Revision History. Applicable Documents

Size: px
Start display at page:

Download "Revision History. Applicable Documents"

Transcription

1

2 Revision History Version Date Revision History Remarks Update of the processing algorithm of CAI Level 3 NDVI, which yields the NDVI product Ver The major updates of this product from the previous version are as follows; i) The duration of CAI data to take into account for calculating NDVI is changed from 15 days to 30 days. ii) Mesh size of NDVI is changed from 1/240 degrees (15 seconds) to 1/30 degrees (2 minutes). iii) The value of NDVI is defined as 4 byte real type. In the previous version, it was given as DN (Digital Number), which is integer of actual NDVI value multiplied by Applicable Documents (1) Japan Aerospace Exploration Agency GOSAT Project Team, Algorithm Theoretical Basis Document for GOSAT TANSO (in Japanese and Not Published, Version R, SAT ) (2) Japan Aerospace Exploration Agency Earth Observation Research Center, GOSAT Level 1 Product Format Descriptions (MAS B and MAS C) (3) National Institute for Environmental Studies, NIES GOSAT Project Product Format Descriptions (Version 2.00, NIES-GOSAT-PO ) (4) GOSAT TANSO-CAI L1B Algorithm Theoretic Basis Document (Ver. 1.0 NIES-GOSAT-PO-010) (5) GOSAT TANSO-CAI L2 Cloud Flag Algorithm Theoretic Basis Document (Ver. 1.1 NIES-GOSAT-PO-016) i

3 Table of Contents 1. Introduction Stored Data Algorithm... 2 ii

4 1. Introduction This document is the Algorithm Theoretical Basis Document (ATBD) of TANSO-CAI Level 3 NDVI. The global earth is divided into 36 rectangles as the distribution unit of TANSO-CAI Level 3 NDVI, which is 30 degrees in latitude by 60 degrees in longitude. The mesh size in a rectangle is 1/30 degrees. Firstly, the minimum value of Band 2 (0.67μm) reflectance for each mesh is determined from CAI data of the past 30 days. Secondly, the reflectance of Band 3 (0.87μm) of each mesh is selected from the corresponding CAI L1B data. Then NDVI is calculated from the reflectances of Band 2 and 3. The atmospheric correction with the Rayleigh scattering is applied to these reflectance values. The algorithm described in this ATBD is referred as Ver.1.1, which corresponds to the explanation of the TANSO-CAI L3 NDVI products Ver Stored Data A product of TANSO-CAI Level 3 NDVI is formatted with HDF5. Its delivery unit is a rectangle with 30 degrees of latitude by 60 degrees of longitude. There exist 36 rectangles for the whole globe. The value of NDVI is stored as 4 bytes real value. The observation date, path number, Band 2 and Band 3 reflectances (for which the atmospheric correction is applied) of corresponding CAI L1B data and the clear sky confidence level of CAI L2 Cloud Flag are also stored as its auxiliary data. The detailed algorithm to evaluate the clear-sky confidence level is written in GOSAT TANSO-CAI L2 Cloud Flag Algorithm Theoretic Basis Document (Ver. 1.1 NIES-GOSAT-PO-016). (1) Rectangle Number A rectangle is defined as an area of 30 degrees of latitude by 60 degrees of longitude. The rectangle blocking starts from 25 degrees West in longitude with the interval of 60 degrees and starts from 90 degrees North in latitude with an interval of 30 degrees. Rectangle is numbered from 1 to 36 as is shown in Fig. 1. But the products of rectangle number 31 to 36 are omitted because there is no effective area due to Antarctic area. 1

5 Fig. 1 Rectangle division and its Number (2) Mesh size The product is image data in a rectangular area in Cylindrical Equidistant Projection with 1800 meshes for longitude by 900, for latitude. Therefore, the mesh resolution is 1/30 degrees (2 minutes) and the mesh origin in a rectangle is set at the north and west edge of the rectangle in southward and eastward directions. 3. Algorithm (1) NDVI value and the clear sky confidence level are calculated and stored for each mesh. In the previous version, NDVI was evaluated from a set of CAI data for a 5 satellite recurrence period (15 days), and there were some meshes with no effective NDVI values due to the cloud coverage during the whole period. To avoid such cloud-contaminated meshes with missing NDVI, a set of CAI data for 10 satellite recurrences (30 days) is used to get the cloud free data (i.e. clear sky data) for each mesh in the new version. NDVI calculated with the selected cloud free CAI data is stored in the product. The detailed procedure to determine the most possible cloud free data from a set of CAI L1B products for continuous 30 days is described as follows: i) The value of Land-Sea mask for the center of the gridded mesh is obtained. If its latitude is located between 60 deg. North and 60 deg. South, Shuttle Radar Topography Mission (SRTM) land/sea mask data is applied; otherwise Land-Sea Mask used in Global Land 1-KM AVHRR Project of U.S. Geological Survey (USGS) is applied. ii) If the center of gridded mesh is referred as Sea, the value of -0.3 is set as invalid for the 2

6 mesh. iii) The minimum reflectance of Band 2 for each mesh from one path data of CAI L1B is extracted as the preparation of step iv) in the below. Gridded mesh, in which the center pixel of Band 3 of CAI L1B is located, is identified for each pixel of CAI L1B. Since "Geometric information of the observation point" stored in a CAI L1B product is calculated for Band 3 as the reference, the center pixel of Band 3 is also applied for NDVI as the reference. The detail of calculating geometric information is written in GOSAT TANSO-CAI L1B Algorithm Theoretic Basis Document (Ver. 1.0 NIES-GOSAT-PO-010). There will be several pixels of CAI L1B in a gridded mesh as shown in Fig. 2. Then, the reflectance of Band 2 is calculated with the formula (1) for all the pixels in each mesh and their minimum is determined. And the reflectance of Band 3 is also calculated with the formula (1) for the minimum corresponding to the mesh selected from Band 2. Referring to the time and location of the minimum for each mesh, the zenith and azimuth angles of the sun, the zenith and azimuth angles to the satellite, the ozone concentration and the atmospheric pressure on the ground are applied for the atmospheric correction written in the next section. The ozone concentration is based on NASA s data, which is Ozone Monitoring Instrument (OMI) standard Level3 product (Ozone, 0.25 degree mesh, daily) and obtained on The atmospheric pressure is used based on Grid Point Value (GPV) (0.5 degree mesh, every 6 hours) by Japan Meteorological Agency. The ozone concentration and the atmospheric pressure of the mesh at the concerning observation time are given by their linear interpolations. NDVI gridded mesh with thick lines (1/30 degrees) Pixel of CAI L1B enclosed with thin lines (0.5km for Band 2 & 3) Fig. 2 Conceptual sketch of NDVI mesh and CAI L1B pixel Reflectance before the atmospheric correction is given as follows: 2 rad πr ref = irad cos( θ ), where (1) 3

