Point Lattices in Computer Graphics and Visualization how signal processing may help computer graphics

Size: px
Start display at page:

Download "Point Lattices in Computer Graphics and Visualization how signal processing may help computer graphics"

Transcription

1 Point Lattices in Computer Graphics and Visualization how signal processing may help computer graphics Dimitri Van De Ville Ecole Polytechnique Fédérale de Lausanne Biomedical Imaging Group Overview! B-splines: the right tool for interpolation fundamental properties spline fitting interpolation; smoothing; least-squares quantitative approximation quality! A primer to the wavelet transform multi-resolution, semi-orthogonal wavelets! Multi-dimensional extensions: hex-splines hexagonal versus Cartesian lattice IEEE Visualization Tutorial (Image Processing 2D) 2 Notations Polynomial B-splines! one-sided! B-spline of degree n! Fourier transform! Z-transform! Symmetric B-spline! Key properties compact support piecewise polynomial positivity smoothness (continuity) [Schoenberg, 1946] 3 4

2 B-spline representation Fundamental B-spline properties! The link between continuous and discrete analog signal in in the B-spline coefficients continuous domain in in the discrete domain! Partition of unity reproduction of the constant! Riesz basis stability: small perturbation of coefficients results into small change of spline signal unambiguity: each representation is unique! m-scale relation! Cardinal setting = unit spacing and! points 5 6 B-spline Fourier expression B-spline differential property poor man s derivative (finite difference) exact derivative Fourier transform of basic element:! Link between discrete and exact derivatives discrete filtering spline degree reduction 7 8

3 Generalized fractional B-splines Spline fitting! Definition in the Fourier domain! How to find the spline coefficients? [Unser&Blu2000,Blu&Unser2003] 9 10 Spline fitting: (1) spline interpolation Spline interpolation! Spline interpolation (exact, reversible) discrete input filtering such that! Discrete B-spline kernels! Smoothing spline! Least square splines (approximation between spline spaces)! Satisfying interpolation condition: inverse filter!! Efficient recursive implementation: cascade of causal and anti-causal filters e.g., cubic spline interpolation causal anti-causal 11 12

4 Spline interpolation Spline interpolation! Generic C-code main recursion void ConvertToInterpolationCoefficients ( double c[ ], long DataLength, double z[ ], long NbPoles, double Tolerance) { double Lambda = 1.0; long n, k; if (DataLength == 1L) return; for (k = 0L; k < NbPoles; k++) Lambda = Lambda * (1.0 - z[k]) * ( / z[k]); for (n = 0L; n < DataLength; n++) c[n] *= Lambda; for (k = 0L; k < NbPoles; k++) { c[0] = InitialCausalCoefficient(c, DataLength, z[k], Tolerance); for (n = 1L; n < DataLength; n++) c[n] += z[k] * c[n - 1L]; c[datalength - 1L] = (z[k] / (z[k] * z[k] - 1.0)) * (z[k] * c[datalength - 2L] + c[datalength - 1L]); for (n = DataLength - 2L; 0 <= n; n--) c[n] = z[k] * (c[n + 1L]- c[n]); } }! Interpolating or fundamental B-spline initialization double InitialCausalCoefficient ( double c[ ], long DataLength, double z, double Tolerance) { double Sum, zn, z2n, iz; long n, Horizon; Horizon = (long)ceil(log(tolerance) / log(fabs(z))); if (DataLength < Horizon) Horizon = DataLength; zn = z; Sum = c[0]; for (n = 1L; n < Horizon; n++) {Sum += zn * c[n]; zn *= z;} return(sum); } Spline interpolation Spline fitting: (2) smoothing spline! The fundamental spline converges to sinc as the degree goes to infinity! Spline interpolation! Smoothing spline discrete and noisy input filtering subject to regularization! Least square splines (approximation between spline spaces)! Shannon s theory appears as a particular case 15 16

5 Smoothing spline Spline fitting: (3) least-square spline! The solution (among all functions) of the smoothing spline problem is a cardinal spline of degree 2m-1. Its coefficients can be obtained by suitable digital filtering of the input samples:! Spline interpolation! Smoothing spline! Least-square spline (approximation between spline spaces) spline model resampling & filtering! Related to: MMSE (Wiener filtering); splines form optimal space!!!! Special case: the draftman s spline Minimum curvature interpolant is obtained for = cubic spline! such that error [Unser&Blu2005] Least-square spline Least-square spline! Minimize quadratic error between splines with! Special case: surface projection first-order B-splines on source and target grid weight of sample = overlap between B-splines support determine ; e.g., by spline interpolation resample using with obtain samples of new spline representation prefilter resampling postfilter [Unser et al. 1995]

6 Quantitative approximation quality Quantitative approximation quality! Best approximation in a space? analog input sampling & filtering analysis function at scale a fixed support W=4! Orthogonal projection with error kernel [BluUnser,1999] 21 [Thévenaz et al., 2000] 22 B-spline interpolation in 2D High-quality image interpolation! 2D separable model! Geometric transformations 2D filtering 2D resampling performance! Applications zooming, rotation, resizing, warping 23 cost [Thévenaz et al., 2000] 24

