intro, applications MRF, labeling... how it can be computed at all? Applications in segmentation: GraphCut, GrabCut, demos

Size: px
Start display at page:

Download "intro, applications MRF, labeling... how it can be computed at all? Applications in segmentation: GraphCut, GrabCut, demos"

Transcription

1 Image as Markov Random Field and Applications 1 Tomáš Svoboda, svoboda@cmp.felk.cvut.cz Czech Technical University in Prague, Center for Machine Perception Talk Outline Last update: July 14, 2010 intro, applications MRF, labeling... how it can be computed at all? Applications in segmentation: GraphCut, GrabCut, demos 1 Please note that the lecture will be accompanied be several sketches and derivations on the blackboard and few live-interactive demos in Matlab

2 few notes before we start About this very lecture 2/50 MRF is a complicated topic this lecture is introductory some simplifications in order not to lose the whole picture most important references provided many accessible explanations on the web (wikipedia... )

3 From wikipedia 2 : Markov Random Field MRF 3/50 A Markov random field, Markov network or undirected graphical model is a graphical model in which a set of random variables have a Markov property described by an undirected graph. More formal definition, which we follow, can be found in the first chapter 3 of the book [4] freely available at:

4 From wikipedia 2 : Markov Random Field MRF 3/50 A Markov random field, Markov network or undirected graphical model is a graphical model in which a set of random variables have a Markov property described by an undirected graph. More formal definition, which we follow, can be found in the first chapter 3 of the book [4]. Let think about images: freely available at:

5 From wikipedia 2 : Markov Random Field MRF 3/50 A Markov random field, Markov network or undirected graphical model is a graphical model in which a set of random variables have a Markov property described by an undirected graph. More formal definition, which we follow, can be found in the first chapter 3 of the book [4]. Let think about images: image intensities are the random variables the values depend only on their immediate spatial neighborhood which is the Markov property images are organized in a regular grid which can be seen as an undirected graph freely available at:

6 Labeling for image analysis Many image analysis and interpretation problems can be posed as labeling problems. Assign a label to image pixel (or to features in general). Image intensity can be considered as a label (think about pallete images). Sites S index a discrete set of m sites. Site could be: individual pixel image region S = {1,..., m} corner point, line segment, surface patch... 4/50

7 Labels and sites A label is an event that may happen to a site. 5/50 Set of labels L. We will discuss disrete labels: L = {l 1,..., l M } shortly L = {1,..., M}

8 Labels and sites A label is an event that may happen to a site. 5/50 Set of labels L. We will discuss disrete labels: L = {l 1,..., l M } shortly L = {1,..., M} What can be a label? intensity value object label in edge detection binary flag L = {edge, nonedge}...

9 Ordering of labels Some labels can be ordered some not. 6/50 Ordered labels can be used to measure distance between labels.

10 The Labeling Problem Assigning a label from the label set L to each of the sites S. 7/50 Example: edge detection in an image Assign a label f i from the set L = {edge, nonedge} to site i S where the elements in S index the image pixels. The set is called a labeling. Unique labels f = {f 1,..., f m } When each site is assigned a unique label, labeling can be seen as mapping from S to L. f : S L A labeling is also called a coloring in mathematical programming.

11 How many possible labelings? Assuming all m sites have the same label set L 8/50 F = L L... L }{{} m times = L m Imagine the image restoration problem [3]. The the m is the number of pixels in the image and L equals to number of intensity levels. Many, many possible labelings. Usually only few are good.

12 Labeling problems in image analysis image restoration 9/50 region segmentation edge detection object detection and recognition stereo...

13 Labeling with contextual analysis In images, site neighborhood matters. 10/50 A probability P (f i ) does not depend only on the site but also on the labeling around. Mathematically speaking we must consider conditional probability P (f i {f i }) where {f i } denotes the set of other labels. no context: P (f) = i S P (f i ) Markov Random Field - MRF P (f i f S {i} ) = P (f i f Ni ) where f Ni stands for the labels at the sites neighboring i.

14 MRF a Gibbs Random Fields How to specify an MRF: in terms of conditional probabilities P (f i f Ni ) or joint probability P (f)? Hammersley Clifford theorem about equivalence between MRF and Gibbs distribution. A set of random variables F is said to be a Gibbs Random Fields on S with respect to N iff its configurations obey a Gibbs distribution 11/50 P (f) = Z 1 e 1 T U(f) P = e U where Z = f F e 1 T U(f) is a normalizing constant energy term U

15 Gibbs distribution 12/50 P (f) = Z 1 e 1 T U(f) T is tempertature, T = 1 unless stated otherwise U(f) is the energy function P = e 1 T U T=0.5 T=1.0 T=2.0 T= energy term U

16 Energy function 13/50 U(f) = c C V c (f) is a sum of clique potentials V c (f) over all possible cliques C. 4 4 Illustration from the book [4]

17 Simple cliques, Auto models Contextual constraints on two labels U(f) = V 1 (f i ) + i S i S V 2 (f i, f i ) i N i 14/50 This can be interpreted as U(f) = U data (f) + U smooth (f)

18 Neighborhood and cliques on a regular lattices 15/ Illustration from the book [4]

19 Energy minimization What is to be computed? Gibbs distribution: 16/50 P (f) = Z 1 e T 1 U(f) Remind that f is the desired labeling f : S L In MAP formulation we seek the most probable labeling P (f). The best labeling minimizes energy U(f) It is a combinatorial problem. The next explanation follows mainly [2].

20 Energy data term and smoothness term 17/50 U(f) = U data (f) + U smooth (f) The data term measures how well a label f p fits the particular pixel (site) p. Globally, U data (f) = p P D p (f p ) Example: in Image restoration D p (f p ) = (f p I p ) 2, where I p is the observed intensity and f p is the label (assigned intensity). Smoothness term Expresses the context. Setting a proper smoothness term is much more tricky. smooth but not everywhere (think about object boundary) discontinuity preserving

21 Interacting pixels We consider the energy U(f) = D p (f p ) + p P {p,q} N V p,q (f p, f q ) 18/50 where N is the set of interacting pixels, typically adjacent pixels. D p is assumed to be nonnegative. Interaction of adjacent pixels may have long range impact! V p,q is called interaction penalty.