7 R: Distance between earth and sun (Arbitrary Unit), θ: Solar zenith angle, ref: Reflectance before the atmospheric correction, rad: Brightness by TANSO-CAI sensor (W/m 2 /sr/μm), irad: Radiation of sun weighted by the response function of TANSO-CAI sensor system (radiation at 1 A.U., W/m 2 /μm). Note: irad is Radiation of the sun, which is calculated by referring to "Thuillier et al., The Solar Spectral Inradiance from 200 to 2400 nm as Measured by the Solspec Spectrometer from the Atlas and Eureca Missions, Solar Physics, 214 (1): 1-22, May 2003, weighted by the response function of TANSO-CAI sensor system for each band. The detailed values of the TANSO-CAI sensor system response function are available on the page of Technical Information of Sensor from GOSAT Data Archive Service (GDAS), which URL is as follows: iv) The minimum value of Band 2 reflectance for each mesh is searched from CAI data for the past 30 days as the clearest possible sky data. Corresponding value of Band 3 reflectance, zenith and azimuth angle of the sun, the zenith and azimuth angle to the satellite, the ozone concentration and the atmospheric pressure on the ground for each mesh are stored. If the suitable ozone concentration is not found, its value is set with the climatology data 300 D.U. v) If there is no valid data for a mesh as clear sky regarding to the 30 days CAI data, an invalid data -0.3 is stored for the mesh. (2) Atmospheric Correction The atmospheric correction considering the absorption by ozone and oxygen and the Rayleigh scattering is applied to the reflectance of Band 2 and 3 at each gridded mesh. The reflectances of Band 2 and Band 3 with atmospheric correction are described as ref2 and ref3, respectively. The atmospheric correction is applied when the sun s zenith angle is less than 70 degrees. Otherwise an invalid value is stored on the reflectance for the mesh. An invalid reflectance value is stored for the meshes in the southern area over 47 degrees south on the summer solstice or the northern area over 47 degrees north on the winter solstice. It is also stored for the meshes in the southern or northern area over 70 degrees on the Vernal Equinox day or the Autumn Equinox day, respectively. (3) Calculation of NDVI 4

8 a. NDVI Normalized Difference Vegetation Index (NDVI) is calculated for each mesh as follows: (2) where NDVI: Value of Normalized Difference Vegetation Index, ref2, ref3: Reflectances of Band 2 and 3 with atmospheric correction. b. Invalid value The value of NDVI is stored with an invalid value, which is -0.3, for the following cases: Calculated NDVI is less than -0.2 Calculated NDVI is greater than 1.0 If one of the following conditions is satisfied, NDVI, reflectances of Band 2 and 3 with atmospheric correction, and clear sky confidence level are considered as invalid and their values are stored with Reflectance of Band 2 or 3 is negative Reflectance of Band 2 or 3 is greater than 1.0 Sum of Reflectances of Band 2 and 3 is less than 0.1 Reflectance of Band 2 or 3 is stored with the invalid value ( -0.3 ) 5

Preprocessed Input Data. Description MODIS

Preprocessed Input Data. Description MODIS Preprocessed Input Data Description MODIS The Moderate Resolution Imaging Spectroradiometer (MODIS) Surface Reflectance products provide an estimate of the surface spectral reflectance as it would be measured

More information

SPOT VGT.

SPOT VGT. SPOT VGT http://www.spot-vegetation.com/ SPOT VGT General Information Resolution: 1km Projection: Unprojected, Plate Carree Geodetic system: WGS 1984 Geographic Extent Latitude: 75 o N to 56 o S Longitude:

More information

JAXA Himawari Monitor Aerosol Products. JAXA Earth Observation Research Center (EORC) September 2018

JAXA Himawari Monitor Aerosol Products. JAXA Earth Observation Research Center (EORC) September 2018 JAXA Himawari Monitor Aerosol Products JAXA Earth Observation Research Center (EORC) September 2018 1 2 JAXA Himawari Monitor JAXA has been developing Himawari-8 products using the retrieval algorithms

More information

JAXA Himawari Monitor Aerosol Products. JAXA Earth Observation Research Center (EORC) August 2018

JAXA Himawari Monitor Aerosol Products. JAXA Earth Observation Research Center (EORC) August 2018 JAXA Himawari Monitor Aerosol Products JAXA Earth Observation Research Center (EORC) August 2018 1 JAXA Himawari Monitor JAXA has been developing Himawari 8 products using the retrieval algorithms based

More information

NIES GOSAT TANSO-CAI Level 3 Data Product Format Description

NIES GOSAT TANSO-CAI Level 3 Data Product Format Description NIESOSATPO00633 NIES OSAT TANSOCAI Level 3 Data Product Format Description Version 3.00 National Institute for Environmental Studies OSAT Project November 30, 206 Revision history Version Revised on Page

More information

Important Notes on the Release of FTS SWIR Level 2 Data Products For General Users (Version 02.xx) June, 1, 2012 NIES GOSAT project

Important Notes on the Release of FTS SWIR Level 2 Data Products For General Users (Version 02.xx) June, 1, 2012 NIES GOSAT project Important Notes on the Release of FTS SWIR Level 2 Data Products For General Users (Version 02.xx) June, 1, 2012 NIES GOSAT project 1. Differences of processing algorithm between SWIR L2 V01.xx and V02.xx

More information

DEVELOPMENT OF CLOUD AND SHADOW FREE COMPOSITING TECHNIQUE WITH MODIS QKM

DEVELOPMENT OF CLOUD AND SHADOW FREE COMPOSITING TECHNIQUE WITH MODIS QKM DEVELOPMENT OF CLOUD AND SHADOW FREE COMPOSITING TECHNIQUE WITH MODIS QKM Wataru Takeuchi Yoshifumi Yasuoka Institute of Industrial Science, University of Tokyo, Japan 6-1, Komaba 4-chome, Meguro, Tokyo,

More information

MTG-FCI: ATBD for Clear Sky Reflectance Map Product

MTG-FCI: ATBD for Clear Sky Reflectance Map Product MTG-FCI: ATBD for Clear Sky Reflectance Map Product Doc.No. Issue : : v2 EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 Date : 14 January 2013 http://www.eumetsat.int

More information

MODIS Atmosphere: MOD35_L2: Format & Content

MODIS Atmosphere: MOD35_L2: Format & Content Page 1 of 9 File Format Basics MOD35_L2 product files are stored in Hierarchical Data Format (HDF). HDF is a multi-object file format for sharing scientific data in multi-platform distributed environments.