7 Interpolation benchmark High-quality isosurface rendering! Cumulative interpolation experiment: the best algorithm wins! 3D B-spline representation of volume data! Isosurface analytical knowledge of normal vectors bilinear windowed sinc cubic spline 25 [Thévenaz et al., 2000] 26 Multi-resolution approximation Wavelets! m-scale relation! Pyramid or tree algorithms ( ) fast evaluation of binomial filter for high n ~ Gaussian filter n=1! Admissible scaling function ( father wavelet ) Riesz basis conditions partition of unity two-scale relation! B-splines are perfect candidates! Then there exists a wavelet such that forms a Riesz basis of L 2 27 [Mallat-Meyer, 1989] 28

8 Haar wavelet transform revisited Haar wavelet transform revisited! Signal representation basis function: + - Multi-scale signal representation + - multi-scale basis function: Wavelet: Semi-orthogonal wavelets Wavelets! Scaling and wavelet spaces! Wavelets act as differentiators! Semi-orthogonality conditions cubic orthogonal B-spline wavelet Effect on transient features: 1) locality 2) sparsity (vanishing moments) 31 32

9 Wavelets and differentiation Hexagonal lattices! Fundamental property: multiscale differentiator! Responsible for vanishing moments decorrelation! Very successful for coding applications r 2 r 1 Voronoi cell = best tessellation:! Six equivalent neighbours! Twelve-fold symmetry! High isotropy JPEG2000 lattice matrix: Hex-splines! Basis functions for hexagonal grids Hex-splines! Basis functions for hexagonal grids First order Second order 35 36

10 Hex-splines! Basis functions for hexagonal grids Hex-splines! Basis functions for hexagonal grids Third order Fourth order Hex-splines Hex-splines versus B-splines! B-spline-like construction algorithm: generating functions localization operators! B-spline-like properties: convolution property (by construction) positivity, partition of unity, compact support convergence to Gaussian! But no two-scale relation! Keep sampling density equal: det(r)=! Hex-splines on hexagonal grid r 2 r 1 B-splines on orthogonal grid r 2 r

11 Hex-splines versus B-splines Hex-splines versus B-splines! Extra samples so approximation quality B-splines equals that one of hex-splines sampling gain (surface area) p C B" spline C hex" spline p #$ % %# 8& ! Classical result: isotropic band-limited signals are better approximated on hexagonal lattices [Mersereau, 1979]! Here, result for non-bandlimited signals first order (nearest neighbor) on hexagonal lattices does not pay second order (linear-like) is already close to optimal; still has easy analytical characterization! Great, but hex-splines do not have a two-scale relation! order [Van De Ville et al., 2005] Conclusions And finally! B-splines are a great tool for interpolation and approximation short support; analytical expression; tunable degree fundamentally linked to differential operators! Shift-invariant spaces due to uniform sampling brings along fast algorithms (filtering, FFT-based, ) powerful theoretical results (error kernel)! Multi-resolution m-scale relation for pyramids and wavelets! Multi-dimensional extensions and variations tensor-product, hex-splines, box-splines (see later)! Many thanks go to Michael Unser Thierry Blu Philippe Thévenaz! Papers, demonstrations, source code: The Wavelet Digest: Annette Unser 43 44

Sampling and interpolation for biomedical imaging: Part I

Sampling and interpolation for biomedical imaging: Part I Sampling and interpolation for biomedical imaging: Part I Michael Unser Biomedical Imaging Group EPFL, Lausanne Switzerland ISBI 2006, Tutorial, Washington DC, April 2006 INTRODUCTION Fundamental issue

More information

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation

More information

Medical image interpolation: The quest for higher quality

Medical image interpolation: The quest for higher quality Biomedical imaging group Medical image interpolation: The quest for higher quality Inter-disciplinary research strategy Michael Unser Biomedical Imaging Group EPF, ausanne Switzerland Medical Imaging Conference,

More information

A Wavelet Tour of Signal Processing The Sparse Way

A Wavelet Tour of Signal Processing The Sparse Way A Wavelet Tour of Signal Processing The Sparse Way Stephane Mallat with contributions from Gabriel Peyre AMSTERDAM BOSTON HEIDELBERG LONDON NEWYORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY»TOKYO

More information

DIGITAL images and most other 2-D data are available on

DIGITAL images and most other 2-D data are available on IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 5, MAY 2007 1195 Quasi-Interpolating Spline Models for Hexagonally-Sampled Data Laurent Condat, Student Member, IEEE, and Dimitri Van De Ville, Member,

More information

Harmonic Spline Series Representation of Scaling Functions

Harmonic Spline Series Representation of Scaling Functions Harmonic Spline Series Representation of Scaling Functions Thierry Blu and Michael Unser Biomedical Imaging Group, STI/BIO-E, BM 4.34 Swiss Federal Institute of Technology, Lausanne CH-5 Lausanne-EPFL,

More information

International ejournals

International ejournals ISSN 2249 5460 Available online at www.internationalejournals.com International ejournals International Journal of Mathematical Sciences, Technology and Humanities 96 (2013) 1063 1069 Image Interpolation

More information

Image Sampling & Quantisation

Image Sampling & Quantisation Image Sampling & Quantisation Biomedical Image Analysis Prof. Dr. Philippe Cattin MIAC, University of Basel Contents 1 Motivation 2 Sampling Introduction and Motivation Sampling Example Quantisation Example

More information

DURING the past decade, there has been an increasing

DURING the past decade, there has been an increasing IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 4, APRIL 2005 1425 Cardinal Exponential Splines: Part I Theory and Filtering Algorithms Michael Unser, Fellow, IEEE, and Thierry Blu, Member, IEEE Abstract

