Estellers, M. Scott, K. Tew, and S. Soatto Univeristy of California, Los Angeles Brigham Young University June 2, 2015 1/19 Goals: Surface reconstruction from noisy

More information

Numerical Methods on the Image Processing Problems

Numerical Methods on the Image Processing Problems Numerical Methods on the Image Processing Problems Department of Mathematics and Statistics Mississippi State University December 13, 2006 Objective Develop efficient PDE (partial differential equations)

More information

Optical flow and depth from motion for omnidirectional images using a TV-L1 variational framework on graphs

Optical flow and depth from motion for omnidirectional images using a TV-L1 variational framework on graphs ICIP 2009 - Monday, November 9 Optical flow and depth from motion for omnidirectional images using a TV-L1 variational framework on graphs Luigi Bagnato Signal Processing Laboratory - EPFL Advisors: Prof.

More information

Linear Programming. Course review MS-E2140. v. 1.1

Linear Programming. Course review MS-E2140. v. 1.1 Linear Programming MS-E2140 Course review v. 1.1 Course structure Modeling techniques Linear programming theory and the Simplex method Duality theory Dual Simplex algorithm and sensitivity analysis Integer

More information

Mathematics in Image Processing

Mathematics in Image Processing Mathematics in Image Processing Michal Šorel Department of Image Processing Institute of Information Theory and Automation (ÚTIA) Academy of Sciences of the Czech Republic http://zoi.utia.cas.cz/ Mathematics

More information

Occlusion-Aware Video Registration for Highly Non-Rigid Objects Supplementary Material

Occlusion-Aware Video Registration for Highly Non-Rigid Objects Supplementary Material Occlusion-Aware Video Registration for Highly Non-Rigid Objects Supplementary Material Bertram Taetz 1,, Gabriele Bleser 1,, Vladislav Golyanik 1, and Didier Stricker 1, 1 German Research Center for Artificial

More information

Mesh segmentation. Florent Lafarge Inria Sophia Antipolis - Mediterranee

Mesh segmentation. Florent Lafarge Inria Sophia Antipolis - Mediterranee Mesh segmentation Florent Lafarge Inria Sophia Antipolis - Mediterranee Outline What is mesh segmentation? M = {V,E,F} is a mesh S is either V, E or F (usually F) A Segmentation is a set of sub-meshes

More information

A Weighted Kernel PCA Approach to Graph-Based Image Segmentation

A Weighted Kernel PCA Approach to Graph-Based Image Segmentation A Weighted Kernel PCA Approach to Graph-Based Image Segmentation Carlos Alzate Johan A. K. Suykens ESAT-SCD-SISTA Katholieke Universiteit Leuven Leuven, Belgium January 25, 2007 International Conference

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Theory of Variational Inference: Inner and Outer Approximation Eric Xing Lecture 14, February 29, 2016 Reading: W & J Book Chapters Eric Xing @

More information

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 14: Combinatorial Problems as Linear Programs I. Instructor: Shaddin Dughmi

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 14: Combinatorial Problems as Linear Programs I. Instructor: Shaddin Dughmi CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 14: Combinatorial Problems as Linear Programs I Instructor: Shaddin Dughmi Announcements Posted solutions to HW1 Today: Combinatorial problems

More information

5.3 Cutting plane methods and Gomory fractional cuts

5.3 Cutting plane methods and Gomory fractional cuts 5.3 Cutting plane methods and Gomory fractional cuts (ILP) min c T x s.t. Ax b x 0integer feasible region X Assumption: a ij, c j and b i integer. Observation: The feasible region of an ILP can be described

More information

Computing Aggregate Functions in Sensor Networks

Computing Aggregate Functions in Sensor Networks Computing Aggregate Functions in Sensor Networks Antonio Fernández Anta 1 Miguel A. Mosteiro 1,2 Christopher Thraves 3 1 LADyR, GSyC,Universidad Rey Juan Carlos 2 Dept. of Computer Science, Rutgers University