More information

NIES GOSAT TANSO-CAI Level 3 Data Product Format Description

NIES GOSAT TANSO-CAI Level 3 Data Product Format Description NIESOSATPO00633 NIES OSAT TANSOCAI Level 3 Data Product Format Description Version 2.00 National Institute for Environmental Studies OSAT Project Office September 28, 202 Revision history Version Revised

More information

GEOG 4110/5100 Advanced Remote Sensing Lecture 2

GEOG 4110/5100 Advanced Remote Sensing Lecture 2 GEOG 4110/5100 Advanced Remote Sensing Lecture 2 Data Quality Radiometric Distortion Radiometric Error Correction Relevant reading: Richards, sections 2.1 2.8; 2.10.1 2.10.3 Data Quality/Resolution Spatial

More information

Bird Solar Model Source Creator

Bird Solar Model Source Creator Bird Solar Model Source Creator INTRODUCTION This knowledge base article describes a script that generates a FRED source that models the properties of solar light incident on a tilted or solar-tracking

More information

Operational use of the Orfeo Tool Box for the Venµs Mission

Operational use of the Orfeo Tool Box for the Venµs Mission Operational use of the Orfeo Tool Box for the Venµs Mission Thomas Feuvrier http://uk.c-s.fr/ Free and Open Source Software for Geospatial Conference, FOSS4G 2010, Barcelona Outline Introduction of the

More information

Improvements to the SHDOM Radiative Transfer Modeling Package

Improvements to the SHDOM Radiative Transfer Modeling Package Improvements to the SHDOM Radiative Transfer Modeling Package K. F. Evans University of Colorado Boulder, Colorado W. J. Wiscombe National Aeronautics and Space Administration Goddard Space Flight Center

More information

GOSAT / IBUKI Data Users Handbook

GOSAT / IBUKI Data Users Handbook 1st Edition March 2011 Japan Aerospace Exploration Agency National Institute for Environmental Studies Ministry of the Environment Preface At the present stage of civilization, we are facing the big issue

More information

Land surface VIS/NIR BRDF module for RTTOV-11: Model and Validation against SEVIRI Land SAF Albedo product

Land surface VIS/NIR BRDF module for RTTOV-11: Model and Validation against SEVIRI Land SAF Albedo product Land surface VIS/NIR BRDF module for -: Model and Validation against SEVIRI Albedo product Jérôme Vidot and Eva Borbas Centre de Météorologie Spatiale, DP/Météo-France, Lannion, France SSEC/CIMSS, Madison,

More information

Laser Beacon Tracking for High-Accuracy Attitude Determination

Laser Beacon Tracking for High-Accuracy Attitude Determination Laser Beacon Tracking for High-Accuracy Attitude Determination Tam Nguyen Massachusetts Institute of Technology 29 th AIAA/USU Conference on Small Satellites SSC15-VIII-2 08/12/2015 Outline Motivation

More information

Working with M 3 Data. Jeff Nettles M 3 Data Tutorial at AGU December 13, 2010

Working with M 3 Data. Jeff Nettles M 3 Data Tutorial at AGU December 13, 2010 Working with M 3 Data Jeff Nettles M 3 Data Tutorial at AGU December 13, 2010 For Reference Slides and example data from today s workshop available at http://m3dataquest.jpl.nasa.gov See Green et al. (2010)

More information

Atmospheric correction of hyperspectral ocean color sensors: application to HICO

Atmospheric correction of hyperspectral ocean color sensors: application to HICO Atmospheric correction of hyperspectral ocean color sensors: application to HICO Amir Ibrahim NASA GSFC / USRA Bryan Franz, Zia Ahmad, Kirk knobelspiesse (NASA GSFC), and Bo-Cai Gao (NRL) Remote sensing

More information

DIAS_Satellite_MODIS_SurfaceReflectance dataset

DIAS_Satellite_MODIS_SurfaceReflectance dataset DIAS_Satellite_MODIS_SurfaceReflectance dataset 1. IDENTIFICATION INFORMATION DOI Metadata Identifier DIAS_Satellite_MODIS_SurfaceReflectance dataset doi:10.20783/dias.273 [http://doi.org/10.20783/dias.273]

More information

Solar Panel Irradiation Exposure efficiency of solar panels with shadow

Solar Panel Irradiation Exposure efficiency of solar panels with shadow Solar Panel Irradiation Exposure efficiency of solar panels with shadow Frits F.M. de Mul MEDPHYS Software & Services 2012 www.medphys.nl email: info(at)medphys.nl Solar Panel Irradiation 1. Local Times,

More information

InSAR Operational and Processing Steps for DEM Generation

InSAR Operational and Processing Steps for DEM Generation InSAR Operational and Processing Steps for DEM Generation By F. I. Okeke Department of Geoinformatics and Surveying, University of Nigeria, Enugu Campus Tel: 2-80-5627286 Email:francisokeke@yahoo.com Promoting

More information

Validation of spectral continuity between PROBA-V and SPOT-VEGETATION global daily datasets

Validation of spectral continuity between PROBA-V and SPOT-VEGETATION global daily datasets Validation of spectral continuity between PROBA-V and SPOT-VEGETATION global daily datasets W. Dierckx a, *, E. Swinnen a, P. Kempeneers a a Flemish Institute for Technological Research (VITO), Remote

More information

The Gain setting for Landsat 7 (High or Low Gain) depends on: Sensor Calibration - Application. the surface cover types of the earth and the sun angle

The Gain setting for Landsat 7 (High or Low Gain) depends on: Sensor Calibration - Application. the surface cover types of the earth and the sun angle Sensor Calibration - Application Station Identifier ASN Scene Center atitude 34.840 (34 3'0.64"N) Day Night DAY Scene Center ongitude 33.03270 (33 0'7.72"E) WRS Path WRS Row 76 036 Corner Upper eft atitude

More information

GEOG 4110/5100 Advanced Remote Sensing Lecture 4

GEOG 4110/5100 Advanced Remote Sensing Lecture 4 GEOG 4110/5100 Advanced Remote Sensing Lecture 4 Geometric Distortion Relevant Reading: Richards, Sections 2.11-2.17 Review What factors influence radiometric distortion? What is striping in an image?

