Courtesy of Prof. Shixia University

Size: px
Start display at page:

Download "Courtesy of Prof. Shixia University"

Transcription

1 Courtesy of Prof. Shixia University

2 Outline Introduction Classification of Techniques Table Scatter Plot Matrices Projections Parallel Coordinates Summary

3 Motivation Real world data contain multiple dimensions

4 Multivariate/Multidimensional Data Visualization Multivariate data visualization is a specific type of information visualization that deals with multivariate/multidimensional data The data to be visualized are of high dimensionality in which the correlations between these many attributes are of interest

5 Dimensionality Refers to the number of attributes that presents in the data 1: one-dimensional 1D / univariate 2: two-dimensional 2D/ bivaraite 3: three-dimensional 3D / trivariate 3: multidimensional / hypervarite / multivariate Boundary between high and low dimensionality not clear, generally high dimensionality has >4 variables

6 Terminology Dimensions Variables Multidimensional Multivariate Dimensionality of the independent dimensions Dimensionality of the dependent variables

7 Outline Introduction Classification of Techniques Projections Parallel Coordinates Table Scatter Plot Matrices Summary

8 Classification of Techniques Projection Parallel Coordinates Plot Table Scatter Plot Matrix

9 What if we have too many dimensions? A intuitive way is to project to low dimension space Linear projections Nonlinear projections A projection (X -> Y) maps points {x1, x2,, xm} in an n-dimensional space into a p-dimensional space as {y1, y2,, ym} (p << n) while preserving distance measures of data items.

10 Classification Linear projection Example: PCA (principal component analysis) Non-linear projection Example: t-sne (t-distributed stochastic neighbor embedding)

11 PCA Seeks a space of lower dimensionality (magenta) Such that the orthogonal projection of the data points (red) onto this subspace maximizes the variance of the projected points (green)

12 Maximizes Variance To begin with, consider the projection onto a onedimensional space The direction of this space Variance Trick: How to maximize this?

13 Maximizes Variance (cont d) Eigenvalue

14 One Example

15 Extension to M-dimension Define additional principal components in an incremental fashion (details refer to Chapter 12 in Patter Recognition and Machine Learning) Conclusion of M dimension: The M eigenvectors u1,...,um of the data covariance matrix S corresponding to the M largest eigenvalues λ1,...,λm

16 Covariance Matrix Covariance

17 Fit an n-d Ellipsoid to the Data

18 T-SNE

19 T-SNE Particularly well-suited for embedding highdimensional data into a space of two or three dimensions, which can then be visualized in a scatter plot

20 Major Goal t-distributed stochastic neighbor embedding (t- SNE) minimizes the divergence between two distributions: a distribution that measures pairwise similarities of the input objects and a distribution that measures pairwise similarities of the corresponding low-dimensional points in the embedding.

21 Two Main Stages First, t-sne constructs a probability distribution over pairs of high-dimensional objects Similar objects have a high probability of being picked Dissimilar points have an extremely small probability of being picked

22 Example Step 1

23 Two Main Stages (cont d) Second, t-sne defines a probability distribution over the points in the low-dimensional map Similar to the one in high-dimensional space Minimizes the Kullback Leibler divergence between the two distributions with respect to the locations of the points in the map. Heavy-tailed student-t distribution

24 Example: Step Two

25 Example: Step Two Before optimization

26 Example: Final Result Student t-distribution Gaussian distribution

27 The t-student distribution The volume of the N-dimensional ball of radius r scales is When N is large, if we pick random points uniformly in the ball, most points will be close to the surface, and very few will be near the center.

28 The t-student distribution If the same Gaussian distribution is used for the low dimensional map points, not enough space is available in low dimensional space The crowding problem Use a t-student with one degree of freedom (or Cauchy) distribution instead for the map points. Has a much heavier tail than the Gaussian distribution, which compensates the original imbalance.

29 Comparison

30 The Distribution Model Probability model for high-dimensional data points Probability model for low-dimensional map points The different between two distributions

31 The Solution To minimize this score, we perform a gradient descent. The gradient can be computed analytically: Update y i iteratively

32 One Example

33 Example: MNIST Hand written digit (0-9)

34 Package Laurens van der Maate L.J.P. van der Maaten. Accelerating t-sne using Tree-Based Algorithms. Journal of Machine Learning Research 15(Oct): , L.J.P. van der Maaten and G.E. Hinton. Visualizing Non-Metric Similarities in Multiple Maps. Machine Learning 87(1):33-55, L.J.P. van der Maaten. Learning a Parametric Embedding by Preserving Local Structure. In Proceedings of the Twelfth International Conference on Artificial Intelligence & Statistics (AI- STATS), JMLR W&CP 5: , PDF L.J.P. van der Maaten and G.E. Hinton. Visualizing High- Dimensional Data Using t-sne. Journal of Machine Learning Research 9(Nov): , 2008.

35 Comparison PCA, MDS Linear technique Keep the low-dimensional representations of dissimilar data points far apart t-sne Non-linear technique Capture much of the local structure of the highdimensional data very well, while also revealing global structure such as the presence of clusters at multiple scales.