22 labels α, β, γ L (reasonable) interaction penalties 19/50 V (α, β) = 0 α = β, (1) V (α, β) = V (β, α) 0, (2) V (α, β) V (α, γ) + V (γ, β) (3) Penalty is metric if all hold and semimetric if only (2,3) is satisfied. Examples of discontinutity preserving penalties truncated quadratic V (α, β) = min(k, (α β)2) truncated absolute distance V (α, β) = min(k, α β ) Potts model V (α, β) = KT (α β), where T () = 1 if argument is true, otherwise 0.

23 towards the best labeling (minimum energy) Catch: finding global minimum is NP complete even for the simple Potts model. 20/50 local minimum is sought. Problem If the solution is poor poor choice of energy funtion local minimum is far from the global one

24 Local minimum a labeling f is a local minimum of the energy U if 21/50 U(f) U(f ) for any f near to f. In case of discrete labeling near means withing single move of f. Many local minimization method use standard moves, where only one pixel (site) may change label at a time. Example: greedy optimization for each pixel, the label which gives the largest descrease of the energy is chosen.

25 Fast approximate energy minimization via graph cuts We only sketch the main ideas from the seminal work [2] 6 22/50 Allow more than just one label change at a time 7 α-β swap and α-expansion. 6 Freely available implementation. Many difficult problems in computer vision were solved by using this method and implementation. 7 image from [2]

26 Algorithm 23/50

27 Algorithm 24/50

28 Algorithm 25/50

29 α-β swap 26/50 How many iterations in each cycle? A cycle is successful if a strictly better labeling is found in any iteration. Cycling stops after first unsuccessful cycle.

30 α-β swap 27/50 The best α-β swap is found by composing a graph and finding min-cut. min-cut is equivalent to max-flow (Ford-Fulkerson theorem) Max-flow between terminals is a standard problem in Combinatorial Optimization. Algorithms with low-order polynomial complexities exist.

31 Finding optimal α-β swap 28/ illustration from [2]

32 Finding optimal α-β swap, min-cut 29/50

33 Finding optimal α-β swap, re-labeling 30/50

34 Finding optimal α-β swap, re-labeling 31/50

35 MRF in image segmentation 32/50

36 Zkouška 33/50 Pátek 4.6.

37 Segmentation with seeds Interactive GraphCuts Idea: denote few pixels that trully belongs to object or background and than refine (grow) by using soft constraints. 34/50

38 Segmentation with seeds Interactive GraphCuts Idea: denote few pixels that trully belongs to object or background and than refine (grow) by using soft constraints. 34/50

39 Segmentation with seeds Interactive GraphCuts Idea: denote few pixels that trully belongs to object or background and than refine (grow) by using soft constraints. 34/50

40 Segmentation with seeds Interactive GraphCuts Idea: denote few pixels that trully belongs to object or background and than refine (grow) by using soft constraints. 34/50

41 Segmentation with seeds Interactive GraphCuts Idea: denote few pixels that trully belongs to object or background and than refine (grow) by using soft constraints. 34/50 data term boundary penalties and/or pixel interactions how to find the optimal boundary between object and background

42 Segmentation with seeds graph 35/ illustration from [1]

43 Explained on the blackboard. Edges, cuts, segmentation 36/50 See [1] for details.

44 What data term? 37/50 U data (obj, bck) = p obj D(obj) + p bck D(bck) The better match between pixel and obj or bck model the lower energy (penalty).

45 What data term? 37/50 U data (obj, bck) = p obj D(obj) + p bck D(bck) The better match between pixel and obj or bck model the lower energy (penalty). How to model? for simplicity, you may think about the opposite case, the better match the higher value background, foreground (object) pixels intensity or color distributions histograms parametric models: GMM Gaussian Mixture Model

46 Image intensities - 1D GMM relative frequency of intensities 38/50 relative frequency intensity Demo codes from [6]

47 Image intensities - 1D GMM individual Gaussians 39/50 relative frequency intensity

48 Image intensities - 1D GMM Gaussian mixture 40/50 relative frequency intensity

49 2D GMM 41/

50 2D GMM 42/

51 2D GMM 43/

52 Data term by GMM math summary p(x f i ) = K k=1 w f i k 1 (2π) d 2 Σ f i k 1 2 exp ( 1 ) 2 (x µf i k )T Σ f 1 i k (x µ f i k ), 44/50 where d is the dimension. K number of Gaussians. User defined. for each label L = {obj, bck} different wk, µk, Σk estimated from the data (seeds) x pixel value, can be intensity, color vector,... Data term D(obj) = ln p(x obj) D(bck) = ln p(x bck) data term probability

53 See the live demo 11 Results data term only 45/50 11 Demo codes courtesy of V. Franc and A. Shekhovtsov

54 What boundary (interaction) term? The Potts model: V (p, q) = λt (p q), where T () = 1 if argument is true, otherwise 0. Effect of λ, see the live demo. Results for data and interaction terms 46/50

55 GrabCut going beyond the seeds The main idea: Iterate the graphcut and refine the data terms in each iteration. Stop if the energy (penalty) does not decrease. [5] 47/50 The practical motivation

56 GrabCut going beyond the seeds The main idea: Iterate the graphcut and refine the data terms in each iteration. Stop if the energy (penalty) does not decrease. [5] 47/50 The practical motivation Further reduce the user interaction images from [5]

57 GrabCut algorithm 48/50 Init: Specify background pixels T B. T F = 0; T U = T B Iterative minimization: 1. assign GMM components to pixels in T U 2. learn GMM parameters from data 3. segment by using min-cut (graphcut algorithm) 4. repeat from step 1 until convergence Optional: edit some pixels and repeat the min-cut.