More information

Level lines based disocclusion

Level lines based disocclusion Level lines based disocclusion Simon Masnou Jean-Michel Morel CEREMADE CMLA Université Paris-IX Dauphine Ecole Normale Supérieure de Cachan 75775 Paris Cedex 16, France 94235 Cachan Cedex, France Abstract

More information

Markov Networks in Computer Vision

Markov Networks in Computer Vision Markov Networks in Computer Vision Sargur Srihari srihari@cedar.buffalo.edu 1 Markov Networks for Computer Vision Some applications: 1. Image segmentation 2. Removal of blur/noise 3. Stereo reconstruction

More information

RELATIVELY OPTIMAL CONTROL: THE STATIC SOLUTION

RELATIVELY OPTIMAL CONTROL: THE STATIC SOLUTION RELATIVELY OPTIMAL CONTROL: THE STATIC SOLUTION Franco Blanchini,1 Felice Andrea Pellegrino Dipartimento di Matematica e Informatica Università di Udine via delle Scienze, 208 33100, Udine, Italy blanchini@uniud.it,

More information

Linear programming and duality theory

Linear programming and duality theory Linear programming and duality theory Complements of Operations Research Giovanni Righini Linear Programming (LP) A linear program is defined by linear constraints, a linear objective function. Its variables

More information

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh Lecture 3 Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets Gérard Cornuéjols Tepper School of Business Carnegie Mellon University, Pittsburgh January 2016 Mixed Integer Linear Programming

More information

Notes 9: Optical Flow

Notes 9: Optical Flow Course 049064: Variational Methods in Image Processing Notes 9: Optical Flow Guy Gilboa 1 Basic Model 1.1 Background Optical flow is a fundamental problem in computer vision. The general goal is to find

More information

Label Configuration Priors for Continuous Multi-Label Optimization. Mohamed Souiai, Evgeny Strekalovskiy, Claudia Nieuwenhuis, Daniel Cremers

Label Configuration Priors for Continuous Multi-Label Optimization. Mohamed Souiai, Evgeny Strekalovskiy, Claudia Nieuwenhuis, Daniel Cremers TUM TECHNISCHE UNIVERSITÄT MÜNCHEN INSTITUT FÜR INFORMATIK Label Configuration Priors for Continuous Multi-Label Optimization Mohamed Souiai, Evgeny Strekalovskiy, Claudia Nieuwenhuis, Daniel Cremers TUM-I1221

More information

Markov Networks in Computer Vision. Sargur Srihari

Markov Networks in Computer Vision. Sargur Srihari Markov Networks in Computer Vision Sargur srihari@cedar.buffalo.edu 1 Markov Networks for Computer Vision Important application area for MNs 1. Image segmentation 2. Removal of blur/noise 3. Stereo reconstruction

More information

DDFV Schemes for the Euler Equations

DDFV Schemes for the Euler Equations DDFV Schemes for the Euler Equations Christophe Berthon, Yves Coudière, Vivien Desveaux Journées du GDR Calcul, 5 juillet 2011 Introduction Hyperbolic system of conservation laws in 2D t W + x f(w)+ y

More information

intro, applications MRF, labeling... how it can be computed at all? Applications in segmentation: GraphCut, GrabCut, demos

intro, applications MRF, labeling... how it can be computed at all? Applications in segmentation: GraphCut, GrabCut, demos Image as Markov Random Field and Applications 1 Tomáš Svoboda, svoboda@cmp.felk.cvut.cz Czech Technical University in Prague, Center for Machine Perception http://cmp.felk.cvut.cz Talk Outline Last update:

More information

COMS 4771 Support Vector Machines. Nakul Verma

COMS 4771 Support Vector Machines. Nakul Verma COMS 4771 Support Vector Machines Nakul Verma Last time Decision boundaries for classification Linear decision boundary (linear classification) The Perceptron algorithm Mistake bound for the perceptron

More information

Penalty Alternating Direction Methods for Mixed- Integer Optimization: A New View on Feasibility Pumps