36 Comparison

37 Inselberg, "Multidimensional detective" (parallel coordiantes), 1997

38 Parallel Coordinates: Visual Design Max: 1 Min: dim1 dim2 dim3 dimn 0.25 Dimensions as parallel axes Data items as line segments Intersections on the axes indicates the values of the corresponding attributes

39 Parallel Coordinates: Pros and Cons!"Correlations among attributes studied by spotting the locations of the intersection points!"effective for revealing data distributions and functional dependencies #"Visual clutter due to limited space available for each parallel axis #"Axes packed very closely when dimensionality is high

40 Clustering and filtering approaches Dimension reordering approaches Visual enhancement approaches Out5d dataset (5 dimensions, data items)

41 Star Coordinates Scatterplots for higher dimensions: attribute as axis on a circle, data item as point Change the length of axis $ alters contribution of attribute Change the direction of axis $ angles not equal, adjusts correlations between attributes!"useful for gaining insight into hierarchically clustered datasets and for multi-factor analysis for decision-making

42 Table Lens Represents rows as data items and columns as attributes Each column viewed as histogram or plot Information along rows or columns interrelated!"uses the familiar concept table The table lens: merging graphical and symbolic representations in an interactive focus+ context visualization for tabular information

43 Scatterplot Matrix Scatterplot: 2 attributes projected along the x- and y-axis Collection of scatterplots is organized in a matrix!"straightforward% #"Important patterns in higher dimensions barely recognized #"Chaotic when number of data items too large

44 Outline Introduction Classification of Techniques Table Scatter Plot Matrices Projections Parallel Coordinates Pixel-Oriented Techniques Iconography Summary

45 Visualizations Advantages Disadvantages Clear visual patterns Clear visual patterns 1. Obscured semantics 2. Loss of information 3. Visual Clutter Visual Clutter Uses the familiar concept table Simple Support limited numbers of dimensions 1. Visual clutter 2. Unclear patterns

46 Further Reading Survey Dos Santos, Selan, and Ken Brodlie. "Gaining understanding of multivariate and multidimensional data through visualization." Computers & Graphics28.3 (2004): Website website/

47 Further Reading Evaluation Rubio-Sánchez, Manuel, et al. "A comparative study between RadViz and Star Coordinates." IEEE transactions on visualization and computer graphics 22.1 (2016):

48 References Rao, Ramana, and Stuart K. Card. "The table lens: merging graphical and symbolic representations in an interactive focus+ context visualization for tabular information." Proceedings of the SIGCHI conference on Human factors in computing systems. ACM, Gratzl, Samuel, et al. "Lineup: Visual analysis of multi-attribute rankings."ieee transactions on visualization and computer graphics (2013): van Wijk, Jarke J., and Robert van Liere. "HyperSlice: visualization of scalar functions of many variables." Proceedings of the 4th conference on Visualization'93. IEEE Computer Society, Kim, Hannah, et al. "InterAxis: Steering Scatterplot Axes via Observation-Level Interaction." IEEE transactions on visualization and computer graphics22.1 (2016):

49 References Maaten, Laurens van der, and Geoffrey Hinton. "Visualizing data using t-sne." Journal of Machine Learning Research 9.Nov (2008): Zhou, Hong, et al. "Visual clustering in parallel coordinates." Computer Graphics Forum. Vol. 27. No. 3., Ferdosi, Bilkis J., and Jos BTM Roerdink. "Visualizing High Dimensional Structures by Dimension Ordering and Filtering using Subspace Analysis."Computer Graphics Forum. Vol. 30. No. 3, Novotny, Matej, and Helwig Hauser. "Outlier-preserving focus+ context visualization in parallel coordinates." IEEE Transactions on Visualization and Computer Graphics 12.5 (2006):

50 References Keim, Daniel A., and H-P. Kriegel. "Visualization techniques for mining large databases: A comparison." IEEE Transactions on knowledge and data engineering 8.6 (1996):

Package mmtsne. July 28, 2017

Package mmtsne. July 28, 2017 Type Package Title Multiple Maps t-sne Author Benjamin J. Radford Package mmtsne July 28, 2017 Maintainer Benjamin J. Radford Version 0.1.0 An implementation of multiple maps

More information

CSE 6242 A / CX 4242 DVA. March 6, Dimension Reduction. Guest Lecturer: Jaegul Choo

CSE 6242 A / CX 4242 DVA. March 6, Dimension Reduction. Guest Lecturer: Jaegul Choo CSE 6242 A / CX 4242 DVA March 6, 2014 Dimension Reduction Guest Lecturer: Jaegul Choo Data is Too Big To Analyze! Limited memory size! Data may not be fitted to the memory of your machine! Slow computation!

More information

Package Rtsne. April 14, 2017

Package Rtsne. April 14, 2017 Type Package Package Rtsne April 14, 2017 Title T-Distributed Stochastic Neighbor Embedding using a Barnes-Hut Implementation Version 0.13 Description An R wrapper around the fast T-distributed Stochastic

More information

Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Exploratory data analysis tasks Examine the data, in search of structures

More information

CIE L*a*b* color model

CIE L*a*b* color model CIE L*a*b* color model To further strengthen the correlation between the color model and human perception, we apply the following non-linear transformation: with where (X n,y n,z n ) are the tristimulus

More information

Dimension Reduction CS534

Dimension Reduction CS534 Dimension Reduction CS534 Why dimension reduction? High dimensionality large number of features E.g., documents represented by thousands of words, millions of bigrams Images represented by thousands of

More information

InterAxis: Steering Scatterplot Axes via Observation-Level Interaction

InterAxis: Steering Scatterplot Axes via Observation-Level Interaction Interactive Axis InterAxis: Steering Scatterplot Axes via Observation-Level Interaction IEEE VAST 2015 Hannah Kim 1, Jaegul Choo 2, Haesun Park 1, Alex Endert 1 Georgia Tech 1, Korea University 2 October