More information

Verification of MSI Low Radiance Calibration Over Coastal Waters, Using AERONET-OC Network

Verification of MSI Low Radiance Calibration Over Coastal Waters, Using AERONET-OC Network Verification of MSI Low Radiance Calibration Over Coastal Waters, Using AERONET-OC Network Yves Govaerts and Marta Luffarelli Rayference Radiometric Calibration Workshop for European Missions ESRIN, 30-31

More information

Thermal And Near infrared Sensor for carbon Observation (TANSO) onboard the Greenhouse gases Observing SATellite (GOSAT) Research Announcement

Thermal And Near infrared Sensor for carbon Observation (TANSO) onboard the Greenhouse gases Observing SATellite (GOSAT) Research Announcement Thermal And Near infrared Sensor for carbon Observation (TANSO) onboard the Greenhouse gases Observing SATellite (GOSAT) Research Announcement Appendix B GOSAT/TANSO Calibration and Validation Plan and

More information

OMAERO README File. Overview. B. Veihelmann, J.P. Veefkind, KNMI. Last update: November 23, 2007

OMAERO README File. Overview. B. Veihelmann, J.P. Veefkind, KNMI. Last update: November 23, 2007 OMAERO README File B. Veihelmann, J.P. Veefkind, KNMI Last update: November 23, 2007 Overview The OMAERO Level 2 data product contains aerosol characteristics such as aerosol optical thickness (AOT), aerosol

More information

GOME-2 surface LER product

GOME-2 surface LER product REFERENCE: ISSUE: DATE: PAGES: 1.6 13 November 2014 37 ALGORITHM THEORETICAL BASIS DOCUMENT GOME-2 surface LER product Product Identifier Product Name O3M-89 O3M-90 Surface LER from GOME-2 / MetOp-A Surface

More information

BIDIRECTIONAL REFLECTANCE MODELING OF THE GEOSTATIONARY SENSOR HIMAWARI-8/AHI USING A KERNEL-DRIVEN BRDF MODEL

BIDIRECTIONAL REFLECTANCE MODELING OF THE GEOSTATIONARY SENSOR HIMAWARI-8/AHI USING A KERNEL-DRIVEN BRDF MODEL BIDIRECTIONAL REFLECTANCE MODELING OF THE GEOSTATIONARY SENSOR HIMAWARI-8/AHI USING A KERNEL-DRIVEN BRDF MODEL M. Matsuoka a, *, M. Takagi b, S. Akatsuka b, R. Honda c, A. Nonomura d, H. Moriya d, H. Yoshioka

More information

Summary of Publicly Released CIPS Data Versions.

Summary of Publicly Released CIPS Data Versions. Summary of Publicly Released CIPS Data Versions. Last Updated 13 May 2012 V3.11 - Baseline data version, available before July 2008 All CIPS V3.X data versions followed the data processing flow and data

More information

SWIR/VIS Reflectance Ratio Over Korea for Aerosol Retrieval

SWIR/VIS Reflectance Ratio Over Korea for Aerosol Retrieval Korean Journal of Remote Sensing, Vol.23, No.1, 2007, pp.1~5 SWIR/VIS Reflectance Ratio Over Korea for Aerosol Retrieval Kwon Ho Lee*, Zhangqing Li*, Young Joon Kim** *Earth System Science Interdisciplinary

More information

The Sea Surface Temperature Product Algorithm of the Ocean Color and Temperature Scanner (OCTS) and Its Accuracy

The Sea Surface Temperature Product Algorithm of the Ocean Color and Temperature Scanner (OCTS) and Its Accuracy Journal of Oceanography, Vol. 54, pp. 437 to 442. 1998 The Sea Surface Temperature Product Algorithm of the Ocean Color and Temperature Scanner (OCTS) and Its Accuracy FUTOKI SAKAIDA 1, MASAO MORIYAMA

More information

Algorithm Theoretical Basis Document (ATBD) for ray-matching technique of calibrating GEO sensors with Aqua-MODIS for GSICS.

Algorithm Theoretical Basis Document (ATBD) for ray-matching technique of calibrating GEO sensors with Aqua-MODIS for GSICS. Algorithm Theoretical Basis Document (ATBD) for ray-matching technique of calibrating GEO sensors with Aqua-MODIS for GSICS David Doelling 1, Rajendra Bhatt 2, Dan Morstad 2, Benjamin Scarino 2 1 NASA-

More information

LAB EXERCISE NO. 02 DUE DATE: 9/22/2015 Total Points: 4 TOPIC: TOA REFLECTANCE COMPUTATION FROM LANDSAT IMAGES

LAB EXERCISE NO. 02 DUE DATE: 9/22/2015 Total Points: 4 TOPIC: TOA REFLECTANCE COMPUTATION FROM LANDSAT IMAGES LAB EXERCISE NO. 02 DUE DATE: 9/22/2015 Total Points: 4 TOPIC: TOA REFLECTANCE COMPUTATION FROM LANDSAT IMAGES You are asked to perform a radiometric conversion from raw digital numbers to reflectance

More information

Vicarious Radiometric Calibration of MOMS at La Crau Test Site and Intercalibration with SPOT

Vicarious Radiometric Calibration of MOMS at La Crau Test Site and Intercalibration with SPOT Vicarious Radiometric Calibration of MOMS at La Crau Test Site and Intercalibration with SPOT M. Schroeder, R. Müller, P. Reinartz German Aerospace Center, DLR Institute of Optoelectronics, Optical Remote

More information

SENTINEL-2 SEN2COR: L2A PROCESSOR FOR USERS

SENTINEL-2 SEN2COR: L2A PROCESSOR FOR USERS SENTINEL-2 SEN2COR: L2A PROCESSOR FOR USERS Jérôme Louis (1), Vincent Debaecker (1), Bringfried Pflug (2), Magdalena Main-Knorn (2), Jakub Bieniarz (2), Uwe Mueller-Wilm (3), Enrico Cadau (4), Ferran Gascon

More information

PROBA-V PRODUCTS USER MANUAL

PROBA-V PRODUCTS USER MANUAL PRODUCTS USER MANUAL Reference: PROBA-V v1.2 Author(s): Erwin Wolters, Wouter Dierckx, Jan Dries, Else Swinnen Version: 1.2 Date: 11/03/2015 DOCUMENT CONTROL Signatures Author(s) Erwin Wolters, Wouter

More information

Retrieval of Sea Surface Temperature from TRMM VIRS

Retrieval of Sea Surface Temperature from TRMM VIRS Journal of Oceanography, Vol. 59, pp. 245 to 249, 2003 Short Contribution Retrieval of Sea Surface Temperature from TRMM VIRS LEI GUAN 1,2 *, HIROSHI KAWAMURA 1 and HIROSHI MURAKAMI 3 1 Center for Atmospheric