Penalty Alternating Direction Methods for Mixed- Integer Optimization: A New View on Feasibility Pumps Penalty Alternating Direction Methods for Mixed- Integer Optimization: A New View on Feasibility Pumps Björn Geißler, Antonio Morsi, Lars Schewe, Martin Schmidt FAU Erlangen-Nürnberg, Discrete Optimization

More information

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs Introduction to Mathematical Programming IE496 Final Review Dr. Ted Ralphs IE496 Final Review 1 Course Wrap-up: Chapter 2 In the introduction, we discussed the general framework of mathematical modeling

More information

Optimal Routing and Scheduling in Multihop Wireless Renewable Energy Networks

Optimal Routing and Scheduling in Multihop Wireless Renewable Energy Networks Optimal Routing and Scheduling in Multihop Wireless Renewable Energy Networks ITA 11, San Diego CA, February 2011 MHR. Khouzani, Saswati Sarkar, Koushik Kar UPenn, UPenn, RPI March 23, 2011 Khouzani, Sarkar,

More information

Algorithms for multiflows

Algorithms for multiflows Department of Computer Science, Cornell University September 29, 2008, Ithaca Definition of a multiflow We are given an undirected graph G = (V, E) and a set of terminals A V. A multiflow, denoted by x

More information

5. DUAL LP, SOLUTION INTERPRETATION, AND POST-OPTIMALITY

5. DUAL LP, SOLUTION INTERPRETATION, AND POST-OPTIMALITY 5. DUAL LP, SOLUTION INTERPRETATION, AND POST-OPTIMALITY 5.1 DUALITY Associated with every linear programming problem (the primal) is another linear programming problem called its dual. If the primal involves

More information

Linear Programming. Linear Programming. Linear Programming. Example: Profit Maximization (1/4) Iris Hui-Ru Jiang Fall Linear programming

Linear Programming. Linear Programming. Linear Programming. Example: Profit Maximization (1/4) Iris Hui-Ru Jiang Fall Linear programming Linear Programming 3 describes a broad class of optimization tasks in which both the optimization criterion and the constraints are linear functions. Linear Programming consists of three parts: A set of

More information

The simplex method and the diameter of a 0-1 polytope

The simplex method and the diameter of a 0-1 polytope The simplex method and the diameter of a 0-1 polytope Tomonari Kitahara and Shinji Mizuno May 2012 Abstract We will derive two main results related to the primal simplex method for an LP on a 0-1 polytope.

More information

1. Lecture notes on bipartite matching

1. Lecture notes on bipartite matching Massachusetts Institute of Technology 18.453: Combinatorial Optimization Michel X. Goemans February 5, 2017 1. Lecture notes on bipartite matching Matching problems are among the fundamental problems in

More information

/ Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang

/ Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang 600.469 / 600.669 Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang 9.1 Linear Programming Suppose we are trying to approximate a minimization

More information

A Sparse Algorithm for Optimal Transport

A Sparse Algorithm for Optimal Transport A Sparse Algorithm for Optimal Transport Bernhard Schmitzer November 10, 2015 Applications of Numerical Optimal Transport Versatile Tool computer vision & machine learning: histogram comparison [Rubner

More information

Lower bounds on the barrier parameter of convex cones

Lower bounds on the barrier parameter of convex cones of convex cones Université Grenoble 1 / CNRS June 20, 2012 / High Performance Optimization 2012, Delft Outline Logarithmically homogeneous barriers 1 Logarithmically homogeneous barriers Conic optimization

More information

Column Generation Based Primal Heuristics

Column Generation Based Primal Heuristics Column Generation Based Primal Heuristics C. Joncour, S. Michel, R. Sadykov, D. Sverdlov, F. Vanderbeck University Bordeaux 1 & INRIA team RealOpt Outline 1 Context Generic Primal Heuristics The Branch-and-Price

More information

Optimizing Parametric Total Variation Models

Optimizing Parametric Total Variation Models Optimizing Parametric Total Variation Models Strandmark, Petter; Kahl, Fredrik; Overgaard, Niels Christian Published in: [Host publication title missing] DOI:.9/ICCV.9.5459464 9 Link to publication Citation

More information

Outline. Alternative Benders Decomposition Explanation explaining Benders without projections. Primal-Dual relations

Outline. Alternative Benders Decomposition Explanation explaining Benders without projections. Primal-Dual relations Alternative Benders Decomposition Explanation explaining Benders without projections Outline Comments on Benders Feasibility? Optimality? thst@man..dtu.dk DTU-Management Technical University of Denmark

More information

Randomized rounding of semidefinite programs and primal-dual method for integer linear programming. Reza Moosavi Dr. Saeedeh Parsaeefard Dec.