58 References 49/50 [1] Yuri Boykov and Marie-Pierre Jolly. Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In Proceedings of International Conference on Computer Vision (ICCV), [2] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11): , November [3] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6): , [4] Stan Z. Li. Markov Random Field Modeling in Image Analysis. Springer, [5] Carsten Rother, Vladimir Kolomogorov, and Andrew Blake. GrabCut: Interactive foreground extraction isong iterated graph cuts. ACM Transactions on Graphics (SIGGRAPH 04), [6] Tomáš Svoboda, Jan Kybic, and Václav Hlaváč. Image Processing, Analysis and Machine Vision. A MATLAB Companion. Thomson, Accompanying www site

59 End 50/50

60 1 P = e U energy term U

61 P = e 1 T U T=0.5 T=1.0 T=2.0 T= energy term U

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90 0.015 relative frequency of intensities relative frequency intensity

91 0.018 individual Gaussians relative frequency intensity

92 0.018 Gaussian mixture relative frequency intensity

93

94

95

96 data term probability

97

98

Image Segmentation Using Iterated Graph Cuts Based on Multi-scale Smoothing

Image Segmentation Using Iterated Graph Cuts Based on Multi-scale Smoothing Image Segmentation Using Iterated Graph Cuts Based on Multi-scale Smoothing Tomoyuki Nagahashi 1, Hironobu Fujiyoshi 1, and Takeo Kanade 2 1 Dept. of Computer Science, Chubu University. Matsumoto 1200,

More information

CAP5415-Computer Vision Lecture 13-Image/Video Segmentation Part II. Dr. Ulas Bagci

CAP5415-Computer Vision Lecture 13-Image/Video Segmentation Part II. Dr. Ulas Bagci CAP-Computer Vision Lecture -Image/Video Segmentation Part II Dr. Ulas Bagci bagci@ucf.edu Labeling & Segmentation Labeling is a common way for modeling various computer vision problems (e.g. optical flow,

More information

Image Segmentation Using Iterated Graph Cuts BasedonMulti-scaleSmoothing

Image Segmentation Using Iterated Graph Cuts BasedonMulti-scaleSmoothing Image Segmentation Using Iterated Graph Cuts BasedonMulti-scaleSmoothing Tomoyuki Nagahashi 1, Hironobu Fujiyoshi 1, and Takeo Kanade 2 1 Dept. of Computer Science, Chubu University. Matsumoto 1200, Kasugai,

More information

Markov/Conditional Random Fields, Graph Cut, and applications in Computer Vision

Markov/Conditional Random Fields, Graph Cut, and applications in Computer Vision Markov/Conditional Random Fields, Graph Cut, and applications in Computer Vision Fuxin Li Slides and materials from Le Song, Tucker Hermans, Pawan Kumar, Carsten Rother, Peter Orchard, and others Recap:

More information

Algorithms for Markov Random Fields in Computer Vision

Algorithms for Markov Random Fields in Computer Vision Algorithms for Markov Random Fields in Computer Vision Dan Huttenlocher November, 2003 (Joint work with Pedro Felzenszwalb) Random Field Broadly applicable stochastic model Collection of n sites S Hidden

More information

Discrete Optimization Methods in Computer Vision CSE 6389 Slides by: Boykov Modified and Presented by: Mostafa Parchami Basic overview of graph cuts

Discrete Optimization Methods in Computer Vision CSE 6389 Slides by: Boykov Modified and Presented by: Mostafa Parchami Basic overview of graph cuts Discrete Optimization Methods in Computer Vision CSE 6389 Slides by: Boykov Modified and Presented by: Mostafa Parchami Basic overview of graph cuts [Yuri Boykov, Olga Veksler, Ramin Zabih, Fast Approximation

More information

Image Restoration using Markov Random Fields

Image Restoration using Markov Random Fields Image Restoration using Markov Random Fields Based on the paper Stochastic Relaxation, Gibbs Distributions and Bayesian Restoration of Images, PAMI, 1984, Geman and Geman. and the book Markov Random Field

More information

Statistical and Learning Techniques in Computer Vision Lecture 1: Markov Random Fields Jens Rittscher and Chuck Stewart

Statistical and Learning Techniques in Computer Vision Lecture 1: Markov Random Fields Jens Rittscher and Chuck Stewart Statistical and Learning Techniques in Computer Vision Lecture 1: Markov Random Fields Jens Rittscher and Chuck Stewart 1 Motivation Up to now we have considered distributions of a single random variable

More information

Fast Approximate Energy Minimization via Graph Cuts

Fast Approximate Energy Minimization via Graph Cuts IEEE Transactions on PAMI, vol. 23, no. 11, pp. 1222-1239 p.1 Fast Approximate Energy Minimization via Graph Cuts Yuri Boykov, Olga Veksler and Ramin Zabih Abstract Many tasks in computer vision involve

More information

Undirected Graphical Models. Raul Queiroz Feitosa

Undirected Graphical Models. Raul Queiroz Feitosa Undirected Graphical Models Raul Queiroz Feitosa Pros and Cons Advantages of UGMs over DGMs UGMs are more natural for some domains (e.g. context-dependent entities) Discriminative UGMs (CRF) are better

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 19: Graph Cuts source S sink T Readings Szeliski, Chapter 11.2 11.5 Stereo results with window search problems in areas of uniform texture Window-based matching

More information

Graphs, graph algorithms (for image segmentation),... in progress

Graphs, graph algorithms (for image segmentation),... in progress Graphs, graph algorithms (for image segmentation),... in progress Václav Hlaváč Czech Technical University in Prague Czech Institute of Informatics, Robotics and Cybernetics 66 36 Prague 6, Jugoslávských

More information

Prof. Feng Liu. Spring /17/2017. With slides by F. Durand, Y.Y. Chuang, R. Raskar, and C.