More information

Application of optimal sampling lattices on CT image reconstruction and segmentation or three dimensional printing

Application of optimal sampling lattices on CT image reconstruction and segmentation or three dimensional printing Application of optimal sampling lattices on CT image reconstruction and segmentation or three dimensional printing XIQIANG ZHENG Division of Health and Natural Sciences, Voorhees College, Denmark, SC 29042

More information

Image Sampling and Quantisation

Image Sampling and Quantisation Image Sampling and Quantisation Introduction to Signal and Image Processing Prof. Dr. Philippe Cattin MIAC, University of Basel 1 of 46 22.02.2016 09:17 Contents Contents 1 Motivation 2 Sampling Introduction

More information

Computer Graphics Curves and Surfaces. Matthias Teschner

Computer Graphics Curves and Surfaces. Matthias Teschner Computer Graphics Curves and Surfaces Matthias Teschner Outline Introduction Polynomial curves Bézier curves Matrix notation Curve subdivision Differential curve properties Piecewise polynomial curves

More information

08 - Designing Approximating Curves

08 - Designing Approximating Curves 08 - Designing Approximating Curves Acknowledgement: Olga Sorkine-Hornung, Alexander Sorkine-Hornung, Ilya Baran Last time Interpolating curves Monomials Lagrange Hermite Different control types Polynomials

More information

Sampling Theory in 1D. Point Lattices in Sampling Theory Multidimensional Sampling Theory. Sampling in 1D. Reconstruction in 1D

Sampling Theory in 1D. Point Lattices in Sampling Theory Multidimensional Sampling Theory. Sampling in 1D. Reconstruction in 1D Sampling heory in 1D Point Lattices in Sampling heory Multidimensional Sampling heory Alireza Entezari aentezar@cs.sfu.ca Computing Science, Simon Fraser University Continuous-domain function Fourier domain

More information

Erasing Haar Coefficients

Erasing Haar Coefficients Recap Haar simple and fast wavelet transform Limitations not smooth enough: blocky How to improve? classical approach: basis functions Lifting: transforms 1 Erasing Haar Coefficients 2 Page 1 Classical

More information

Construction of fractional spline wavelet bases

Construction of fractional spline wavelet bases Construction of fractional spline wavelet bases Michael Unser and Thierry Blu Biomedical Imaging Group, Swiss Federal Institute of Technology Lausanne DMT/IOA, BM 4.7 CH-5 Lausanne EPFL, Switzerland Email:

More information

Dept. of ECE, Amrita Vishwa Vidyapeetham, Ettimadai, Coimbatore, India

Dept. of ECE, Amrita Vishwa Vidyapeetham, Ettimadai, Coimbatore, India ISSN : 3-79(Online) ISSN : 3-9543(Print) Abstract An interpolation model using Gabor Filter is demonstrated on hexagonally sampled data, which outperform classical B-splines and MOMS. Our method has optimal

More information

Recovery of Piecewise Smooth Images from Few Fourier Samples

Recovery of Piecewise Smooth Images from Few Fourier Samples Recovery of Piecewise Smooth Images from Few Fourier Samples Greg Ongie*, Mathews Jacob Computational Biomedical Imaging Group (CBIG) University of Iowa SampTA 2015 Washington, D.C. 1. Introduction 2.

More information

Sampling 50 Years After Shannon

Sampling 50 Years After Shannon Sampling 50 Years After Shannon MICHAEL UNSER, FELLOW, IEEE This paper presents an account of the current state of sampling, 50 years after Shannon s formulation of the sampling theorem. The emphasis is

More information

Shifted Linear Interpolation Filter

Shifted Linear Interpolation Filter Journal of Signal and Information Processing, 200,, 44-49 doi:0.4236/jsip.200.005 Published Online November 200 (http://www.scirp.org/journal/jsip) Shifted Linear Interpolation Filter H. Olkkonen, J. T.

More information

Computer Graphics. Sampling Theory & Anti-Aliasing. Philipp Slusallek

Computer Graphics. Sampling Theory & Anti-Aliasing. Philipp Slusallek Computer Graphics Sampling Theory & Anti-Aliasing Philipp Slusallek Dirac Comb (1) Constant & δ-function flash Comb/Shah function 2 Dirac Comb (2) Constant & δ-function Duality f(x) = K F(ω) = K (ω) And

More information

Surfaces, meshes, and topology

Surfaces, meshes, and topology Surfaces from Point Samples Surfaces, meshes, and topology A surface is a 2-manifold embedded in 3- dimensional Euclidean space Such surfaces are often approximated by triangle meshes 2 1 Triangle mesh

More information

3. Lifting Scheme of Wavelet Transform

3. Lifting Scheme of Wavelet Transform 3. Lifting Scheme of Wavelet Transform 3. Introduction The Wim Sweldens 76 developed the lifting scheme for the construction of biorthogonal wavelets. The main feature of the lifting scheme is that all

More information

1798 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 14, NO. 11, NOVEMBER Isotropic Polyharmonic B-Splines: Scaling Functions and Wavelets

1798 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 14, NO. 11, NOVEMBER Isotropic Polyharmonic B-Splines: Scaling Functions and Wavelets 1798 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 14, NO. 11, NOVEMBER 2005 Isotropic Polyharmonic B-Splines: Scaling Functions and Wavelets Dimitri Van De Ville, Member, Thierry Blu, Member, and Michael

More information

Computational Aspects of MRI

Computational Aspects of MRI David Atkinson Philip Batchelor David Larkman Programme 09:30 11:00 Fourier, sampling, gridding, interpolation. Matrices and Linear Algebra 11:30 13:00 MRI Lunch (not provided) 14:00 15:30 SVD, eigenvalues.