Randomized rounding of semidefinite programs and primal-dual method for integer linear programming. Reza Moosavi Dr. Saeedeh Parsaeefard Dec. Randomized rounding of semidefinite programs and primal-dual method for integer linear programming Dr. Saeedeh Parsaeefard 1 2 3 4 Semidefinite Programming () 1 Integer Programming integer programming

More information

Compressed Sensing for Electron Tomography

Compressed Sensing for Electron Tomography University of Maryland, College Park Department of Mathematics February 10, 2015 1/33 Outline I Introduction 1 Introduction 2 3 4 2/33 1 Introduction 2 3 4 3/33 Tomography Introduction Tomography - Producing

More information

GENERAL ASSIGNMENT PROBLEM via Branch and Price JOHN AND LEI

GENERAL ASSIGNMENT PROBLEM via Branch and Price JOHN AND LEI GENERAL ASSIGNMENT PROBLEM via Branch and Price JOHN AND LEI Outline Review the column generation in Generalized Assignment Problem (GAP) GAP Examples in Branch and Price 2 Assignment Problem The assignment

More information

Linear Programming Duality and Algorithms

Linear Programming Duality and Algorithms COMPSCI 330: Design and Analysis of Algorithms 4/5/2016 and 4/7/2016 Linear Programming Duality and Algorithms Lecturer: Debmalya Panigrahi Scribe: Tianqi Song 1 Overview In this lecture, we will cover

More information

An Integrated System for Digital Restoration of Prehistoric Theran Wall Paintings

An Integrated System for Digital Restoration of Prehistoric Theran Wall Paintings An Integrated System for Digital Restoration of Prehistoric Theran Wall Paintings Nikolaos Karianakis 1 Petros Maragos 2 1 University of California, Los Angeles 2 National Technical University of Athens

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms Ann-Brith Strömberg 2018 04 24 Lecture 9 Linear and integer optimization with applications

More information

Lecture 1 Discrete Geometric Structures

Lecture 1 Discrete Geometric Structures Lecture 1 Discrete Geometric Structures Jean-Daniel Boissonnat Winter School on Computational Geometry and Topology University of Nice Sophia Antipolis January 23-27, 2017 Computational Geometry and Topology

More information

Linear Optimization. Andongwisye John. November 17, Linkoping University. Andongwisye John (Linkoping University) November 17, / 25

Linear Optimization. Andongwisye John. November 17, Linkoping University. Andongwisye John (Linkoping University) November 17, / 25 Linear Optimization Andongwisye John Linkoping University November 17, 2016 Andongwisye John (Linkoping University) November 17, 2016 1 / 25 Overview 1 Egdes, One-Dimensional Faces, Adjacency of Extreme

More information

Shape analysis through geometric distributions

Shape analysis through geometric distributions Shape analysis through geometric distributions Nicolas Charon (CIS, Johns Hopkins University) joint work with B. Charlier (Université de Montpellier), I. Kaltenmark (CMLA), A. Trouvé, Hsi-Wei Hsieh (JHU)...

More information

INTRODUCTION TO FINITE ELEMENT METHODS

INTRODUCTION TO FINITE ELEMENT METHODS INTRODUCTION TO FINITE ELEMENT METHODS LONG CHEN Finite element methods are based on the variational formulation of partial differential equations which only need to compute the gradient of a function.