More information

Revision History. Version Date Revision History Remarks Modify the equation

Revision History. Version Date Revision History Remarks Modify the equation Revision History Version Date Revision History Remarks 1.0 011. 4. - 1.01 011. 4 Modify the equation 4.3-3. Table of Contents 1. L1B+ processing 1-1 1.1. Outline of L1B+ processing 1-1 1.. Divinding into

More information

Global and diffuse radiation estimated from METEOSAT data at Bergen, Norway

Global and diffuse radiation estimated from METEOSAT data at Bergen, Norway Global and diffuse radiation estimated from METEOSAT data at Bergen, Norway by Arvid Skartveit and Jan Asle Olseth * Geophysical Institute, University of Bergen Allégaten 7, N-57 Bergen, NORWAY * In the

More information

Sentinel-1 Toolbox. TOPS Interferometry Tutorial Issued May 2014

Sentinel-1 Toolbox. TOPS Interferometry Tutorial Issued May 2014 Sentinel-1 Toolbox TOPS Interferometry Tutorial Issued May 2014 Copyright 2015 Array Systems Computing Inc. http://www.array.ca/ https://sentinel.esa.int/web/sentinel/toolboxes Interferometry Tutorial

More information

Release Note of Bias-corrected FTS SWIR Level 2 CH 4 Product (V02.75) for General Users

Release Note of Bias-corrected FTS SWIR Level 2 CH 4 Product (V02.75) for General Users Release Note of Bias-corrected FTS SWIR Level 2 CH 4 Product (V02.75) for General Users February 28, 2019 NIES GOSAT Project 1. Introduction The NIES GOSAT Project has produced the FTS SWIR Level 2 CH

More information

MTG-FCI: ATBD for Outgoing Longwave Radiation Product

MTG-FCI: ATBD for Outgoing Longwave Radiation Product MTG-FCI: ATBD for Outgoing Longwave Radiation Product Doc.No. Issue : : EUM/MTG/DOC/10/0527 v2 EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 Date : 14

More information

Calculation steps 1) Locate the exercise data in your PC C:\...\Data

Calculation steps 1) Locate the exercise data in your PC C:\...\Data Calculation steps 1) Locate the exercise data in your PC (freely available from the U.S. Geological Survey: http://earthexplorer.usgs.gov/). C:\...\Data The data consists of two folders, one for Athens

More information

Analysis Ready Data For Land (CARD4L-ST)

Analysis Ready Data For Land (CARD4L-ST) Analysis Ready Data For Land Product Family Specification Surface Temperature (CARD4L-ST) Document status For Adoption as: Product Family Specification, Surface Temperature This Specification should next

More information

DEVELOPMENT AND VALIDATION OF A BRDF MODEL FOR ICE MAPPING FOR THE FUTURE GOES-R ADVANCED BASELINE IMAGER (ABI) USING ARTIFICIAL NEURAL NETWORK

DEVELOPMENT AND VALIDATION OF A BRDF MODEL FOR ICE MAPPING FOR THE FUTURE GOES-R ADVANCED BASELINE IMAGER (ABI) USING ARTIFICIAL NEURAL NETWORK P1.10 DEVELOPMENT AND VALIDATION OF A BRDF MODEL FOR ICE MAPPING FOR THE FUTURE GOES-R ADVANCED BASELINE IMAGER (ABI) USING ARTIFICIAL NEURAL NETWORK Hosni Ghedira, Marouane Temimi*, Rouzbeh Nazari and

More information

Analysis Ready Data For Land

Analysis Ready Data For Land Analysis Ready Data For Land Product Family Specification Optical Surface Reflectance (CARD4L-OSR) Document status For Adoption as: Product Family Specification, Surface Reflectance, Working Draft (2017)

More information

ENHANCEMENT OF THE DOUBLE FLEXIBLE PACE SEARCH THRESHOLD DETERMINATION FOR CHANGE VECTOR ANALYSIS

ENHANCEMENT OF THE DOUBLE FLEXIBLE PACE SEARCH THRESHOLD DETERMINATION FOR CHANGE VECTOR ANALYSIS ENHANCEMENT OF THE DOUBLE FLEXIBLE PACE SEARCH THRESHOLD DETERMINATION FOR CHANGE VECTOR ANALYSIS S. A. Azzouzi a,b,, A. Vidal a, H. A. Bentounes b a Instituto de Telecomunicaciones y Aplicaciones Multimedia

More information

Definition of Level 1B Radiance product for OMI

Definition of Level 1B Radiance product for OMI Definition of Level 1B Radiance product for OMI document: RS-OMIE-KNMI-206 version: 1.0 date: 31 July 2000 authors: J.P. Veefkind KNMI veefkind@knmi.nl A. Mälkki FMI anssi.malkki@fmi.fi R.D. McPeters NASA

More information

Algorithm Theoretical Basis Document (ATBD) for Calibration of space sensors over Rayleigh Scattering : Initial version for LEO sensors

Algorithm Theoretical Basis Document (ATBD) for Calibration of space sensors over Rayleigh Scattering : Initial version for LEO sensors 1 Algorithm Theoretical Basis Document (ATBD) for Calibration of space sensors over Rayleigh Scattering : Initial version for LEO sensors Bertrand Fougnie, Patrice Henry CNES 2 nd July, 2013 1. Introduction

More information

Earth surface reflectance climatology from 3 years of OMI data

Earth surface reflectance climatology from 3 years of OMI data Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2008jd010290, 2008 Earth surface reflectance climatology from 3 years of OMI data Q. L. Kleipool, 1 M. R. Dobber, 1 J.

More information

Daytime Cloud Overlap Detection from AVHRR and VIIRS

Daytime Cloud Overlap Detection from AVHRR and VIIRS Daytime Cloud Overlap Detection from AVHRR and VIIRS Michael J. Pavolonis Cooperative Institute for Meteorological Satellite Studies University of Wisconsin-Madison Andrew K. Heidinger Office of Research

More information

Evaluation of Satellite Ocean Color Data Using SIMBADA Radiometers

Evaluation of Satellite Ocean Color Data Using SIMBADA Radiometers Evaluation of Satellite Ocean Color Data Using SIMBADA Radiometers Robert Frouin Scripps Institution of Oceanography, la Jolla, California OCR-VC Workshop, 21 October 2010, Ispra, Italy The SIMBADA Project

More information

The 4A/OP model: from NIR to TIR, new developments for time computing gain and validation results within the frame of international space missions

The 4A/OP model: from NIR to TIR, new developments for time computing gain and validation results within the frame of international space missions ITSC-21, Darmstadt, Germany, November 29th-December 5th, 2017 session 2a Radiative Transfer The 4A/OP model: from NIR to TIR, new developments for time computing gain and validation results within the