More information

AM205: lecture 2. 1 These have been shifted to MD 323 for the rest of the semester.

AM205: lecture 2. 1 These have been shifted to MD 323 for the rest of the semester. AM205: lecture 2 Luna and Gary will hold a Python tutorial on Wednesday in 60 Oxford Street, Room 330 Assignment 1 will be posted this week Chris will hold office hours on Thursday (1:30pm 3:30pm, Pierce

More information

Contents. I The Basic Framework for Stationary Problems 1

Contents. I The Basic Framework for Stationary Problems 1 page v Preface xiii I The Basic Framework for Stationary Problems 1 1 Some model PDEs 3 1.1 Laplace s equation; elliptic BVPs... 3 1.1.1 Physical experiments modeled by Laplace s equation... 5 1.2 Other

More information

Math 225 Scientific Computing II Outline of Lectures

Math 225 Scientific Computing II Outline of Lectures Math 225 Scientific Computing II Outline of Lectures Spring Semester 2003 I. Interpolating polynomials Lagrange formulation of interpolating polynomial Uniqueness of interpolating polynomial of degree

More information

Lecture 2.2 Cubic Splines

Lecture 2.2 Cubic Splines Lecture. Cubic Splines Cubic Spline The equation for a single parametric cubic spline segment is given by 4 i t Bit t t t i (..) where t and t are the parameter values at the beginning and end of the segment.

More information

CHAPTER 3 DIFFERENT DOMAINS OF WATERMARKING. domain. In spatial domain the watermark bits directly added to the pixels of the cover

CHAPTER 3 DIFFERENT DOMAINS OF WATERMARKING. domain. In spatial domain the watermark bits directly added to the pixels of the cover 38 CHAPTER 3 DIFFERENT DOMAINS OF WATERMARKING Digital image watermarking can be done in both spatial domain and transform domain. In spatial domain the watermark bits directly added to the pixels of the

More information

Sampling, Aliasing, & Mipmaps

Sampling, Aliasing, & Mipmaps Sampling, Aliasing, & Mipmaps Last Time? Monte-Carlo Integration Importance Sampling Ray Tracing vs. Path Tracing source hemisphere Sampling sensitive to choice of samples less sensitive to choice of samples

More information

CHAPTER 1 Introduction 1. CHAPTER 2 Images, Sampling and Frequency Domain Processing 37

CHAPTER 1 Introduction 1. CHAPTER 2 Images, Sampling and Frequency Domain Processing 37 Extended Contents List Preface... xi About the authors... xvii CHAPTER 1 Introduction 1 1.1 Overview... 1 1.2 Human and Computer Vision... 2 1.3 The Human Vision System... 4 1.3.1 The Eye... 5 1.3.2 The

More information

IMAGE ANALYSIS, CLASSIFICATION, and CHANGE DETECTION in REMOTE SENSING

IMAGE ANALYSIS, CLASSIFICATION, and CHANGE DETECTION in REMOTE SENSING SECOND EDITION IMAGE ANALYSIS, CLASSIFICATION, and CHANGE DETECTION in REMOTE SENSING ith Algorithms for ENVI/IDL Morton J. Canty с*' Q\ CRC Press Taylor &. Francis Group Boca Raton London New York CRC

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Third Edition Rafael C. Gonzalez University of Tennessee Richard E. Woods MedData Interactive PEARSON Prentice Hall Pearson Education International Contents Preface xv Acknowledgments

More information

THE GAP between the continuous- and discrete-time or. Cardinal Exponential Splines: Part II Think Analog, Act Digital. Michael Unser, Fellow, IEEE

THE GAP between the continuous- and discrete-time or. Cardinal Exponential Splines: Part II Think Analog, Act Digital. Michael Unser, Fellow, IEEE IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 4, APRIL 2005 1439 Cardinal Exponential Splines: Part II Think Analog, Act Digital Michael Unser, Fellow, IEEE Abstract By interpreting the Green-function

More information

Sampling, Aliasing, & Mipmaps

Sampling, Aliasing, & Mipmaps Sampling, Aliasing, & Mipmaps Last Time? Monte-Carlo Integration Importance Sampling Ray Tracing vs. Path Tracing source hemisphere What is a Pixel? Sampling & Reconstruction Filters in Computer Graphics

More information

Curves and Surfaces for Computer-Aided Geometric Design

Curves and Surfaces for Computer-Aided Geometric Design Curves and Surfaces for Computer-Aided Geometric Design A Practical Guide Fourth Edition Gerald Farin Department of Computer Science Arizona State University Tempe, Arizona /ACADEMIC PRESS I San Diego

More information

Computation of interpolatory splines via triadic subdivision

Computation of interpolatory splines via triadic subdivision Computation of interpolatory splines via triadic subdivision Valery A. Zheludev and Amir Z. Averbuch Abstract We present an algorithm for computation of interpolatory splines of arbitrary order at triadic