More information

An Introduction to Optimization Techniques in Computer Graphics

An Introduction to Optimization Techniques in Computer Graphics An Introduction to Optimization Techniques in Computer Graphics Ivo Ihrke, Xavier Granier, Gaël Guennebaud, Laurent Jacques, Bastian Goldluecke To cite this version: Ivo Ihrke, Xavier Granier, Gaël Guennebaud,

More information

Perceptron Learning Algorithm

Perceptron Learning Algorithm Perceptron Learning Algorithm An iterative learning algorithm that can find linear threshold function to partition linearly separable set of points. Assume zero threshold value. 1) w(0) = arbitrary, j=1,

More information

Image Segmentation based on Fuzzy Region Competition

Image Segmentation based on Fuzzy Region Competition Image Segmentation based on Fuzzy Region Competition Vinicius R. Pereira Borges 1, Celia A. Zorzo Barcelos 2 and Denise Guliato 3 Computer Faculty 1 3, Mathematics Faculty 2, INCT-MACC 3 Federal University

More information

MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS

MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS GRADO EN A.D.E. GRADO EN ECONOMÍA GRADO EN F.Y.C. ACADEMIC YEAR 2011-12 INDEX UNIT 1.- AN INTRODUCCTION TO OPTIMIZATION 2 UNIT 2.- NONLINEAR PROGRAMMING

More information

Project Updates Short lecture Volumetric Modeling +2 papers

Project Updates Short lecture Volumetric Modeling +2 papers Volumetric Modeling Schedule (tentative) Feb 20 Feb 27 Mar 5 Introduction Lecture: Geometry, Camera Model, Calibration Lecture: Features, Tracking/Matching Mar 12 Mar 19 Mar 26 Apr 2 Apr 9 Apr 16 Apr 23

More information

Approximating the Virtual Network Embedding Problem: Theory and Practice

Approximating the Virtual Network Embedding Problem: Theory and Practice Approximating the Virtual Network Embedding Problem: Theory and Practice 2 5 AC 3 B 2 2 2 D 2 0 3 23rd International Symposium on Mathematical Programming 208 Bordeaux, France Matthias Rost Technische

More information

Dual Interpolants for Finite Element Methods

Dual Interpolants for Finite Element Methods Dual Interpolants for Finite Element Methods Andrew Gillette joint work with Chandrajit Bajaj and Alexander Rand Department of Mathematics Institute of Computational Engineering and Sciences University

More information

Interpolation with complex B-splines

Interpolation with complex B-splines Interpolation with complex B-splines Brigitte Forster Fakultät für Informatik und Mathematik Universität Passau Brigitte Forster (Passau) Bernried 2016 1 / 32 The first part of a story in three chapters

More information

Continuous max flows. F r o m s o a p b u b b l e s t o s e g m e n t a t i o n. Ben Appleton (Google Inc), Lászlo Márak & Hugues Talbot (ESIEE)

Continuous max flows. F r o m s o a p b u b b l e s t o s e g m e n t a t i o n. Ben Appleton (Google Inc), Lászlo Márak & Hugues Talbot (ESIEE) Continuous max flows F r o m s o a p b u b b l e s t o s e g m e n t a t i o n Ben Appleton (Google Inc), Lászlo Márak & Hugues Talbot (ESIEE) IPAM - March 27 2008 Continuous max flows F r o m s o a p

More information

1 Linear programming relaxation

1 Linear programming relaxation Cornell University, Fall 2010 CS 6820: Algorithms Lecture notes: Primal-dual min-cost bipartite matching August 27 30 1 Linear programming relaxation Recall that in the bipartite minimum-cost perfect matching

More information

Department of Mathematics Oleg Burdakov of 30 October Consider the following linear programming problem (LP):

Department of Mathematics Oleg Burdakov of 30 October Consider the following linear programming problem (LP): Linköping University Optimization TAOP3(0) Department of Mathematics Examination Oleg Burdakov of 30 October 03 Assignment Consider the following linear programming problem (LP): max z = x + x s.t. x x

More information

Optimal transport and redistricting: numerical experiments and a few questions. Nestor Guillen University of Massachusetts