More information

Uncertainties in ocean colour remote sensing

Uncertainties in ocean colour remote sensing ENMAP Summer School on Remote Sensing Data Analysis Uncertainties in ocean colour remote sensing Roland Doerffer Retired from Helmholtz Zentrum Geesthacht Institute of Coastal Research Now: Brockmann Consult

More information

Downscaling satellite derived irradiation using topographic shading analysis. EXECUTIVE SUMMARY

Downscaling satellite derived irradiation using topographic shading analysis. EXECUTIVE SUMMARY Downscaling satellite derived irradiation using topographic shading analysis. Juan Luis Bosch and Jan Kleissl Dept of Mechanical and Aerospace Engineering, University of California, San Diego Funded by

More information

MERIS US Workshop. Vicarious Calibration Methods and Results. Steven Delwart

MERIS US Workshop. Vicarious Calibration Methods and Results. Steven Delwart MERIS US Workshop Vicarious Calibration Methods and Results Steven Delwart Presentation Overview Recent results 1. CNES methods Deserts, Sun Glint, Rayleigh Scattering 2. Inter-sensor Uyuni 3. MOBY-AAOT

More information

MC-FUME: A new method for compositing individual reflective channels

MC-FUME: A new method for compositing individual reflective channels MC-FUME: A new method for compositing individual reflective channels Gil Lissens, Frank Veroustraete, Jan van Rensbergen Flemish Institute for Technological Research (VITO) Centre for Remote Sensing and

More information

Meteosat Third Generation (MTG) Lightning Imager (LI) instrument performance and calibration from user perspective

Meteosat Third Generation (MTG) Lightning Imager (LI) instrument performance and calibration from user perspective Meteosat Third Generation (MTG) Lightning Imager (LI) instrument performance and calibration from user perspective Marcel Dobber, Jochen Grandell EUMETSAT (Darmstadt, Germany) 1 Meteosat Third Generation

More information

2-band Enhanced Vegetation Index without a blue band and its application to AVHRR data

2-band Enhanced Vegetation Index without a blue band and its application to AVHRR data 2-band Enhanced Vegetation Index without a blue band and its application to AVHRR data Zhangyan Jiang*, Alfredo R. Huete, Youngwook Kim, Kamel Didan Department of Soil, Water, and Environmental Science,

More information

Geometric Accuracy Evaluation, DEM Generation and Validation for SPOT-5 Level 1B Stereo Scene

Geometric Accuracy Evaluation, DEM Generation and Validation for SPOT-5 Level 1B Stereo Scene Geometric Accuracy Evaluation, DEM Generation and Validation for SPOT-5 Level 1B Stereo Scene Buyuksalih, G.*, Oruc, M.*, Topan, H.*,.*, Jacobsen, K.** * Karaelmas University Zonguldak, Turkey **University

More information

GOME-2 surface LER product

GOME-2 surface LER product REFERENCE: ISSUE: DATE: PAGES: 2.2 2 May 2017 20 PRODUCT USER MANUAL GOME-2 surface LER product Product Identifier Product Name O3M-89.1 O3M-90 Surface LER from GOME-2 / MetOp-A Surface LER from GOME-2

More information

Design and Implementation of Data Models & Instrument Scheduling of Satellites in a Space Based Internet Emulation System

Design and Implementation of Data Models & Instrument Scheduling of Satellites in a Space Based Internet Emulation System Design and Implementation of Data Models & Instrument Scheduling of Satellites in a Space Based Internet Emulation System Karthik N Thyagarajan Masters Thesis Defense December 20, 2001 Defense Committee:

More information

2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing. Introduction to Remote Sensing

2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing. Introduction to Remote Sensing 2017 Summer Course on Optical Oceanography and Ocean Color Remote Sensing Introduction to Remote Sensing Curtis Mobley Delivered at the Darling Marine Center, University of Maine July 2017 Copyright 2017

More information

KAshima RAy-Tracing Service (KARATS)

KAshima RAy-Tracing Service (KARATS) KAshima RAy-Tracing Service (KARATS) Fast ray-tracing through numerical weather models for real-time positioning applications ホビガートーマス 市川隆一 小山泰弘 近藤哲朗 第 6 回 IVS 技術開発センターシンポジウム 平成 19 年 3 月 9 日 Overview 1.

More information

DISCRIMINATING CLEAR-SKY FROM CLOUD WITH MODIS ALGORITHM THEORETICAL BASIS DOCUMENT (MOD35) MODIS Cloud Mask Team

DISCRIMINATING CLEAR-SKY FROM CLOUD WITH MODIS ALGORITHM THEORETICAL BASIS DOCUMENT (MOD35) MODIS Cloud Mask Team DISCRIMINATING CLEAR-SKY FROM CLOUD WITH MODIS ALGORITHM THEORETICAL BASIS DOCUMENT (MOD35) MODIS Cloud Mask Team Steve Ackerman 1, Kathleen Strabala 1, Paul Menzel 1,2, Richard Frey 1, Chris Moeller 1,

More information

GOES-R AWG Radiation Budget Team: Absorbed Shortwave Radiation at surface (ASR) algorithm June 9, 2010

GOES-R AWG Radiation Budget Team: Absorbed Shortwave Radiation at surface (ASR) algorithm June 9, 2010 GOES-R AWG Radiation Budget Team: Absorbed Shortwave Radiation at surface (ASR) algorithm June 9, 2010 Presented By: Istvan Laszlo NOAA/NESDIS/STAR 1 ASR Team Radiation Budget AT chair: Istvan Laszlo ASR

More information

Global and Regional Retrieval of Aerosol from MODIS

Global and Regional Retrieval of Aerosol from MODIS Global and Regional Retrieval of Aerosol from MODIS Why study aerosols? CLIMATE VISIBILITY Presented to UMBC/NESDIS June 4, 24 Robert Levy, Lorraine Remer, Yoram Kaufman, Allen Chu, Russ Dickerson modis-atmos.gsfc.nasa.gov

More information

MTG-FCI: ATBD for Active Fire Monitoring Product

MTG-FCI: ATBD for Active Fire Monitoring Product MTG-FCI: ATBD for Active Fire Monitoring Product EUMETSAT Doc.No. : EUM/MTG/DOC/10/0613 Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Issue : v2 Fax: +49 6151 807 555 Date : 14 January

More information

NIES GOSAT TANSO-FTS SWIR Level 3 Data Product Format Description

NIES GOSAT TANSO-FTS SWIR Level 3 Data Product Format Description NIESOSATPO0063 NIES OSAT TANSOFTS SWIR Level 3 Data Product Format Description Version 2.02 National Institute for Environmental Studies OSAT Project Office March 6, 206 Revision history Version Revised

More information

GROUND DATA PROCESSING & PRODUCTION OF THE LEVEL 1 HIGH RESOLUTION MAPS

GROUND DATA PROCESSING & PRODUCTION OF THE LEVEL 1 HIGH RESOLUTION MAPS GROUND DATA PROCESSING & PRODUCTION OF THE LEVEL 1 HIGH RESOLUTION MAPS VALERI 2002 LARZAC site (grassland) Philippe Rossello, Marie Weiss December 2005 CONTENTS 1. Introduction... 2 2. Available data...