More information

3. Multidimensional Information Visualization II Concepts for visualizing univariate to hypervariate data

3. Multidimensional Information Visualization II Concepts for visualizing univariate to hypervariate data 3. Multidimensional Information Visualization II Concepts for visualizing univariate to hypervariate data Vorlesung Informationsvisualisierung Prof. Dr. Andreas Butz, WS 2009/10 Konzept und Basis für n:

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Introduction Often, we have only a set of features x = x 1, x 2,, x n, but no associated response y. Therefore we are not interested in prediction nor classification,

More information

Data Preprocessing. Javier Béjar. URL - Spring 2018 CS - MAI 1/78 BY: $\

Data Preprocessing. Javier Béjar. URL - Spring 2018 CS - MAI 1/78 BY: $\ Data Preprocessing Javier Béjar BY: $\ URL - Spring 2018 C CS - MAI 1/78 Introduction Data representation Unstructured datasets: Examples described by a flat set of attributes: attribute-value matrix Structured

More information

m-tsne: A Framework for Visualizing High-Dimensional Multivariate Time Series

m-tsne: A Framework for Visualizing High-Dimensional Multivariate Time Series VAHC - Workshop on Visual Analytics in Healthcare AMIA 2016 Annual Symposium m-tsne: A Framework for Visualizing High-Dimensional Multivariate Time Series Minh Nguyen, Sanjay Purushotham, Hien To, and

More information

Clustering and Visualisation of Data

Clustering and Visualisation of Data Clustering and Visualisation of Data Hiroshi Shimodaira January-March 28 Cluster analysis aims to partition a data set into meaningful or useful groups, based on distances between data points. In some

More information

Image Processing. Image Features

Image Processing. Image Features Image Processing Image Features Preliminaries 2 What are Image Features? Anything. What they are used for? Some statements about image fragments (patches) recognition Search for similar patches matching

More information

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Cluster Analysis Mu-Chun Su Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Introduction Cluster analysis is the formal study of algorithms and methods

More information

Advanced Data Visualization

Advanced Data Visualization Advanced Data Visualization CS 6965 Spring 2018 Prof. Bei Wang Phillips University of Utah Lecture 03 Dim Reduction & Vis t-sne HD Announcement Project 1 has been posted on the schedule webpage: http://www.sci.utah.edu/~beiwang/teaching/cs6965-spring-2018/

More information

Visualizing Data using t-sne

Visualizing Data using t-sne Journal of Machine Learning Research 9 (2008) Submitted 5/08; Published Visualizing Data using t-sne Laurens van der Maaten MICC-IKAT Maastricht University P.O. Box 616, 6200 MD Maastricht, The Netherlands

More information

CSE 6242 A / CS 4803 DVA. Feb 12, Dimension Reduction. Guest Lecturer: Jaegul Choo

CSE 6242 A / CS 4803 DVA. Feb 12, Dimension Reduction. Guest Lecturer: Jaegul Choo CSE 6242 A / CS 4803 DVA Feb 12, 2013 Dimension Reduction Guest Lecturer: Jaegul Choo CSE 6242 A / CS 4803 DVA Feb 12, 2013 Dimension Reduction Guest Lecturer: Jaegul Choo Data is Too Big To Do Something..

More information

The Curse of Dimensionality

The Curse of Dimensionality The Curse of Dimensionality ACAS 2002 p1/66 Curse of Dimensionality The basic idea of the curse of dimensionality is that high dimensional data is difficult to work with for several reasons: Adding more

More information

Machine Learning Methods in Visualisation for Big Data 2018

Machine Learning Methods in Visualisation for Big Data 2018 Machine Learning Methods in Visualisation for Big Data 2018 Daniel Archambault1 Ian Nabney2 Jaakko Peltonen3 1 Swansea University 2 University of Bristol 3 University of Tampere, Aalto University Evaluating

More information

Cluster Analysis and Visualization. Workshop on Statistics and Machine Learning 2004/2/6

Cluster Analysis and Visualization. Workshop on Statistics and Machine Learning 2004/2/6 Cluster Analysis and Visualization Workshop on Statistics and Machine Learning 2004/2/6 Outlines Introduction Stages in Clustering Clustering Analysis and Visualization One/two-dimensional Data Histogram,

More information

SYDE Winter 2011 Introduction to Pattern Recognition. Clustering

SYDE Winter 2011 Introduction to Pattern Recognition. Clustering SYDE 372 - Winter 2011 Introduction to Pattern Recognition Clustering Alexander Wong Department of Systems Design Engineering University of Waterloo Outline 1 2 3 4 5 All the approaches we have learned

More information

Dimension reduction : PCA and Clustering

Dimension reduction : PCA and Clustering Dimension reduction : PCA and Clustering By Hanne Jarmer Slides by Christopher Workman Center for Biological Sequence Analysis DTU The DNA Array Analysis Pipeline Array design Probe design Question Experimental

More information

Knowledge Discovery and Data Mining I

Knowledge Discovery and Data Mining I Ludwig-Maximilians-Universität München Lehrstuhl für Datenbanksysteme und Data Mining Prof. Dr. Thomas Seidl Knowledge Discovery and Data Mining I Winter Semester 8/9 Agenda. Introduction. Basics. Data

More information

Visual Encoding Design

Visual Encoding Design CSE 442 - Data Visualization Visual Encoding Design Jeffrey Heer University of Washington Review: Expressiveness & Effectiveness / APT Choosing Visual Encodings Assume k visual encodings and n data attributes.