More information

Ecient Cubic B-spline Image interpolation on a GPU. 1 Abstract. 2 Introduction. F. Champagnat and Y. Le Sant. September 1, 2011

Ecient Cubic B-spline Image interpolation on a GPU. 1 Abstract. 2 Introduction. F. Champagnat and Y. Le Sant. September 1, 2011 Ecient Cubic B-spline Image interpolation on a GPU F. Champagnat and Y. Le Sant September 1, 2011 1 Abstract Application of geometric transformation to images requires an interpolation step. When applied

More information

3.5 Filtering with the 2D Fourier Transform Basic Low Pass and High Pass Filtering using 2D DFT Other Low Pass Filters

3.5 Filtering with the 2D Fourier Transform Basic Low Pass and High Pass Filtering using 2D DFT Other Low Pass Filters Contents Part I Decomposition and Recovery. Images 1 Filter Banks... 3 1.1 Introduction... 3 1.2 Filter Banks and Multirate Systems... 4 1.2.1 Discrete Fourier Transforms... 5 1.2.2 Modulated Filter Banks...

More information

Optimal 3D Lattices in Scientific Visualization and Computer Graphics

Optimal 3D Lattices in Scientific Visualization and Computer Graphics Optimal 3D Lattices in Scientific Visualization and Computer Graphics School of Computing Science Simon Fraser University Jan, 2007 Outline Visualization and Graphics 1 Visualization and Graphics 2 3 Further

More information

Isosurface Visualization of Data with Nonparametric Models for Uncertainty

Isosurface Visualization of Data with Nonparametric Models for Uncertainty Isosurface Visualization of Data with Nonparametric Models for Uncertainty Tushar Athawale, Elham Sakhaee, and Alireza Entezari Department of Computer & Information Science & Engineering University of

More information

Overview. Spectral Processing of Point- Sampled Geometry. Introduction. Introduction. Fourier Transform. Fourier Transform

Overview. Spectral Processing of Point- Sampled Geometry. Introduction. Introduction. Fourier Transform. Fourier Transform Overview Spectral Processing of Point- Sampled Geometry Introduction Fourier transform Spectral processing pipeline Spectral filtering Adaptive subsampling Summary Point-Based Computer Graphics Markus

More information

A C 2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extensions

A C 2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extensions A C 2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extensions Nira Dyn School of Mathematical Sciences Tel Aviv University Michael S. Floater Department of Informatics University of

More information

Multi-Domain Pattern. I. Problem. II. Driving Forces. III. Solution

Multi-Domain Pattern. I. Problem. II. Driving Forces. III. Solution Multi-Domain Pattern I. Problem The problem represents computations characterized by an underlying system of mathematical equations, often simulating behaviors of physical objects through discrete time

More information

SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014

SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014 SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014 SIFT SIFT: Scale Invariant Feature Transform; transform image

More information

Scientific Visualization Example exam questions with commented answers

Scientific Visualization Example exam questions with commented answers Scientific Visualization Example exam questions with commented answers The theoretical part of this course is evaluated by means of a multiple- choice exam. The questions cover the material mentioned during

More information

Shift-Orthogonal Wavelet Bases

Shift-Orthogonal Wavelet Bases IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 7, JULY 1998 1827 Shift-Orthogonal Wavelet Bases Michael Unser, Senior Member, IEEE, Philippe Thévenaz, and Akram Aldroubi, Member, IEEE Abstract Shift-orthogonal

More information

Off-the-Grid Compressive Imaging: Recovery of Piecewise Constant Images from Few Fourier Samples

Off-the-Grid Compressive Imaging: Recovery of Piecewise Constant Images from Few Fourier Samples Off-the-Grid Compressive Imaging: Recovery of Piecewise Constant Images from Few Fourier Samples Greg Ongie PhD Candidate Department of Applied Math and Computational Sciences University of Iowa April

More information

CHAPTER 3 WAVELET DECOMPOSITION USING HAAR WAVELET

CHAPTER 3 WAVELET DECOMPOSITION USING HAAR WAVELET 69 CHAPTER 3 WAVELET DECOMPOSITION USING HAAR WAVELET 3.1 WAVELET Wavelet as a subject is highly interdisciplinary and it draws in crucial ways on ideas from the outside world. The working of wavelet in

More information

Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, Politecnico di Milano, February 3, 2017, Lesson 1

Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, Politecnico di Milano, February 3, 2017, Lesson 1 Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, attilio.frangi@polimi.it Politecnico di Milano, February 3, 2017, Lesson 1 1 Politecnico di Milano, February 3, 2017, Lesson 1 2 Outline

More information

Introduction to Image Super-resolution. Presenter: Kevin Su

Introduction to Image Super-resolution. Presenter: Kevin Su Introduction to Image Super-resolution Presenter: Kevin Su References 1. S.C. Park, M.K. Park, and M.G. KANG, Super-Resolution Image Reconstruction: A Technical Overview, IEEE Signal Processing Magazine,

More information

From processing to learning on graphs

From processing to learning on graphs From processing to learning on graphs Patrick Pérez Maths and Images in Paris IHP, 2 March 2017 Signals on graphs Natural graph: mesh, network, etc., related to a real structure, various signals can live