More information

ICOL Improve Contrast between Ocean & Land

ICOL Improve Contrast between Ocean & Land - MEIS Level-1C eport D6 Issue: 1 ev.: 1 Page: 1 Project Title: Document Title: ICOL The MEIS Level-1C Version: 1.1 Author(s): Affiliation(s):. Santer, F. Zagolski ULCO, Université du Littoral Côte d Opale,

More information

1 An Introduction to GrADS Software

1 An Introduction to GrADS Software 1 An Introduction to GrADS Software The Grid Analysis and Display System (GrADS) is an interactive desktop tool to display earth science data. The followings are the features of GrADS. Advantages Free

More information

SOLAR GEOMETRY (AND RADIATION)

SOLAR GEOMETRY (AND RADIATION) SOLAR GEOMETRY (AND RADIATION) Ball State Architecture ENVIRONMENTAL SYSTEMS 1 Summer 2011 Grondzik 1 Solar Radiation Components glass will reflect some incoming radiation; absorb some; and transmit some

More information

Radiometric Correction. Lecture 4 February 5, 2008

Radiometric Correction. Lecture 4 February 5, 2008 Radiometric Correction Lecture 4 February 5, 2008 Procedures of image processing Preprocessing Radiometric correction is concerned with improving the accuracy of surface spectral reflectance, emittance,

More information

POLDER-3 / PARASOL Land Surface Level 3 Albedo & NDVI Products

POLDER-3 / PARASOL Land Surface Level 3 Albedo & NDVI Products Date Issued :08.09.2010 Issue : I2.00 POLDER-3 / PARASOL Land Surface Level 3 Albedo & NDVI Products Data Format and User Manual Issue 2.00 8 th September 2010 Author: R. Lacaze (HYGEOS) Change Record

More information

OPERATIONAL NEAR REAL-TIME DERIVATION OF LAND SURFACE ALBEDO AND DOWN-WELLING SHORT-WAVE RADIATION FROM MSG OBSERVATIONS

OPERATIONAL NEAR REAL-TIME DERIVATION OF LAND SURFACE ALBEDO AND DOWN-WELLING SHORT-WAVE RADIATION FROM MSG OBSERVATIONS OPERATIONAL NEAR REAL-TIME DERIVATION OF LAND SURFACE ALBEDO AND DOWN-WELLING SHORT-WAVE RADIATION FROM MSG OBSERVATIONS Bernhard Geiger, Laurent Franchistéguy, Dulce Lajas, and Jean-Louis Roujean Météo-France,

More information

OCEANSAT-2 OCEAN COLOUR MONITOR (OCM-2)

OCEANSAT-2 OCEAN COLOUR MONITOR (OCM-2) OCEANSAT-2 OCEAN COLOUR MONITOR (OCM-2) Update of post launch vicarious, lunar calibrations & current status Presented by Prakash Chauhan Space Applications Centre Indian Space Research Organistaion Ahmedabad-

More information

Monte Carlo Ray Tracing Based Non-Linear Mixture Model of Mixed Pixels in Earth Observation Satellite Imagery Data

Monte Carlo Ray Tracing Based Non-Linear Mixture Model of Mixed Pixels in Earth Observation Satellite Imagery Data Monte Carlo Ray Tracing Based Non-Linear Mixture Model of Mixed Pixels in Earth Observation Satellite Imagery Data Verification of non-linear mixed pixel model with real remote sensing satellite images

More information

GLOBAL PRECIPITATION MEASUREMENT PRECIPITATION PROCESSING SYSTEM. File Specification AMSUBBASE. Preliminary Version

GLOBAL PRECIPITATION MEASUREMENT PRECIPITATION PROCESSING SYSTEM. File Specification AMSUBBASE. Preliminary Version GLOBAL PRECIPITATION MEASUREMENT PRECIPITATION PROCESSING SYSTEM File Specification AMSUBBASE Preliminary Version October 12, 2015 0.1 AMSUBBASE - AMSUB base AMSUBBASE contains brightness temperature from

More information

False Color to NDVI Conversion Precision NDVI Single Sensor

False Color to NDVI Conversion Precision NDVI Single Sensor False Color to NDVI Conversion Precision NDVI Single Sensor Contents 1 Sensor Properties... 2 2 Isolating Bands... 2 3 Calculating NDVI from Original Image Pixel DN... 3 4 Calculating NDVI from AgVault

More information

Effect of Satellite Formation Architectures and Imaging Modes on Albedo Estimation of major Biomes

Effect of Satellite Formation Architectures and Imaging Modes on Albedo Estimation of major Biomes Effect of Satellite Formation Architectures and Imaging Modes on Albedo Estimation of major Biomes Sreeja Nag 1,2, Charles Gatebe 3, David Miller 1,4, Olivier de Weck 1 1 Massachusetts Institute of Technology,

More information

Digital Elevation Models

Digital Elevation Models Digital Elevation Models National Elevation Dataset 1 Data Sets US DEM series 7.5, 30, 1 o for conterminous US 7.5, 15 for Alaska US National Elevation Data (NED) GTOPO30 Global Land One-kilometer Base

More information

Class 11 Introduction to Surface BRDF and Atmospheric Scattering. Class 12/13 - Measurements of Surface BRDF and Atmospheric Scattering

Class 11 Introduction to Surface BRDF and Atmospheric Scattering. Class 12/13 - Measurements of Surface BRDF and Atmospheric Scattering University of Maryland Baltimore County - UMBC Phys650 - Special Topics in Experimental Atmospheric Physics (Spring 2009) J. V. Martins and M. H. Tabacniks http://userpages.umbc.edu/~martins/phys650/ Class

More information

TEMPO & GOES-R synergy update and! GEO-TASO aerosol retrieval!

TEMPO & GOES-R synergy update and! GEO-TASO aerosol retrieval! TEMPO & GOES-R synergy update and! GEO-TASO aerosol retrieval! Jun Wang! Xiaoguang Xu, Shouguo Ding, Weizhen Hou! University of Nebraska-Lincoln!! Robert Spurr! RT solutions!! Xiong Liu, Kelly Chance!