More information

Lecture Topic Projects

Lecture Topic Projects Lecture Topic Projects 1 Intro, schedule, and logistics 2 Applications of visual analytics, basic tasks, data types 3 Introduction to D3, basic vis techniques for non-spatial data Project #1 out 4 Data

More information

Finding Structure in CyTOF Data

Finding Structure in CyTOF Data Finding Structure in CyTOF Data Or, how to visualize low dimensional embedded manifolds. Panagiotis Achlioptas panos@cs.stanford.edu General Terms Algorithms, Experimentation, Measurement Keywords Manifold

More information

无监督学习中的选代表和被代表问题 - AP & LLE 张响亮. Xiangliang Zhang. King Abdullah University of Science and Technology. CNCC, Oct 25, 2018 Hangzhou, China

无监督学习中的选代表和被代表问题 - AP & LLE 张响亮. Xiangliang Zhang. King Abdullah University of Science and Technology. CNCC, Oct 25, 2018 Hangzhou, China 无监督学习中的选代表和被代表问题 - AP & LLE 张响亮 Xiangliang Zhang King Abdullah University of Science and Technology CNCC, Oct 25, 2018 Hangzhou, China Outline Affinity Propagation (AP) [Frey and Dueck, Science, 2007]

More information

CPSC 340: Machine Learning and Data Mining. Deep Learning Fall 2018

CPSC 340: Machine Learning and Data Mining. Deep Learning Fall 2018 CPSC 340: Machine Learning and Data Mining Deep Learning Fall 2018 Last Time: Multi-Dimensional Scaling Multi-dimensional scaling (MDS): Non-parametric visualization: directly optimize the z i locations.

More information

Spectral Classification

Spectral Classification Spectral Classification Spectral Classification Supervised versus Unsupervised Classification n Unsupervised Classes are determined by the computer. Also referred to as clustering n Supervised Classes

More information

Parallel Coordinates ++

Parallel Coordinates ++ Parallel Coordinates ++ CS 4460/7450 - Information Visualization Feb. 2, 2010 John Stasko Last Time Viewed a number of techniques for portraying low-dimensional data (about 3

More information

Deep Learning for Computer Vision

Deep Learning for Computer Vision Deep Learning for Computer Vision Spring 2018 http://vllab.ee.ntu.edu.tw/dlcv.html (primary) https://ceiba.ntu.edu.tw/1062dlcv (grade, etc.) FB: DLCV Spring 2018 Yu Chiang Frank Wang 王鈺強, Associate Professor

More information

Visual Analytics. Visualizing multivariate data:

Visual Analytics. Visualizing multivariate data: Visual Analytics 1 Visualizing multivariate data: High density time-series plots Scatterplot matrices Parallel coordinate plots Temporal and spectral correlation plots Box plots Wavelets Radar and /or

More information

CSE 6242 / CX October 9, Dimension Reduction. Guest Lecturer: Jaegul Choo

CSE 6242 / CX October 9, Dimension Reduction. Guest Lecturer: Jaegul Choo CSE 6242 / CX 4242 October 9, 2014 Dimension Reduction Guest Lecturer: Jaegul Choo Volume Variety Big Data Era 2 Velocity Veracity 3 Big Data are High-Dimensional Examples of High-Dimensional Data Image

More information

CPSC 340: Machine Learning and Data Mining. Multi-Dimensional Scaling Fall 2017

CPSC 340: Machine Learning and Data Mining. Multi-Dimensional Scaling Fall 2017 CPSC 340: Machine Learning and Data Mining Multi-Dimensional Scaling Fall 2017 Assignment 4: Admin 1 late day for tonight, 2 late days for Wednesday. Assignment 5: Due Monday of next week. Final: Details

More information

Background. Parallel Coordinates. Basics. Good Example

Background. Parallel Coordinates. Basics. Good Example Background Parallel Coordinates Shengying Li CSE591 Visual Analytics Professor Klaus Mueller March 20, 2007 Proposed in 80 s by Alfred Insellberg Good for multi-dimensional data exploration Widely used

More information

Interactive Visual Exploration

Interactive Visual Exploration Interactive Visual Exploration of High Dimensional Datasets Jing Yang Spring 2010 1 Challenges of High Dimensional Datasets High dimensional datasets are common: digital libraries, bioinformatics, simulations,

More information

Geometric Techniques. Part 1. Example: Scatter Plot. Basic Idea: Scatterplots. Basic Idea. House data: Price and Number of bedrooms

Geometric Techniques. Part 1. Example: Scatter Plot. Basic Idea: Scatterplots. Basic Idea. House data: Price and Number of bedrooms Part 1 Geometric Techniques Scatterplots, Parallel Coordinates,... Geometric Techniques Basic Idea Visualization of Geometric Transformations and Projections of the Data Scatterplots [Cleveland 1993] Parallel

More information

m-tsne: A Framework for Visualizing High-Dimensional Multivariate Time Series

m-tsne: A Framework for Visualizing High-Dimensional Multivariate Time Series m-tsne: A Framework for Visualizing High-Dimensional Multivariate Time Series Minh Nguyen 1, Sanjay Purushotham, PhD 1, Hien To 1, Cyrus Shahabi, PhD 1 1 University of Southern California, Los Angeles,

More information

An Intelligent Clustering Algorithm for High Dimensional and Highly Overlapped Photo-Thermal Infrared Imaging Data