Prof. Feng Liu. Spring /17/2017. With slides by F. Durand, Y.Y. Chuang, R. Raskar, and C. Prof. Feng Liu Spring 2017 http://www.cs.pdx.edu/~fliu/courses/cs510/ 05/17/2017 With slides by F. Durand, Y.Y. Chuang, R. Raskar, and C. Rother Last Time Image segmentation Normalized cut and segmentation

More information

Dr. Ulas Bagci

Dr. Ulas Bagci CAP- Computer Vision Lecture - Image Segmenta;on as an Op;miza;on Problem Dr. Ulas Bagci bagci@ucf.edu Reminders Oct Guest Lecture: SVM by Dr. Gong Oct 8 Guest Lecture: Camera Models by Dr. Shah PA# October

More information

MEDICAL IMAGE COMPUTING (CAP 5937) LECTURE 10: Medical Image Segmentation as an Energy Minimization Problem

MEDICAL IMAGE COMPUTING (CAP 5937) LECTURE 10: Medical Image Segmentation as an Energy Minimization Problem SPRING 06 MEDICAL IMAGE COMPUTING (CAP 97) LECTURE 0: Medical Image Segmentation as an Energy Minimization Problem Dr. Ulas Bagci HEC, Center for Research in Computer Vision (CRCV), University of Central

More information

Mathematics in Image Processing

Mathematics in Image Processing Mathematics in Image Processing Michal Šorel Department of Image Processing Institute of Information Theory and Automation (ÚTIA) Academy of Sciences of the Czech Republic http://zoi.utia.cas.cz/ Mathematics

More information

CS4670 / 5670: Computer Vision Noah Snavely

CS4670 / 5670: Computer Vision Noah Snavely { { 11/26/2013 CS4670 / 5670: Computer Vision Noah Snavely Graph-Based Image Segmentation Stereo as a minimization problem match cost Want each pixel to find a good match in the other image smoothness

More information

Regularization and Markov Random Fields (MRF) CS 664 Spring 2008

Regularization and Markov Random Fields (MRF) CS 664 Spring 2008 Regularization and Markov Random Fields (MRF) CS 664 Spring 2008 Regularization in Low Level Vision Low level vision problems concerned with estimating some quantity at each pixel Visual motion (u(x,y),v(x,y))

More information

Mesh segmentation. Florent Lafarge Inria Sophia Antipolis - Mediterranee

Mesh segmentation. Florent Lafarge Inria Sophia Antipolis - Mediterranee Mesh segmentation Florent Lafarge Inria Sophia Antipolis - Mediterranee Outline What is mesh segmentation? M = {V,E,F} is a mesh S is either V, E or F (usually F) A Segmentation is a set of sub-meshes

More information

Approximate decoding: ICM, block methods, alpha-beta swap & alpha-expansion

Approximate decoding: ICM, block methods, alpha-beta swap & alpha-expansion Approximate decoding: ICM, block methods, alpha-beta swap & alpha-expansion Julieta Martinez University of British Columbia August 25, 2015 https://www.youtube.com/watch?v=kp3ik5f3-2c&t=18m36s Outline

More information

MEDICAL IMAGE COMPUTING (CAP 5937) LECTURE 10: Medical Image Segmentation as an Energy Minimization Problem

MEDICAL IMAGE COMPUTING (CAP 5937) LECTURE 10: Medical Image Segmentation as an Energy Minimization Problem SPRING 07 MEDICAL IMAGE COMPUTING (CAP 97) LECTURE 0: Medical Image Segmentation as an Energy Minimization Problem Dr. Ulas Bagci HEC, Center for Research in Computer Vision (CRCV), University of Central

More information

Markov Random Fields and Segmentation with Graph Cuts

Markov Random Fields and Segmentation with Graph Cuts Markov Random Fields and Segmentation with Graph Cuts Computer Vision Jia-Bin Huang, Virginia Tech Many slides from D. Hoiem Administrative stuffs Final project Proposal due Oct 27 (Thursday) HW 4 is out

More information

Supervised texture detection in images

Supervised texture detection in images Supervised texture detection in images Branislav Mičušík and Allan Hanbury Pattern Recognition and Image Processing Group, Institute of Computer Aided Automation, Vienna University of Technology Favoritenstraße

More information

Quadratic Pseudo-Boolean Optimization(QPBO): Theory and Applications At-a-Glance

Quadratic Pseudo-Boolean Optimization(QPBO): Theory and Applications At-a-Glance Quadratic Pseudo-Boolean Optimization(QPBO): Theory and Applications At-a-Glance Presented By: Ahmad Al-Kabbany Under the Supervision of: Prof.Eric Dubois 12 June 2012 Outline Introduction The limitations

More information

Segmentation with non-linear constraints on appearance, complexity, and geometry

Segmentation with non-linear constraints on appearance, complexity, and geometry IPAM February 2013 Western Univesity Segmentation with non-linear constraints on appearance, complexity, and geometry Yuri Boykov Andrew Delong Lena Gorelick Hossam Isack Anton Osokin Frank Schmidt Olga

More information

Markov Random Fields with Efficient Approximations

Markov Random Fields with Efficient Approximations Markov Random Fields with Efficient Approximations Yuri Boykov Olga Veksler Ramin Zabih Computer Science Department Cornell University Ithaca, NY 14853 Abstract Markov Random Fields (MRF s) can be used

More information

Energy Minimization for Segmentation in Computer Vision

Energy Minimization for Segmentation in Computer Vision S * = arg S min E(S) Energy Minimization for Segmentation in Computer Vision Meng Tang, Dmitrii Marin, Ismail Ben Ayed, Yuri Boykov Outline Clustering/segmentation methods K-means, GrabCut, Normalized

More information

Digital Image Processing Laboratory: Markov Random Fields and MAP Image Segmentation

Digital Image Processing Laboratory: Markov Random Fields and MAP Image Segmentation Purdue University: Digital Image Processing Laboratories Digital Image Processing Laboratory: Markov Random Fields and MAP Image Segmentation December, 205 Introduction This laboratory explores the use

More information

Computer Vision : Exercise 4 Labelling Problems

Computer Vision : Exercise 4 Labelling Problems Computer Vision Exercise 4 Labelling Problems 13/01/2014 Computer Vision : Exercise 4 Labelling Problems Outline 1. Energy Minimization (example segmentation) 2. Iterated Conditional Modes 3. Dynamic Programming

More information

Maximum flows and minimal cuts. Filip Malmberg

Maximum flows and minimal cuts. Filip Malmberg Maximum flows and minimal cuts Filip Malmberg MSF cuts I A Minimum Spanning Forest with respect to a set of seed-points divides a graph into a number of connected components. Thus, it defines a cut on