More information

ATMOSPHERIC CORRECTION ITERATIVE METHOD FOR HIGH RESOLUTION AEROSPACE IMAGING SPECTROMETERS

ATMOSPHERIC CORRECTION ITERATIVE METHOD FOR HIGH RESOLUTION AEROSPACE IMAGING SPECTROMETERS ATMOSPHERIC CORRECTION ITERATIVE METHOD FOR HIGH RESOLUTION AEROSPACE IMAGING SPECTROMETERS Alessandro Barducci, Donatella Guzzi, Paolo Marcoionni, Ivan Pippi * CNR IFAC Via Madonna del Piano 10, 50019

More information

Kohei Arai 1 Graduate School of Science and Engineering Saga University Saga City, Japan

Kohei Arai 1 Graduate School of Science and Engineering Saga University Saga City, Japan Sensitivity Analysis and Error Analysis of Reflectance Based Vicarious Calibration with Estimated Aerosol Refractive Index and Size Distribution Derived from Measured Solar Direct and Diffuse Irradiance

More information

S2 MPC Data Quality Report Ref. S2-PDGS-MPC-DQR

S2 MPC Data Quality Report Ref. S2-PDGS-MPC-DQR S2 MPC Data Quality Report Ref. S2-PDGS-MPC-DQR 2/13 Authors Table Name Company Responsibility Date Signature Written by S. Clerc & MPC Team ACRI/Argans Technical Manager 2015-11-30 Verified by O. Devignot

More information

EFFECT OF THE APPLICATION BETWEEN ANISOTROPIC AND ISOTROPIC DIFFUSE RADIATION MODEL ON BUILDING DIFFUSE RADIATION HEAT GAIN

EFFECT OF THE APPLICATION BETWEEN ANISOTROPIC AND ISOTROPIC DIFFUSE RADIATION MODEL ON BUILDING DIFFUSE RADIATION HEAT GAIN EFFECT OF THE APPLICATION BETWEEN ANISOTROPIC AND ISOTROPIC DIFFUSE RADIATION MODEL ON BUILDING DIFFUSE RADIATION HEAT GAIN Zhengrong Li, Haowei Xing*, and Shiqin Zeng School of Mechanical and Engineering,

More information

Physically Based Evaluation of Reflected Terrain Irradiance in Satellite Imagery for llumination Correction

Physically Based Evaluation of Reflected Terrain Irradiance in Satellite Imagery for llumination Correction Physically Based Evaluation of Reflected Terrain Irradiance in Satellite Imagery for llumination Correction Masahiko Sugawara Hirosaki University Faculty of Science and Technology Bunkyo-cho 3, Hirosaki

More information

The Spherical Harmonics Discrete Ordinate Method for Atmospheric Radiative Transfer

The Spherical Harmonics Discrete Ordinate Method for Atmospheric Radiative Transfer The Spherical Harmonics Discrete Ordinate Method for Atmospheric Radiative Transfer K. Franklin Evans Program in Atmospheric and Oceanic Sciences University of Colorado, Boulder Computational Methods in

More information

THE FUNCTIONAL design of satellite data production

THE FUNCTIONAL design of satellite data production 1324 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 36, NO. 4, JULY 1998 MODIS Land Data Storage, Gridding, and Compositing Methodology: Level 2 Grid Robert E. Wolfe, David P. Roy, and Eric Vermote,

More information

WHERE THEORY MEETS PRACTICE

WHERE THEORY MEETS PRACTICE world from others, leica geosystems WHERE THEORY MEETS PRACTICE A NEW BULLETIN COLUMN BY CHARLES GHILANI ON PRACTICAL ASPECTS OF SURVEYING WITH A THEORETICAL SLANT february 2012 ² ACSM BULLETIN ² 27 USGS

More information

McIDAS-X Software Development and Demonstration

McIDAS-X Software Development and Demonstration McIDAS-X Software Development and Demonstration Dave Santek and Jay Heinzelman 16 October 2007 Overview McIDAS-X 2006, 2007 McIDAS-XRD 2006, 2007 Software Development in 2007 Software Plans for 2008 McIDAS-X

More information

SOLAR RESOURCE ASSESSMENT AND SITE EVALUATION USING REMOTE SENSING METHODS

SOLAR RESOURCE ASSESSMENT AND SITE EVALUATION USING REMOTE SENSING METHODS SOLAR RESOURCE ASSESSMENT AND SITE EVALUATION USING REMOTE SENSING METHODS Carsten Hoyer, Christoph Schillings *, Detlev Heinemann, Hermann Mannstein **, Franz Trieb * University of Oldenburg, Faculty

More information

Leaf Area Index - Fraction of Photosynthetically Active Radiation 8-Day L4 Global 1km MOD15A2

Leaf Area Index - Fraction of Photosynthetically Active Radiation 8-Day L4 Global 1km MOD15A2 Leaf Area Index - Fraction of Photosynthetically Active Radiation 8-Day L4 Global 1km MOD15A2 The level-4 MODIS global Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation (FPAR) product

More information

MWR L1 Algorithm & Simulator

MWR L1 Algorithm & Simulator MWR L1 Algorithm & Simulator Héctor Raimondo & Felipe Madero 19-21 July 2010 Seattle, Washington, USA MWR Overview & characteristics 2 of 57 Overview & Characteristics 3 of 57 Overview & Characteristics

More information

Implementation of Version 6 AQUA and TERRA SST processing. K. Kilpatrick, G. Podesta, S. Walsh, R. Evans, P. Minnett University of Miami March 2014

Implementation of Version 6 AQUA and TERRA SST processing. K. Kilpatrick, G. Podesta, S. Walsh, R. Evans, P. Minnett University of Miami March 2014 Implementation of Version 6 AQUA and TERRA SST processing K. Kilpatrick, G. Podesta, S. Walsh, R. Evans, P. Minnett University of Miami March 2014 Outline of V6 MODIS SST changes: A total of 3 additional

More information

TOA RADIANCE SIMULATOR FOR THE NEW HYPERSPECTRAL MISSIONS: STORE (SIMULATOR OF TOA RADIANCE)

TOA RADIANCE SIMULATOR FOR THE NEW HYPERSPECTRAL MISSIONS: STORE (SIMULATOR OF TOA RADIANCE) TOA RADIANCE SIMULATOR FOR THE NEW HYPERSPECTRAL MISSIONS: STORE (SIMULATOR OF TOA RADIANCE) Malvina Silvestri Istituto Nazionale di Geofisica e Vulcanologia In the frame of the Italian Space Agency (ASI)

More information