An Intelligent Clustering Algorithm for High Dimensional and Highly Overlapped Photo-Thermal Infrared Imaging Data An Intelligent Clustering Algorithm for High Dimensional and Highly Overlapped Photo-Thermal Infrared Imaging Data Nian Zhang and Lara Thompson Department of Electrical and Computer Engineering, University

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Unsupervised learning Daniel Hennes 29.01.2018 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Supervised learning Regression (linear

More information

MSA220 - Statistical Learning for Big Data

MSA220 - Statistical Learning for Big Data MSA220 - Statistical Learning for Big Data Lecture 13 Rebecka Jörnsten Mathematical Sciences University of Gothenburg and Chalmers University of Technology Clustering Explorative analysis - finding groups

More information

Recognizing Handwritten Digits Using the LLE Algorithm with Back Propagation

Recognizing Handwritten Digits Using the LLE Algorithm with Back Propagation Recognizing Handwritten Digits Using the LLE Algorithm with Back Propagation Lori Cillo, Attebury Honors Program Dr. Rajan Alex, Mentor West Texas A&M University Canyon, Texas 1 ABSTRACT. This work is

More information

Multiple Dimensional Visualization

Multiple Dimensional Visualization Multiple Dimensional Visualization Dimension 1 dimensional data Given price information of 200 or more houses, please find ways to visualization this dataset 2-Dimensional Dataset I also know the distances

More information

Introduction to Pattern Recognition Part II. Selim Aksoy Bilkent University Department of Computer Engineering

Introduction to Pattern Recognition Part II. Selim Aksoy Bilkent University Department of Computer Engineering Introduction to Pattern Recognition Part II Selim Aksoy Bilkent University Department of Computer Engineering saksoy@cs.bilkent.edu.tr RETINA Pattern Recognition Tutorial, Summer 2005 Overview Statistical

More information

Multiresponse Sparse Regression with Application to Multidimensional Scaling

Multiresponse Sparse Regression with Application to Multidimensional Scaling Multiresponse Sparse Regression with Application to Multidimensional Scaling Timo Similä and Jarkko Tikka Helsinki University of Technology, Laboratory of Computer and Information Science P.O. Box 54,

More information

Unsupervised Learning

Unsupervised Learning Networks for Pattern Recognition, 2014 Networks for Single Linkage K-Means Soft DBSCAN PCA Networks for Kohonen Maps Linear Vector Quantization Networks for Problems/Approaches in Machine Learning Supervised

More information

Large-Scale Face Manifold Learning

Large-Scale Face Manifold Learning Large-Scale Face Manifold Learning Sanjiv Kumar Google Research New York, NY * Joint work with A. Talwalkar, H. Rowley and M. Mohri 1 Face Manifold Learning 50 x 50 pixel faces R 2500 50 x 50 pixel random

More information

MULTIVARIATE TEXTURE DISCRIMINATION USING A PRINCIPAL GEODESIC CLASSIFIER

MULTIVARIATE TEXTURE DISCRIMINATION USING A PRINCIPAL GEODESIC CLASSIFIER MULTIVARIATE TEXTURE DISCRIMINATION USING A PRINCIPAL GEODESIC CLASSIFIER A.Shabbir 1, 2 and G.Verdoolaege 1, 3 1 Department of Applied Physics, Ghent University, B-9000 Ghent, Belgium 2 Max Planck Institute

More information

Evgeny Maksakov Advantages and disadvantages: Advantages and disadvantages: Advantages and disadvantages: Advantages and disadvantages:

Evgeny Maksakov Advantages and disadvantages: Advantages and disadvantages: Advantages and disadvantages: Advantages and disadvantages: Today Problems with visualizing high dimensional data Problem Overview Direct Visualization Approaches High dimensionality Visual cluttering Clarity of representation Visualization is time consuming Dimensional

More information

Independence Diagrams: A Technique for Visual Data Mining

Independence Diagrams: A Technique for Visual Data Mining Independence Diagrams: A Technique for Visual Data Mining Stefan Berchtold AT&T Laboratories H. V. Jagadish AT&T Laboratories Kenneth A. Ross Columbia University Abstract An important issue in data mining

More information

Kernel Methods and Visualization for Interval Data Mining

Kernel Methods and Visualization for Interval Data Mining Kernel Methods and Visualization for Interval Data Mining Thanh-Nghi Do 1 and François Poulet 2 1 College of Information Technology, Can Tho University, 1 Ly Tu Trong Street, Can Tho, VietNam (e-mail:

More information

CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, :59pm, PDF to Canvas [100 points]

CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, :59pm, PDF to Canvas [100 points] CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, 2015. 11:59pm, PDF to Canvas [100 points] Instructions. Please write up your responses to the following problems clearly and concisely.

More information

Spatial Outlier Detection

Spatial Outlier Detection Spatial Outlier Detection Chang-Tien Lu Department of Computer Science Northern Virginia Center Virginia Tech Joint work with Dechang Chen, Yufeng Kou, Jiang Zhao 1 Spatial Outlier A spatial data point

More information

COMPUTER AND ROBOT VISION

COMPUTER AND ROBOT VISION VOLUME COMPUTER AND ROBOT VISION Robert M. Haralick University of Washington Linda G. Shapiro University of Washington A^ ADDISON-WESLEY PUBLISHING COMPANY Reading, Massachusetts Menlo Park, California

More information

Data Clustering Hierarchical Clustering, Density based clustering Grid based clustering