More information

10708 Graphical Models: Homework 4

10708 Graphical Models: Homework 4 10708 Graphical Models: Homework 4 Due November 12th, beginning of class October 29, 2008 Instructions: There are six questions on this assignment. Each question has the name of one of the TAs beside it,

More information

MULTI-REGION SEGMENTATION

MULTI-REGION SEGMENTATION MULTI-REGION SEGMENTATION USING GRAPH-CUTS Johannes Ulén Abstract This project deals with multi-region segmenation using graph-cuts and is mainly based on a paper by Delong and Boykov [1]. The difference

More information

s-t Graph Cuts for Binary Energy Minimization

s-t Graph Cuts for Binary Energy Minimization s-t Graph Cuts for Binary Energy Minimization E data term ( L) = D ( ) + ( ) P Lp λ Ι Lp Lq p prior term Now that we have an energy function, the big question is how do we minimize it? pq N n Exhaustive

More information

Graph Cuts in Vision and Graphics: Theories and Applications

Graph Cuts in Vision and Graphics: Theories and Applications In Handbook of Mathematical Models in Computer Vision, Springer, 2006 p.1 Graph Cuts in Vision and Graphics: Theories and Applications Yuri Boykov and Olga Veksler Computer Science, The University of Western

More information

Multi-Label Moves for Multi-Label Energies

Multi-Label Moves for Multi-Label Energies Multi-Label Moves for Multi-Label Energies Olga Veksler University of Western Ontario some work is joint with Olivier Juan, Xiaoqing Liu, Yu Liu Outline Review multi-label optimization with graph cuts

More information

Graph Cuts vs. Level Sets. part I Basics of Graph Cuts

Graph Cuts vs. Level Sets. part I Basics of Graph Cuts ECCV 2006 tutorial on Graph Cuts vs. Level Sets part I Basics of Graph Cuts Yuri Boykov University of Western Ontario Daniel Cremers University of Bonn Vladimir Kolmogorov University College London Graph

More information

Models for grids. Computer vision: models, learning and inference. Multi label Denoising. Binary Denoising. Denoising Goal.

Models for grids. Computer vision: models, learning and inference. Multi label Denoising. Binary Denoising. Denoising Goal. Models for grids Computer vision: models, learning and inference Chapter 9 Graphical Models Consider models where one unknown world state at each pixel in the image takes the form of a grid. Loops in the

More information

MRFs and Segmentation with Graph Cuts

MRFs and Segmentation with Graph Cuts 02/24/10 MRFs and Segmentation with Graph Cuts Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Today s class Finish up EM MRFs w ij i Segmentation with Graph Cuts j EM Algorithm: Recap

More information

Announcements. Image Segmentation. From images to objects. Extracting objects. Status reports next Thursday ~5min presentations in class

Announcements. Image Segmentation. From images to objects. Extracting objects. Status reports next Thursday ~5min presentations in class Image Segmentation Announcements Status reports next Thursday ~5min presentations in class Project voting From Sandlot Science Today s Readings Forsyth & Ponce, Chapter 1 (plus lots of optional references

More information

What have we leaned so far?

What have we leaned so far? What have we leaned so far? Camera structure Eye structure Project 1: High Dynamic Range Imaging What have we learned so far? Image Filtering Image Warping Camera Projection Model Project 2: Panoramic

More information

Supplementary Material: Adaptive and Move Making Auxiliary Cuts for Binary Pairwise Energies

Supplementary Material: Adaptive and Move Making Auxiliary Cuts for Binary Pairwise Energies Supplementary Material: Adaptive and Move Making Auxiliary Cuts for Binary Pairwise Energies Lena Gorelick Yuri Boykov Olga Veksler Computer Science Department University of Western Ontario Abstract Below

More information

ADAPTIVE GRAPH CUTS WITH TISSUE PRIORS FOR BRAIN MRI SEGMENTATION

ADAPTIVE GRAPH CUTS WITH TISSUE PRIORS FOR BRAIN MRI SEGMENTATION ADAPTIVE GRAPH CUTS WITH TISSUE PRIORS FOR BRAIN MRI SEGMENTATION Abstract: MIP Project Report Spring 2013 Gaurav Mittal 201232644 This is a detailed report about the course project, which was to implement

More information

Markov Random Fields and Segmentation with Graph Cuts

Markov Random Fields and Segmentation with Graph Cuts Markov Random Fields and Segmentation with Graph Cuts Computer Vision Jia-Bin Huang, Virginia Tech Many slides from D. Hoiem Administrative stuffs Final project Proposal due Oct 30 (Monday) HW 4 is out

More information

A Feature Point Matching Based Approach for Video Objects Segmentation

A Feature Point Matching Based Approach for Video Objects Segmentation A Feature Point Matching Based Approach for Video Objects Segmentation Yan Zhang, Zhong Zhou, Wei Wu State Key Laboratory of Virtual Reality Technology and Systems, Beijing, P.R. China School of Computer

More information

Exact optimization for Markov random fields with convex priors

Exact optimization for Markov random fields with convex priors IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 10, PP. 1333-1336. OCTOBER 2003. Exact optimization for Markov random fields with convex priors Hiroshi Ishikawa Courant Institute

More information

CS4670: Computer Vision

CS4670: Computer Vision CS4670: Computer Vision Noah Snavely Lecture 34: Segmentation From Sandlot Science Announcements In-class exam this Friday, December 3 Review session in class on Wednesday Final projects: Slides due: Sunday,

More information

Integrating Intensity and Texture in Markov Random Fields Segmentation. Amer Dawoud and Anton Netchaev. {amer.dawoud*,

Integrating Intensity and Texture in Markov Random Fields Segmentation. Amer Dawoud and Anton Netchaev. {amer.dawoud*, Integrating Intensity and Texture in Markov Random Fields Segmentation Amer Dawoud and Anton Netchaev {amer.dawoud*, anton.netchaev}@usm.edu School of Computing, University of Southern Mississippi 118

More information

Markov Networks in Computer Vision. Sargur Srihari

Markov Networks in Computer Vision. Sargur Srihari Markov Networks in Computer Vision Sargur srihari@cedar.buffalo.edu 1 Markov Networks for Computer Vision Important application area for MNs 1. Image segmentation 2. Removal of blur/noise 3. Stereo reconstruction