Optimal transport and redistricting: numerical experiments and a few questions. Nestor Guillen University of Massachusetts Optimal transport and redistricting: numerical experiments and a few questions Nestor Guillen University of Massachusetts From Rebecca Solnit s Hope in the dark (apropos of nothing in particular) To hope

More information

Lecture 16: Gaps for Max-Cut

Lecture 16: Gaps for Max-Cut Advanced Approximation Algorithms (CMU 8-854B, Spring 008) Lecture 6: Gaps for Max-Cut Mar 6, 008 Lecturer: Ryan O Donnell Scribe: Ravishankar Krishnaswamy Outline In this lecture, we will discuss algorithmic

More information

OPTIMIZATION METHODS

OPTIMIZATION METHODS D. Nagesh Kumar Associate Professor Department of Civil Engineering, Indian Institute of Science, Bangalore - 50 0 Email : nagesh@civil.iisc.ernet.in URL: http://www.civil.iisc.ernet.in/~nagesh Brief Contents

More information

Cut Pursuit: fast algorithms to learn piecewise constant functions on general weighted graphs

Cut Pursuit: fast algorithms to learn piecewise constant functions on general weighted graphs Cut Pursuit: fast algorithms to learn piecewise constant functions on general weighted graphs Loic Landrieu, Guillaume Obozinski To cite this version: Loic Landrieu, Guillaume Obozinski. Cut Pursuit: fast

More information

Line Planning and Steiner Path Connectivity

Line Planning and Steiner Path Connectivity Line Planning and Steiner Path Connectivity Ralf Borndörfer 2015 Workshop on Combinatorial Optimization with Applications in Transportation and Logistics Beijing, 28.07.2015 Line Planning and Steiner Path

More information

Lecture 12: Feasible direction methods

Lecture 12: Feasible direction methods Lecture 12 Lecture 12: Feasible direction methods Kin Cheong Sou December 2, 2013 TMA947 Lecture 12 Lecture 12: Feasible direction methods 1 / 1 Feasible-direction methods, I Intro Consider the problem

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

A primal-dual framework for mixtures of regularizers

A primal-dual framework for mixtures of regularizers A primal-dual framework for mixtures of regularizers Baran Gözcü baran.goezcue@epfl.ch Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL) Switzerland

More information

Lecture 2 September 3

Lecture 2 September 3 EE 381V: Large Scale Optimization Fall 2012 Lecture 2 September 3 Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si, Qiaoyang Ye 2.1 Overview of the last Lecture The focus of the last lecture was to give

More information

Reducing Clocks in Timed Automata while Preserving Bisimulation

Reducing Clocks in Timed Automata while Preserving Bisimulation Reducing Clocks in Timed Automata while Preserving Bisimulation Shibashis Guha Chinmay Narayan S. Arun-Kumar Indian Institute of Technology Delhi {shibashis, chinmay, sak}@cse.iitd.ac.in arxiv:1404.6613v2

More information

Combinatorial Selection and Least Absolute Shrinkage via The CLASH Operator

Combinatorial Selection and Least Absolute Shrinkage via The CLASH Operator Combinatorial Selection and Least Absolute Shrinkage via The CLASH Operator Volkan Cevher Laboratory for Information and Inference Systems LIONS / EPFL http://lions.epfl.ch & Idiap Research Institute joint

More information

When Sparsity Meets Low-Rankness: Transform Learning With Non-Local Low-Rank Constraint For Image Restoration

When Sparsity Meets Low-Rankness: Transform Learning With Non-Local Low-Rank Constraint For Image Restoration When Sparsity Meets Low-Rankness: Transform Learning With Non-Local Low-Rank Constraint For Image Restoration Bihan Wen, Yanjun Li and Yoram Bresler Department of Electrical and Computer Engineering Coordinated

More information

Decomposition in Integer Linear Programming

Decomposition in Integer Linear Programming Decomposition in Integer Linear Programming T.K. Ralphs M.V. Galati December 3, 00 Abstract Both cutting plane methods and traditional decomposition methods are procedures that compute a bound on the optimal

More information