Data Clustering Hierarchical Clustering, Density based clustering Grid based clustering Data Clustering Hierarchical Clustering, Density based clustering Grid based clustering Team 2 Prof. Anita Wasilewska CSE 634 Data Mining All Sources Used for the Presentation Olson CF. Parallel algorithms

More information

AN IMPROVED HYBRIDIZED K- MEANS CLUSTERING ALGORITHM (IHKMCA) FOR HIGHDIMENSIONAL DATASET & IT S PERFORMANCE ANALYSIS

AN IMPROVED HYBRIDIZED K- MEANS CLUSTERING ALGORITHM (IHKMCA) FOR HIGHDIMENSIONAL DATASET & IT S PERFORMANCE ANALYSIS AN IMPROVED HYBRIDIZED K- MEANS CLUSTERING ALGORITHM (IHKMCA) FOR HIGHDIMENSIONAL DATASET & IT S PERFORMANCE ANALYSIS H.S Behera Department of Computer Science and Engineering, Veer Surendra Sai University

More information

CSC 411: Lecture 14: Principal Components Analysis & Autoencoders

CSC 411: Lecture 14: Principal Components Analysis & Autoencoders CSC 411: Lecture 14: Principal Components Analysis & Autoencoders Raquel Urtasun & Rich Zemel University of Toronto Nov 4, 2015 Urtasun & Zemel (UofT) CSC 411: 14-PCA & Autoencoders Nov 4, 2015 1 / 18

More information

Feature selection. Term 2011/2012 LSI - FIB. Javier Béjar cbea (LSI - FIB) Feature selection Term 2011/ / 22

Feature selection. Term 2011/2012 LSI - FIB. Javier Béjar cbea (LSI - FIB) Feature selection Term 2011/ / 22 Feature selection Javier Béjar cbea LSI - FIB Term 2011/2012 Javier Béjar cbea (LSI - FIB) Feature selection Term 2011/2012 1 / 22 Outline 1 Dimensionality reduction 2 Projections 3 Attribute selection

More information

Outlier detection using autoencoders

Outlier detection using autoencoders Outlier detection using autoencoders August 19, 2016 Author: Olga Lyudchik Supervisors: Dr. Jean-Roch Vlimant Dr. Maurizio Pierini CERN Non Member State Summer Student Report 2016 Abstract Outlier detection

More information

Applied Neuroscience. Columbia Science Honors Program Fall Machine Learning and Neural Networks

Applied Neuroscience. Columbia Science Honors Program Fall Machine Learning and Neural Networks Applied Neuroscience Columbia Science Honors Program Fall 2016 Machine Learning and Neural Networks Machine Learning and Neural Networks Objective: Introduction to Machine Learning Agenda: 1. JavaScript

More information

Data Mining. CS57300 Purdue University. Bruno Ribeiro. February 1st, 2018

Data Mining. CS57300 Purdue University. Bruno Ribeiro. February 1st, 2018 Data Mining CS57300 Purdue University Bruno Ribeiro February 1st, 2018 1 Exploratory Data Analysis & Feature Construction How to explore a dataset Understanding the variables (values, ranges, and empirical

More information

Value and Relation Display for Interactive Exploration of High Dimensional Datasets

Value and Relation Display for Interactive Exploration of High Dimensional Datasets Value and Relation Display for Interactive Exploration of High Dimensional Datasets Jing Yang, Anilkumar Patro, Shiping Huang, Nishant Mehta, Matthew O. Ward and Elke A. Rundensteiner Computer Science

More information

( ) =cov X Y = W PRINCIPAL COMPONENT ANALYSIS. Eigenvectors of the covariance matrix are the principal components

( ) =cov X Y = W PRINCIPAL COMPONENT ANALYSIS. Eigenvectors of the covariance matrix are the principal components Review Lecture 14 ! PRINCIPAL COMPONENT ANALYSIS Eigenvectors of the covariance matrix are the principal components 1. =cov X Top K principal components are the eigenvectors with K largest eigenvalues

More information

Data Mining: Exploring Data. Lecture Notes for Chapter 3

Data Mining: Exploring Data. Lecture Notes for Chapter 3 Data Mining: Exploring Data Lecture Notes for Chapter 3 Slides by Tan, Steinbach, Kumar adapted by Michael Hahsler Look for accompanying R code on the course web site. Topics Exploratory Data Analysis

More information

Locality Preserving Projections (LPP) Abstract

Locality Preserving Projections (LPP) Abstract Locality Preserving Projections (LPP) Xiaofei He Partha Niyogi Computer Science Department Computer Science Department The University of Chicago The University of Chicago Chicago, IL 60615 Chicago, IL

More information

Linear and Non-linear Dimentionality Reduction Applied to Gene Expression Data of Cancer Tissue Samples

Linear and Non-linear Dimentionality Reduction Applied to Gene Expression Data of Cancer Tissue Samples Linear and Non-linear Dimentionality Reduction Applied to Gene Expression Data of Cancer Tissue Samples Franck Olivier Ndjakou Njeunje Applied Mathematics, Statistics, and Scientific Computation University

More information

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences Exam: INF 4300 / INF 9305 Digital image analysis Date: Thursday December 21, 2017 Exam hours: 09.00-13.00 (4 hours) Number of pages: 8 pages

More information

Understanding Clustering Supervising the unsupervised

Understanding Clustering Supervising the unsupervised Understanding Clustering Supervising the unsupervised Janu Verma IBM T.J. Watson Research Center, New York http://jverma.github.io/ jverma@us.ibm.com @januverma Clustering Grouping together similar data