More information

UNSUPERVISED CO-SEGMENTATION BASED ON A NEW GLOBAL GMM CONSTRAINT IN MRF. Hongkai Yu, Min Xian, and Xiaojun Qi

UNSUPERVISED CO-SEGMENTATION BASED ON A NEW GLOBAL GMM CONSTRAINT IN MRF. Hongkai Yu, Min Xian, and Xiaojun Qi UNSUPERVISED CO-SEGMENTATION BASED ON A NEW GLOBAL GMM CONSTRAINT IN MRF Hongkai Yu, Min Xian, and Xiaojun Qi Department of Computer Science, Utah State University, Logan, UT 84322-4205 hongkai.yu@aggiemail.usu.edu,

More information

Super Resolution Using Graph-cut

Super Resolution Using Graph-cut Super Resolution Using Graph-cut Uma Mudenagudi, Ram Singla, Prem Kalra, and Subhashis Banerjee Department of Computer Science and Engineering Indian Institute of Technology Delhi Hauz Khas, New Delhi,

More information

Parallel constraint optimization algorithms for higher-order discrete graphical models: applications in hyperspectral imaging

Parallel constraint optimization algorithms for higher-order discrete graphical models: applications in hyperspectral imaging Parallel constraint optimization algorithms for higher-order discrete graphical models: applications in hyperspectral imaging MSc Billy Braithwaite Supervisors: Prof. Pekka Neittaanmäki and Phd Ilkka Pölönen

More information

Clustering Lecture 5: Mixture Model

Clustering Lecture 5: Mixture Model Clustering Lecture 5: Mixture Model Jing Gao SUNY Buffalo 1 Outline Basics Motivation, definition, evaluation Methods Partitional Hierarchical Density-based Mixture model Spectral methods Advanced topics

More information

GiRaF: a toolbox for Gibbs Random Fields analysis

GiRaF: a toolbox for Gibbs Random Fields analysis GiRaF: a toolbox for Gibbs Random Fields analysis Julien Stoehr *1, Pierre Pudlo 2, and Nial Friel 1 1 University College Dublin 2 Aix-Marseille Université February 24, 2016 Abstract GiRaF package offers

More information

OPPA European Social Fund Prague & EU: We invest in your future.

OPPA European Social Fund Prague & EU: We invest in your future. OPPA European Social Fund Prague & EU: We invest in your future. Patch tracking based on comparing its piels 1 Tomáš Svoboda, svoboda@cmp.felk.cvut.cz Czech Technical University in Prague, Center for Machine

More information

Combinatorial optimization and its applications in image Processing. Filip Malmberg

Combinatorial optimization and its applications in image Processing. Filip Malmberg Combinatorial optimization and its applications in image Processing Filip Malmberg Part 1: Optimization in image processing Optimization in image processing Many image processing problems can be formulated

More information

Comparison of Graph Cuts with Belief Propagation for Stereo, using Identical MRF Parameters

Comparison of Graph Cuts with Belief Propagation for Stereo, using Identical MRF Parameters Comparison of Graph Cuts with Belief Propagation for Stereo, using Identical MRF Parameters Marshall F. Tappen William T. Freeman Computer Science and Artificial Intelligence Laboratory Massachusetts Institute

More information

Markov Networks in Computer Vision

Markov Networks in Computer Vision Markov Networks in Computer Vision Sargur Srihari srihari@cedar.buffalo.edu 1 Markov Networks for Computer Vision Some applications: 1. Image segmentation 2. Removal of blur/noise 3. Stereo reconstruction

More information

IMAGE SEGMENTATION. Václav Hlaváč

IMAGE SEGMENTATION. Václav Hlaváč IMAGE SEGMENTATION Václav Hlaváč Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics Center for Machine Perception http://cmp.felk.cvut.cz/ hlavac, hlavac@fel.cvut.cz

More information

Neighbourhood-consensus message passing and its potentials in image processing applications

Neighbourhood-consensus message passing and its potentials in image processing applications Neighbourhood-consensus message passing and its potentials in image processing applications Tijana Ružić a, Aleksandra Pižurica a and Wilfried Philips a a Ghent University, TELIN-IPI-IBBT, Sint-Pietersnieuwstraat

More information

Expectation Propagation

Expectation Propagation Expectation Propagation Erik Sudderth 6.975 Week 11 Presentation November 20, 2002 Introduction Goal: Efficiently approximate intractable distributions Features of Expectation Propagation (EP): Deterministic,

More information

IMPROVED FINE STRUCTURE MODELING VIA GUIDED STOCHASTIC CLIQUE FORMATION IN FULLY CONNECTED CONDITIONAL RANDOM FIELDS

IMPROVED FINE STRUCTURE MODELING VIA GUIDED STOCHASTIC CLIQUE FORMATION IN FULLY CONNECTED CONDITIONAL RANDOM FIELDS IMPROVED FINE STRUCTURE MODELING VIA GUIDED STOCHASTIC CLIQUE FORMATION IN FULLY CONNECTED CONDITIONAL RANDOM FIELDS M. J. Shafiee, A. G. Chung, A. Wong, and P. Fieguth Vision & Image Processing Lab, Systems

More information

Markov Random Fields and Gibbs Sampling for Image Denoising

Markov Random Fields and Gibbs Sampling for Image Denoising Markov Random Fields and Gibbs Sampling for Image Denoising Chang Yue Electrical Engineering Stanford University changyue@stanfoed.edu Abstract This project applies Gibbs Sampling based on different Markov

More information

3 : Representation of Undirected GMs

3 : Representation of Undirected GMs 0-708: Probabilistic Graphical Models 0-708, Spring 202 3 : Representation of Undirected GMs Lecturer: Eric P. Xing Scribes: Nicole Rafidi, Kirstin Early Last Time In the last lecture, we discussed directed

More information

Interactive segmentation, Combinatorial optimization. Filip Malmberg

Interactive segmentation, Combinatorial optimization. Filip Malmberg Interactive segmentation, Combinatorial optimization Filip Malmberg But first... Implementing graph-based algorithms Even if we have formulated an algorithm on a general graphs, we do not neccesarily have