More information

WAVELET TRANSFORM BASED FEATURE DETECTION

WAVELET TRANSFORM BASED FEATURE DETECTION WAVELET TRANSFORM BASED FEATURE DETECTION David Bařina Doctoral Degree Programme (1), DCGM, FIT BUT E-mail: ibarina@fit.vutbr.cz Supervised by: Pavel Zemčík E-mail: zemcik@fit.vutbr.cz ABSTRACT This paper

More information

Operators to calculate the derivative of digital signals

Operators to calculate the derivative of digital signals 9 th IMEKO TC 4 Symposium and 7 th IWADC Workshop July 8-9, 3, Barcelona, Spain Operators to calculate the derivative of digital signals Lluís Ferrer-Arnau, Juan Mon-Gonzalez, Vicenç Parisi-Baradad Departament

More information

Implicit Surfaces & Solid Representations COS 426

Implicit Surfaces & Solid Representations COS 426 Implicit Surfaces & Solid Representations COS 426 3D Object Representations Desirable properties of an object representation Easy to acquire Accurate Concise Intuitive editing Efficient editing Efficient

More information

Sampling, Aliasing, & Mipmaps

Sampling, Aliasing, & Mipmaps Last Time? Sampling, Aliasing, & Mipmaps 2D Texture Mapping Perspective Correct Interpolation Common Texture Coordinate Projections Bump Mapping Displacement Mapping Environment Mapping Texture Maps for

More information

Bio inspired, Invariant Image Reconstruction from Irregularly Placed Samples

Bio inspired, Invariant Image Reconstruction from Irregularly Placed Samples Bio inspired, Invariant Image Reconstruction from Irregularly Placed Samples Flore Faille and Maria Petrou Imperial College London, London, SW7 2AZ, UK Abstract We present in this paper an algorithm inspired

More information

Digital Geometry Processing

Digital Geometry Processing Digital Geometry Processing Spring 2011 physical model acquired point cloud reconstructed model 2 Digital Michelangelo Project Range Scanning Systems Passive: Stereo Matching Find and match features in

More information

Regularity Analysis of Non Uniform Data

Regularity Analysis of Non Uniform Data Regularity Analysis of Non Uniform Data Christine Potier and Christine Vercken Abstract. A particular class of wavelet, derivatives of B-splines, leads to fast and ecient algorithms for contours detection

More information

The use of the Spectral Properties of the Basis Splines in Problems of Signal Processing

The use of the Spectral Properties of the Basis Splines in Problems of Signal Processing The use of the Spectral Properties of the Basis Splines in Problems of Signal Processing Zaynidinov Hakim Nasiritdinovich, MirzayevAvazEgamberdievich, KhalilovSirojiddinPanjievich Doctor of Science, professor,

More information

Digital Signal Processing with Field Programmable Gate Arrays

Digital Signal Processing with Field Programmable Gate Arrays Uwe Meyer-Baese Digital Signal Processing with Field Programmable Gate Arrays Third Edition With 359 Figures and 98 Tables Book with CD-ROM ei Springer Contents Preface Preface to Second Edition Preface

More information

Les Piegl Wayne Tiller. The NURBS Book. Second Edition with 334 Figures in 578 Parts. A) Springer

Les Piegl Wayne Tiller. The NURBS Book. Second Edition with 334 Figures in 578 Parts. A) Springer Les Piegl Wayne Tiller The NURBS Book Second Edition with 334 Figures in 578 Parts A) Springer CONTENTS Curve and Surface Basics 1.1 Implicit and Parametric Forms 1 1.2 Power Basis Form of a Curve 5 1.3

More information

Fatima Michael College of Engineering & Technology

Fatima Michael College of Engineering & Technology DEPARTMENT OF ECE V SEMESTER ECE QUESTION BANK EC6502 PRINCIPLES OF DIGITAL SIGNAL PROCESSING UNIT I DISCRETE FOURIER TRANSFORM PART A 1. Obtain the circular convolution of the following sequences x(n)

More information

Interpolation with complex B-splines

Interpolation with complex B-splines Interpolation with complex B-splines Brigitte Forster Fakultät für Informatik und Mathematik Universität Passau Brigitte Forster (Passau) Bernried 2016 1 / 32 The first part of a story in three chapters

More information

Image Analysis, Classification and Change Detection in Remote Sensing

Image Analysis, Classification and Change Detection in Remote Sensing Image Analysis, Classification and Change Detection in Remote Sensing WITH ALGORITHMS FOR ENVI/IDL Morton J. Canty Taylor &. Francis Taylor & Francis Group Boca Raton London New York CRC is an imprint

More information

Modeling Skills Thermal Analysis J.E. Akin, Rice University

Modeling Skills Thermal Analysis J.E. Akin, Rice University Introduction Modeling Skills Thermal Analysis J.E. Akin, Rice University Most finite element analysis tasks involve utilizing commercial software, for which you do not have the source code. Thus, you need

More information

Computer Vision. Fourier Transform. 20 January Copyright by NHL Hogeschool and Van de Loosdrecht Machine Vision BV All rights reserved

Computer Vision. Fourier Transform. 20 January Copyright by NHL Hogeschool and Van de Loosdrecht Machine Vision BV All rights reserved Van de Loosdrecht Machine Vision Computer Vision Fourier Transform 20 January 2017 Copyright 2001 2017 by NHL Hogeschool and Van de Loosdrecht Machine Vision BV All rights reserved j.van.de.loosdrecht@nhl.nl,

More information

Subdivision Surfaces

Subdivision Surfaces Subdivision Surfaces 1 Geometric Modeling Sometimes need more than polygon meshes Smooth surfaces Traditional geometric modeling used NURBS Non uniform rational B-Spline Demo 2 Problems with NURBS A single

More information

A C 2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extensions

A C 2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extensions A C 2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extensions Nira Dyn Michael S. Floater Kai Hormann Abstract. We present a new four-point subdivision scheme that generates C 2 curves.