More information

HOUGH TRANSFORM CS 6350 C V

HOUGH TRANSFORM CS 6350 C V HOUGH TRANSFORM CS 6350 C V HOUGH TRANSFORM The problem: Given a set of points in 2-D, find if a sub-set of these points, fall on a LINE. Hough Transform One powerful global method for detecting edges

More information

Applications Video Surveillance (On-line or off-line)

Applications Video Surveillance (On-line or off-line) Face Face Recognition: Dimensionality Reduction Biometrics CSE 190-a Lecture 12 CSE190a Fall 06 CSE190a Fall 06 Face Recognition Face is the most common biometric used by humans Applications range from

More information

Object and Action Detection from a Single Example

Object and Action Detection from a Single Example Object and Action Detection from a Single Example Peyman Milanfar* EE Department University of California, Santa Cruz *Joint work with Hae Jong Seo AFOSR Program Review, June 4-5, 29 Take a look at this:

More information

Face detection and recognition. Many slides adapted from K. Grauman and D. Lowe

Face detection and recognition. Many slides adapted from K. Grauman and D. Lowe Face detection and recognition Many slides adapted from K. Grauman and D. Lowe Face detection and recognition Detection Recognition Sally History Early face recognition systems: based on features and distances

More information

Locality Preserving Projections (LPP) Abstract

Locality Preserving Projections (LPP) Abstract Locality Preserving Projections (LPP) Xiaofei He Partha Niyogi Computer Science Department Computer Science Department The University of Chicago The University of Chicago Chicago, IL 60615 Chicago, IL

More information

Quality Metrics for Visual Analytics of High-Dimensional Data

Quality Metrics for Visual Analytics of High-Dimensional Data Quality Metrics for Visual Analytics of High-Dimensional Data Daniel A. Keim Data Analysis and Information Visualization Group University of Konstanz, Germany Workshop on Visual Analytics and Information

More information

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Detection and Classification Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Problem I. Strategies II. Features for training III. Using spatial information? IV. Reducing dimensionality

More information

Surface Registration. Gianpaolo Palma

Surface Registration. Gianpaolo Palma Surface Registration Gianpaolo Palma The problem 3D scanning generates multiple range images Each contain 3D points for different parts of the model in the local coordinates of the scanner Find a rigid

More information

Non-linear dimension reduction

Non-linear dimension reduction Sta306b May 23, 2011 Dimension Reduction: 1 Non-linear dimension reduction ISOMAP: Tenenbaum, de Silva & Langford (2000) Local linear embedding: Roweis & Saul (2000) Local MDS: Chen (2006) all three methods

More information

Sensitivity to parameter and data variations in dimensionality reduction techniques

Sensitivity to parameter and data variations in dimensionality reduction techniques Sensitivity to parameter and data variations in dimensionality reduction techniques Francisco J. García-Fernández 1,2,MichelVerleysen 2, John A. Lee 3 and Ignacio Díaz 1 1- Univ. of Oviedo - Department

More information

Feature Selection. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani

Feature Selection. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani Feature Selection CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Dimensionality reduction Feature selection vs. feature extraction Filter univariate

More information

Points Lines Connected points X-Y Scatter. X-Y Matrix Star Plot Histogram Box Plot. Bar Group Bar Stacked H-Bar Grouped H-Bar Stacked

Points Lines Connected points X-Y Scatter. X-Y Matrix Star Plot Histogram Box Plot. Bar Group Bar Stacked H-Bar Grouped H-Bar Stacked Plotting Menu: QCExpert Plotting Module graphs offers various tools for visualization of uni- and multivariate data. Settings and options in different types of graphs allow for modifications and customizations

More information

CSE 481C Imitation Learning in Humanoid Robots Motion capture, inverse kinematics, and dimensionality reduction

CSE 481C Imitation Learning in Humanoid Robots Motion capture, inverse kinematics, and dimensionality reduction 1 CSE 481C Imitation Learning in Humanoid Robots Motion capture, inverse kinematics, and dimensionality reduction Robotic Imitation of Human Actions 2 The inverse kinematics problem Joint angles Human-robot

More information

PATTERN CLASSIFICATION AND SCENE ANALYSIS

PATTERN CLASSIFICATION AND SCENE ANALYSIS PATTERN CLASSIFICATION AND SCENE ANALYSIS RICHARD O. DUDA PETER E. HART Stanford Research Institute, Menlo Park, California A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS New York Chichester Brisbane

More information

Visual Representations for Machine Learning

Visual Representations for Machine Learning Visual Representations for Machine Learning Spectral Clustering and Channel Representations Lecture 1 Spectral Clustering: introduction and confusion Michael Felsberg Klas Nordberg The Spectral Clustering

More information

SGN (4 cr) Chapter 10

SGN (4 cr) Chapter 10 SGN-41006 (4 cr) Chapter 10 Feature Selection and Extraction Jussi Tohka & Jari Niemi Department of Signal Processing Tampere University of Technology February 18, 2014 J. Tohka & J. Niemi (TUT-SGN) SGN-41006

More information

Interactive Interface Design for Scalable Large Multivariate Volume Visualization

Interactive Interface Design for Scalable Large Multivariate Volume Visualization Interactive Interface Design for Scalable Large Multivariate Volume Visualization Xiaoru Yuan Key Laboratory on Machine Perception, MOE School of EECS, Peking University Nov. 13 th 2011 Outline Motivation