More information

Texture Modeling using MRF and Parameters Estimation

Texture Modeling using MRF and Parameters Estimation Texture Modeling using MRF and Parameters Estimation Ms. H. P. Lone 1, Prof. G. R. Gidveer 2 1 Postgraduate Student E & TC Department MGM J.N.E.C,Aurangabad 2 Professor E & TC Department MGM J.N.E.C,Aurangabad

More information

CS 5540 Spring 2013 Assignment 3, v1.0 Due: Apr. 24th 11:59PM

CS 5540 Spring 2013 Assignment 3, v1.0 Due: Apr. 24th 11:59PM 1 Introduction In this programming project, we are going to do a simple image segmentation task. Given a grayscale image with a bright object against a dark background and we are going to do a binary decision

More information

An Integrated System for Digital Restoration of Prehistoric Theran Wall Paintings

An Integrated System for Digital Restoration of Prehistoric Theran Wall Paintings An Integrated System for Digital Restoration of Prehistoric Theran Wall Paintings Nikolaos Karianakis 1 Petros Maragos 2 1 University of California, Los Angeles 2 National Technical University of Athens

More information

Human Head-Shoulder Segmentation

Human Head-Shoulder Segmentation Human Head-Shoulder Segmentation Hai Xin, Haizhou Ai Computer Science and Technology Tsinghua University Beijing, China ahz@mail.tsinghua.edu.cn Hui Chao, Daniel Tretter Hewlett-Packard Labs 1501 Page

More information

Fast Approximate Energy Minimization via Graph Cuts

Fast Approximate Energy Minimization via Graph Cuts Fast Approximate Energy Minimization via Graph Cuts Yuri Boykov Siemens Research Princeton, New Jersey Olga Veksler NEC Research Princeton, New Jersey Ramin Zabih Computer Science Department Cornell University

More information

2D image segmentation based on spatial coherence

2D image segmentation based on spatial coherence 2D image segmentation based on spatial coherence Václav Hlaváč Czech Technical University in Prague Center for Machine Perception (bridging groups of the) Czech Institute of Informatics, Robotics and Cybernetics

More information

Segmentation. Separate image into coherent regions

Segmentation. Separate image into coherent regions Segmentation II Segmentation Separate image into coherent regions Berkeley segmentation database: http://www.eecs.berkeley.edu/research/projects/cs/vision/grouping/segbench/ Slide by L. Lazebnik Interactive

More information

Image Segmentation. April 24, Stanford University. Philipp Krähenbühl (Stanford University) Segmentation April 24, / 63

Image Segmentation. April 24, Stanford University. Philipp Krähenbühl (Stanford University) Segmentation April 24, / 63 Image Segmentation Philipp Krähenbühl Stanford University April 24, 2013 Philipp Krähenbühl (Stanford University) Segmentation April 24, 2013 1 / 63 Image Segmentation Goal: identify groups of pixels that

More information

Computer Vision I - Filtering and Feature detection

Computer Vision I - Filtering and Feature detection Computer Vision I - Filtering and Feature detection Carsten Rother 30/10/2015 Computer Vision I: Basics of Image Processing Roadmap: Basics of Digital Image Processing Computer Vision I: Basics of Image

More information

Graphical Models, Bayesian Method, Sampling, and Variational Inference

Graphical Models, Bayesian Method, Sampling, and Variational Inference Graphical Models, Bayesian Method, Sampling, and Variational Inference With Application in Function MRI Analysis and Other Imaging Problems Wei Liu Scientific Computing and Imaging Institute University

More information

Tracking in image sequences

Tracking in image sequences CENTER FOR MACHINE PERCEPTION CZECH TECHNICAL UNIVERSITY Tracking in image sequences Lecture notes for the course Computer Vision Methods Tomáš Svoboda svobodat@fel.cvut.cz March 23, 2011 Lecture notes

More information

Lecture 16 Segmentation and Scene understanding

Lecture 16 Segmentation and Scene understanding Lecture 16 Segmentation and Scene understanding Introduction! Mean-shift! Graph-based segmentation! Top-down segmentation! Silvio Savarese Lecture 15 -! 3-Mar-14 Segmentation Silvio Savarese Lecture 15

More information

Chapter 8 of Bishop's Book: Graphical Models

Chapter 8 of Bishop's Book: Graphical Models Chapter 8 of Bishop's Book: Graphical Models Review of Probability Probability density over possible values of x Used to find probability of x falling in some range For continuous variables, the probability

More information

Iterated Graph Cuts for Image Segmentation

Iterated Graph Cuts for Image Segmentation Iterated Graph Cuts for Image Segmentation Bo Peng 1, Lei Zhang 1, and Jian Yang 2 1 Department of Computing, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China. 2 School of Computer Science

More information

Optimization. Intelligent Scissors (see also Snakes)

Optimization. Intelligent Scissors (see also Snakes) Optimization We can define a cost for possible solutions Number of solutions is large (eg., exponential) Efficient search is needed Global methods: cleverly find best solution without considering all.

More information

Computer Vision and Virtual Reality. Introduction

Computer Vision and Virtual Reality. Introduction Computer Vision and Virtual Reality Introduction Tomáš Svoboda, svoboda@cmp.felk.cvut.cz Czech Technical University in Prague, Center for Machine Perception http://cmp.felk.cvut.cz Last update: October

More information

Interactive Image Segmentation

Interactive Image Segmentation Interactive Image Segmentation Fahim Mannan (260 266 294) Abstract This reort resents the roject work done based on Boykov and Jolly s interactive grah cuts based N-D image segmentation algorithm([1]).