More information

Shift-invariance in the Discrete Wavelet Transform

Shift-invariance in the Discrete Wavelet Transform Shift-invariance in the Discrete Wavelet Transform Andrew P. Bradley Cooperative Research Centre for Sensor Signal and Information Processing, School of Information Technology and Electrical Engineering,

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu ECG782: Multidimensional Digital Signal Processing Spring 2014 TTh 14:30-15:45 CBC C313 Lecture 06 Image Structures 13/02/06 http://www.ee.unlv.edu/~b1morris/ecg782/

More information

9. Three Dimensional Object Representations

9. Three Dimensional Object Representations 9. Three Dimensional Object Representations Methods: Polygon and Quadric surfaces: For simple Euclidean objects Spline surfaces and construction: For curved surfaces Procedural methods: Eg. Fractals, Particle

More information

DIGITAL IMAGE PROCESSING

DIGITAL IMAGE PROCESSING The image part with relationship ID rid2 was not found in the file. DIGITAL IMAGE PROCESSING Lecture 6 Wavelets (cont), Lines and edges Tammy Riklin Raviv Electrical and Computer Engineering Ben-Gurion

More information

Geometric Aspects in 3D Biomedical Image Processing

Geometric Aspects in 3D Biomedical Image Processing Bulletin ASMT N 22, Octobre 1998 - JournŽes de microtechnique 5 Geometric Aspects in 3D Biomedical Image Processing Philippe ThŽvenaz, Dr. Ing. Dipl. EPFL; Michael Unser, Prof. EPFL/DMT/IOA/Biomedical

More information

A popular method for moving beyond linearity. 2. Basis expansion and regularization 1. Examples of transformations. Piecewise-polynomials and splines

A popular method for moving beyond linearity. 2. Basis expansion and regularization 1. Examples of transformations. Piecewise-polynomials and splines A popular method for moving beyond linearity 2. Basis expansion and regularization 1 Idea: Augment the vector inputs x with additional variables which are transformation of x use linear models in this

More information

Scientific Computing: Interpolation

Scientific Computing: Interpolation Scientific Computing: Interpolation Aleksandar Donev Courant Institute, NYU donev@courant.nyu.edu Course MATH-GA.243 or CSCI-GA.22, Fall 25 October 22nd, 25 A. Donev (Courant Institute) Lecture VIII /22/25

More information

Yves Nievergelt. Wavelets Made Easy. Springer Science+Business Media, LLC

Yves Nievergelt. Wavelets Made Easy. Springer Science+Business Media, LLC Wavelets Made Easy Yves Nievergelt Wavelets Made Easy Springer Science+Business Media, LLC Yves Nievergelt Department of Mathematics Eastem Washington University Cheney, WA 99004-2431 USA Library of Congress

More information

Sampling: Application to 2D Transformations

Sampling: Application to 2D Transformations Sampling: Application to 2D Transformations University of the Philippines - Diliman August Diane Lingrand lingrand@polytech.unice.fr http://www.essi.fr/~lingrand Sampling Computer images are manipulated

More information

Adaptive numerical methods

Adaptive numerical methods METRO MEtallurgical TRaining On-line Adaptive numerical methods Arkadiusz Nagórka CzUT Education and Culture Introduction Common steps of finite element computations consists of preprocessing - definition

More information

Steerable Pyramids and Tight Wavelet Frames in

Steerable Pyramids and Tight Wavelet Frames in IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 10, OCTOBER 2011 2705 Steerable Pyramids and Tight Wavelet Frames in Michael Unser, Fellow, IEEE, Nicolas Chenouard, Member, IEEE, and Dimitri Van De

More information

Ill-Posed Problems with A Priori Information

Ill-Posed Problems with A Priori Information INVERSE AND ILL-POSED PROBLEMS SERIES Ill-Posed Problems with A Priori Information V.V.Vasin andalageev HIV SPIII Utrecht, The Netherlands, 1995 CONTENTS Introduction 1 CHAPTER 1. UNSTABLE PROBLEMS 1 Base

More information

REAL-TIME DIGITAL SIGNAL PROCESSING

REAL-TIME DIGITAL SIGNAL PROCESSING REAL-TIME DIGITAL SIGNAL PROCESSING FUNDAMENTALS, IMPLEMENTATIONS AND APPLICATIONS Third Edition Sen M. Kuo Northern Illinois University, USA Bob H. Lee Ittiam Systems, Inc., USA Wenshun Tian Sonus Networks,

More information

Möbius Transformations in Scientific Computing. David Eppstein

Möbius Transformations in Scientific Computing. David Eppstein Möbius Transformations in Scientific Computing David Eppstein Univ. of California, Irvine School of Information and Computer Science (including joint work with Marshall Bern from WADS 01 and SODA 03) Outline

More information

Chapter 18. Geometric Operations

Chapter 18. Geometric Operations Chapter 18 Geometric Operations To this point, the image processing operations have computed the gray value (digital count) of the output image pixel based on the gray values of one or more input pixels;

More information

Sampling and Monte-Carlo Integration

Sampling and Monte-Carlo Integration Sampling and Monte-Carlo Integration Sampling and Monte-Carlo Integration Last Time Pixels are samples Sampling theorem Convolution & multiplication Aliasing: spectrum replication Ideal filter And its

More information

Diffusion Wavelets for Natural Image Analysis

Diffusion Wavelets for Natural Image Analysis Diffusion Wavelets for Natural Image Analysis Tyrus Berry December 16, 2011 Contents 1 Project Description 2 2 Introduction to Diffusion Wavelets 2 2.1 Diffusion Multiresolution............................