More information

10/14/2017. Dejan Sarka. Anomaly Detection. Sponsors

10/14/2017. Dejan Sarka. Anomaly Detection. Sponsors Dejan Sarka Anomaly Detection Sponsors About me SQL Server MVP (17 years) and MCT (20 years) 25 years working with SQL Server Authoring 16 th book Authoring many courses, articles Agenda Introduction Simple

More information

Rotation Perturbation Technique for Privacy Preserving in Data Stream Mining

Rotation Perturbation Technique for Privacy Preserving in Data Stream Mining 218 IJSRSET Volume 4 Issue 8 Print ISSN: 2395-199 Online ISSN : 2394-499 Themed Section : Engineering and Technology Rotation Perturbation Technique for Privacy Preserving in Data Stream Mining Kalyani

More information

Clustering. Robert M. Haralick. Computer Science, Graduate Center City University of New York

Clustering. Robert M. Haralick. Computer Science, Graduate Center City University of New York Clustering Robert M. Haralick Computer Science, Graduate Center City University of New York Outline K-means 1 K-means 2 3 4 5 Clustering K-means The purpose of clustering is to determine the similarity

More information

Training-Free, Generic Object Detection Using Locally Adaptive Regression Kernels

Training-Free, Generic Object Detection Using Locally Adaptive Regression Kernels Training-Free, Generic Object Detection Using Locally Adaptive Regression Kernels IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIENCE, VOL.32, NO.9, SEPTEMBER 2010 Hae Jong Seo, Student Member,

More information

Anomaly Detection on Data Streams with High Dimensional Data Environment

Anomaly Detection on Data Streams with High Dimensional Data Environment Anomaly Detection on Data Streams with High Dimensional Data Environment Mr. D. Gokul Prasath 1, Dr. R. Sivaraj, M.E, Ph.D., 2 Department of CSE, Velalar College of Engineering & Technology, Erode 1 Assistant

More information

Recognition: Face Recognition. Linda Shapiro EE/CSE 576

Recognition: Face Recognition. Linda Shapiro EE/CSE 576 Recognition: Face Recognition Linda Shapiro EE/CSE 576 1 Face recognition: once you ve detected and cropped a face, try to recognize it Detection Recognition Sally 2 Face recognition: overview Typical

More information

Network embedding. Cheng Zheng

Network embedding. Cheng Zheng Network embedding Cheng Zheng Outline Problem definition Factorization based algorithms --- Laplacian Eigenmaps(NIPS, 2001) Random walk based algorithms ---DeepWalk(KDD, 2014), node2vec(kdd, 2016) Deep

More information

Clustering. CS294 Practical Machine Learning Junming Yin 10/09/06

Clustering. CS294 Practical Machine Learning Junming Yin 10/09/06 Clustering CS294 Practical Machine Learning Junming Yin 10/09/06 Outline Introduction Unsupervised learning What is clustering? Application Dissimilarity (similarity) of objects Clustering algorithm K-means,

More information

Feature Descriptors. CS 510 Lecture #21 April 29 th, 2013

Feature Descriptors. CS 510 Lecture #21 April 29 th, 2013 Feature Descriptors CS 510 Lecture #21 April 29 th, 2013 Programming Assignment #4 Due two weeks from today Any questions? How is it going? Where are we? We have two umbrella schemes for object recognition

More information

CSC 411: Lecture 14: Principal Components Analysis & Autoencoders

CSC 411: Lecture 14: Principal Components Analysis & Autoencoders CSC 411: Lecture 14: Principal Components Analysis & Autoencoders Richard Zemel, Raquel Urtasun and Sanja Fidler University of Toronto Zemel, Urtasun, Fidler (UofT) CSC 411: 14-PCA & Autoencoders 1 / 18

More information

Chapter 2 Basic Structure of High-Dimensional Spaces

Chapter 2 Basic Structure of High-Dimensional Spaces Chapter 2 Basic Structure of High-Dimensional Spaces Data is naturally represented geometrically by associating each record with a point in the space spanned by the attributes. This idea, although simple,

More information

Applications. Foreground / background segmentation Finding skin-colored regions. Finding the moving objects. Intelligent scissors

Applications. Foreground / background segmentation Finding skin-colored regions. Finding the moving objects. Intelligent scissors Segmentation I Goal Separate image into coherent regions Berkeley segmentation database: http://www.eecs.berkeley.edu/research/projects/cs/vision/grouping/segbench/ Slide by L. Lazebnik Applications Intelligent

More information

Motivation. Technical Background

Motivation. Technical Background Handling Outliers through Agglomerative Clustering with Full Model Maximum Likelihood Estimation, with Application to Flow Cytometry Mark Gordon, Justin Li, Kevin Matzen, Bryce Wiedenbeck Motivation Clustering

More information

CSE 40171: Artificial Intelligence. Learning from Data: Unsupervised Learning

CSE 40171: Artificial Intelligence. Learning from Data: Unsupervised Learning CSE 40171: Artificial Intelligence Learning from Data: Unsupervised Learning 32 Homework #6 has been released. It is due at 11:59PM on 11/7. 33 CSE Seminar: 11/1 Amy Reibman Purdue University 3:30pm DBART

More information

FACE RECOGNITION USING SUPPORT VECTOR MACHINES

FACE RECOGNITION USING SUPPORT VECTOR MACHINES FACE RECOGNITION USING SUPPORT VECTOR MACHINES Ashwin Swaminathan ashwins@umd.edu ENEE633: Statistical and Neural Pattern Recognition Instructor : Prof. Rama Chellappa Project 2, Part (b) 1. INTRODUCTION

More information