More information

Semantic Segmentation. Zhongang Qi

Semantic Segmentation. Zhongang Qi Semantic Segmentation Zhongang Qi qiz@oregonstate.edu Semantic Segmentation "Two men riding on a bike in front of a building on the road. And there is a car." Idea: recognizing, understanding what's in

More information

Bioimage Informatics

Bioimage Informatics Bioimage Informatics Lecture 14, Spring 2012 Bioimage Data Analysis (IV) Image Segmentation (part 3) Lecture 14 March 07, 2012 1 Outline Review: intensity thresholding based image segmentation Morphological

More information

Computer vision: models, learning and inference. Chapter 10 Graphical Models

Computer vision: models, learning and inference. Chapter 10 Graphical Models Computer vision: models, learning and inference Chapter 10 Graphical Models Independence Two variables x 1 and x 2 are independent if their joint probability distribution factorizes as Pr(x 1, x 2 )=Pr(x

More information

GRMA: Generalized Range Move Algorithms for the Efficient Optimization of MRFs

GRMA: Generalized Range Move Algorithms for the Efficient Optimization of MRFs International Journal of Computer Vision manuscript No. (will be inserted by the editor) GRMA: Generalized Range Move Algorithms for the Efficient Optimization of MRFs Kangwei Liu Junge Zhang Peipei Yang

More information

Image analysis. Computer Vision and Classification Image Segmentation. 7 Image analysis

Image analysis. Computer Vision and Classification Image Segmentation. 7 Image analysis 7 Computer Vision and Classification 413 / 458 Computer Vision and Classification The k-nearest-neighbor method The k-nearest-neighbor (knn) procedure has been used in data analysis and machine learning

More information

Image Segmentation with a Bounding Box Prior Victor Lempitsky, Pushmeet Kohli, Carsten Rother, Toby Sharp Microsoft Research Cambridge

Image Segmentation with a Bounding Box Prior Victor Lempitsky, Pushmeet Kohli, Carsten Rother, Toby Sharp Microsoft Research Cambridge Image Segmentation with a Bounding Box Prior Victor Lempitsky, Pushmeet Kohli, Carsten Rother, Toby Sharp Microsoft Research Cambridge Dylan Rhodes and Jasper Lin 1 Presentation Overview Segmentation problem

More information

FMA901F: Machine Learning Lecture 6: Graphical Models. Cristian Sminchisescu

FMA901F: Machine Learning Lecture 6: Graphical Models. Cristian Sminchisescu FMA901F: Machine Learning Lecture 6: Graphical Models Cristian Sminchisescu Graphical Models Provide a simple way to visualize the structure of a probabilistic model and can be used to design and motivate

More information

A Principled Deep Random Field Model for Image Segmentation

A Principled Deep Random Field Model for Image Segmentation A Principled Deep Random Field Model for Image Segmentation Pushmeet Kohli Microsoft Research Cambridge, UK Anton Osokin Moscow State University Moscow, Russia Stefanie Jegelka UC Berkeley Berkeley, CA,

More information

Image segmentation. Václav Hlaváč. Czech Technical University in Prague

Image segmentation. Václav Hlaváč. Czech Technical University in Prague Image segmentation Václav Hlaváč Czech Technical University in Prague Center for Machine Perception (bridging groups of the) Czech Institute of Informatics, Robotics and Cybernetics and Faculty of Electrical

More information

Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University

Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University NIPS 2008: E. Sudderth & M. Jordan, Shared Segmentation of Natural

More information

Detection of Man-made Structures in Natural Images

Detection of Man-made Structures in Natural Images Detection of Man-made Structures in Natural Images Tim Rees December 17, 2004 Abstract Object detection in images is a very active research topic in many disciplines. Probabilistic methods have been applied

More information

Tri-modal Human Body Segmentation

Tri-modal Human Body Segmentation Tri-modal Human Body Segmentation Master of Science Thesis Cristina Palmero Cantariño Advisor: Sergio Escalera Guerrero February 6, 2014 Outline 1 Introduction 2 Tri-modal dataset 3 Proposed baseline 4

More information

Segmentation with non-linear regional constraints via line-search cuts

Segmentation with non-linear regional constraints via line-search cuts Segmentation with non-linear regional constraints via line-search cuts Lena Gorelick 1, Frank R. Schmidt 2, Yuri Boykov 1, Andrew Delong 1, and Aaron Ward 1 1 University of Western Ontario, Canada 2 Université

More information

Estimation of Distribution Algorithm for the Max-Cut Problem

Estimation of Distribution Algorithm for the Max-Cut Problem Estimation of Distribution Algorithm for the Max-Cut Problem Samuel de Sousa, Yll Haxhimusa, and Walter G. Kropatsch Vienna University of Technology Pattern Recognition and Image Processing Group Vienna,

More information

Iterative MAP and ML Estimations for Image Segmentation

Iterative MAP and ML Estimations for Image Segmentation Iterative MAP and ML Estimations for Image Segmentation Shifeng Chen 1, Liangliang Cao 2, Jianzhuang Liu 1, and Xiaoou Tang 1,3 1 Dept. of IE, The Chinese University of Hong Kong {sfchen5, jzliu}@ie.cuhk.edu.hk

More information

Lecture 3: Conditional Independence - Undirected

Lecture 3: Conditional Independence - Undirected CS598: Graphical Models, Fall 2016 Lecture 3: Conditional Independence - Undirected Lecturer: Sanmi Koyejo Scribe: Nate Bowman and Erin Carrier, Aug. 30, 2016 1 Review for the Bayes-Ball Algorithm Recall

More information

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009 Analysis: TextonBoost and Semantic Texton Forests Daniel Munoz 16-721 Februrary 9, 2009 Papers [shotton-eccv-06] J. Shotton, J. Winn, C. Rother, A. Criminisi, TextonBoost: Joint Appearance, Shape and Context

More information

CS664 Lecture #21: SIFT, object recognition, dynamic programming

CS664 Lecture #21: SIFT, object recognition, dynamic programming CS664 Lecture #21: SIFT, object recognition, dynamic programming Some material taken from: Sebastian Thrun, Stanford http://cs223b.stanford.edu/ Yuri Boykov, Western Ontario David Lowe, UBC http://www.cs.ubc.ca/~lowe/keypoints/

More information

INTRODUCTION TO IMAGE PROCESSING (COMPUTER VISION)

INTRODUCTION TO IMAGE PROCESSING (COMPUTER VISION) INTRODUCTION TO IMAGE PROCESSING (COMPUTER VISION) Revision: 1.4, dated: November 10, 2005 Tomáš Svoboda Czech Technical University, Faculty of Electrical Engineering Center for Machine Perception, Prague,

More information