More information

Aliasing and Antialiasing. ITCS 4120/ Aliasing and Antialiasing

Aliasing and Antialiasing. ITCS 4120/ Aliasing and Antialiasing Aliasing and Antialiasing ITCS 4120/5120 1 Aliasing and Antialiasing What is Aliasing? Errors and Artifacts arising during rendering, due to the conversion from a continuously defined illumination field

More information

ANALYSIS OF GEOPHYSICAL POTENTIAL FIELDS A Digital Signal Processing Approach

ANALYSIS OF GEOPHYSICAL POTENTIAL FIELDS A Digital Signal Processing Approach ADVANCES IN EXPLORATION GEOPHYSICS 5 ANALYSIS OF GEOPHYSICAL POTENTIAL FIELDS A Digital Signal Processing Approach PRABHAKAR S. NAIDU Indian Institute of Science, Bangalore 560012, India AND M.P. MATHEW

More information

Georeferencing & Spatial Adjustment

Georeferencing & Spatial Adjustment Georeferencing & Spatial Adjustment Aligning Raster and Vector Data to the Real World Rotation Differential Scaling Distortion Skew Translation 1 The Problem How are geographically unregistered data, either

More information

Quadratic and cubic b-splines by generalizing higher-order voronoi diagrams

Quadratic and cubic b-splines by generalizing higher-order voronoi diagrams Quadratic and cubic b-splines by generalizing higher-order voronoi diagrams Yuanxin Liu and Jack Snoeyink Joshua Levine April 18, 2007 Computer Science and Engineering, The Ohio State University 1 / 24

More information

Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS

Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS HOUSEKEEPING Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS Quizzes Lab 8? WEEK EIGHT Lecture INTERPOLATION & SPATIAL ESTIMATION Joe Wheaton READING FOR TODAY WHAT CAN WE COLLECT AT POINTS?

More information

CS 450 Numerical Analysis. Chapter 7: Interpolation

CS 450 Numerical Analysis. Chapter 7: Interpolation Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

CSC Computer Graphics

CSC Computer Graphics // CSC. Computer Graphics Lecture Kasun@dscs.sjp.ac.lk Department of Computer Science University of Sri Jayewardanepura Polygon Filling Scan-Line Polygon Fill Algorithm Span Flood-Fill Algorithm Inside-outside

More information

A Kernel Representation for Exponential Splines with Global Tension

A Kernel Representation for Exponential Splines with Global Tension A Kernel Representation for Exponential Splines with Global Tension Sven Barendt a and Bernd Fischer a and Jan Modersitzki b a Institute of Mathematics, University of Luebeck, Luebeck (Germany); b Department

More information

Feature Extraction and Image Processing, 2 nd Edition. Contents. Preface

Feature Extraction and Image Processing, 2 nd Edition. Contents. Preface , 2 nd Edition Preface ix 1 Introduction 1 1.1 Overview 1 1.2 Human and Computer Vision 1 1.3 The Human Vision System 3 1.3.1 The Eye 4 1.3.2 The Neural System 7 1.3.3 Processing 7 1.4 Computer Vision

More information

Computer Vision. Recap: Smoothing with a Gaussian. Recap: Effect of σ on derivatives. Computer Science Tripos Part II. Dr Christopher Town

Computer Vision. Recap: Smoothing with a Gaussian. Recap: Effect of σ on derivatives. Computer Science Tripos Part II. Dr Christopher Town Recap: Smoothing with a Gaussian Computer Vision Computer Science Tripos Part II Dr Christopher Town Recall: parameter σ is the scale / width / spread of the Gaussian kernel, and controls the amount of

More information

An M-Channel Critically Sampled Graph Filter Bank

An M-Channel Critically Sampled Graph Filter Bank An M-Channel Critically Sampled Graph Filter Bank Yan Jin and David Shuman March 7, 2017 ICASSP, New Orleans, LA Special thanks and acknowledgement: Andre Archer, Andrew Bernoff, Andrew Beveridge, Stefan

More information

Moving Beyond Linearity

Moving Beyond Linearity Moving Beyond Linearity Basic non-linear models one input feature: polynomial regression step functions splines smoothing splines local regression. more features: generalized additive models. Polynomial

More information

Reading. 2. Fourier analysis and sampling theory. Required: Watt, Section 14.1 Recommended:

Reading. 2. Fourier analysis and sampling theory. Required: Watt, Section 14.1 Recommended: Reading Required: Watt, Section 14.1 Recommended: 2. Fourier analysis and sampling theory Ron Bracewell, The Fourier Transform and Its Applications, McGraw-Hill. Don P. Mitchell and Arun N. Netravali,

More information