Control Approaches for Walking and Running

Size: px
Start display at page:

Download "Control Approaches for Walking and Running"

Transcription

1 DLR.de Chart 1 > Humanoids 2015 > Christian Ott > Control Approaches for Walking and Running Christian Ott, Johannes Englsberger German Aerospace Center (DLR)

2 DLR.de Chart 2 > Humanoids 2015 > Christian Ott > Overview 1) Humanoid robot TORO 2) Walking Control Capture Point Divergent Component of Motion (3D) 3) Running

3 Humanoid Robots at DLR Joint torque sensing & control Bimanual (Humanoid) Manipulation Legged Humanoid ROKVISS Compliant actuation Antagonistic actuation for fingers Variable stiffness actuation in arm Robustness to shocks and impacts Space Qualified Joint Technology PAGE 3 Anthropomorphic Hand-Arm System Folie 3

4 DLR.de Chart 4 > Humanoids 2015 > Christian Ott > Bipedal Walking Robots at DLR [Ott et al, Humanoids 2010] Joint torque sensing & control Small foot size: 19 x 9,5 cm IMU in head & trunk FTS in feet for position based control Sensorized head (stereo vision & kinect) Simple prosthetic hands (ilimb) DLR-Biped ( ) TORO, preliminary version (2012) TORO (2013) TOrque controlled humanoid RObot [Englsberger et al, Humanoids 2014]

5 DLR.de Chart 5 > Humanoids 2015 > Christian Ott >

6 6 UT >

7 DLR.de Chart 7 > Humanoids 2015 > Christian Ott > Overview 1) Humanoid robot TORO 2) Walking Control Capture Point Divergent Component of Motion (3D) 3) Running

8 Walking Stabilization [Englsberger, Ott, IROS 2013] Template model: 2 x ( x p) c x, x ( x, x ) ( x, ) 1 x x p ( p) x ( x) (Pratt 2006, Hof 2008) p capture point COM x open loop unstable exp. stable Folie 8 PAGE 8

9 Walking Stabilization [Englsberger, Ott, IROS 2013] Template model: 2 x ( x p) c x, x ( x, x ) ( x, ) 1 x x p ( p) x ( x) (Pratt 2006, Hof 2008) p capture point COM x CP control exp. stable Folie 9 PAGE 9

10 Using Capture Point for Walking x x p x x Capture Point COM velocity always points towards CP ZMP pushes away the CP on a line COM follows CP ZMP COM Folie 10

11 Capture Point Control Trajectory Generator d CP control p ZMP projection MPC [SYROCO 2012] ZMP Control Robot Dynamics q CP x, x COM kinematics ( p) PAGE 11 [Englsberger, Ott, et. al., IROS-2011, ICRA-2012, at-2012] Folie 11

12 Position based ZMP Control Trajectory Generator d CP control p ZMP projection MPC [SYROCO 2012] ZMP Control Robot Dynamics q CP x, x COM kinematics Desired ZMP implies a desired force acting on the COM: p d 2 x ( x p) F 2 M ( x d p d ) Position based ZMP Control Position based force control [Roy&Whitcomb,2002]: x d k f 2 M ( p p d ) x d k f ( F F) d Folie 12

13 Trajectory Generator Capture Point Control Collaboration with Nicolas Perrin d CP control p ZMP projection MPC [SYROCO 2012] ZMP Control Robot Dynamics q CP x, x COM kinematics PAGE 13 [Englsberger, Ott, et. al., IROS 2011] Folie 13

14 Extension to 3D walking 2D Capture Point (CP) 3D Divergent Component of Motion (DCM) [Takenaka] ZMP (steers CP) Virtual Repellent Point (steers DCM) m x COM dynamics: (not a template model) F DCM dynamics: mg F ext [Englsberger, Ott, IROS 2013] Folie 14 PAGE 14

15 Extension to 3D walking 2D Capture Point (CP) 3D Divergent Component of Motion (DCM) [Takenaka] ZMP (steers CP) Virtual Repellent Point (steers DCM) m x COM dynamics: (not a template model) F DCM dynamics: mg F ext [Englsberger, Ott, IROS 2013] r vrp Folie 15 PAGE 15

16 Virtual Repellent Point (VRP) 16

17 torque ecmp CoP CMP 17

18 DCM trajectory generation 18

19 DCM trajectory generation 19

20 DCM Tracking Control DCM dynamics Desired closed loop Tracking control: Required leg force: Folie 20 PAGE 20

21 OpenHRP > Humanoids 2015 > Christian Ott >

22 > Humanoids 2015 > Christian Ott >

23 point mass simulation (prismatic inverted pendulum model) > Humanoids 2015 > Christian Ott > [Englsberger, Ott, IROS 2013]

24 DLR.de Chart 24 > Humanoids 2015 > Christian Ott > Overview 1) Humanoid robot TORO 2) Walking Control Capture Point Divergent Component of Motion (3D) 3) Running Humanoids 2015 Interactive Presentation by J. Englsberger

25 DLR.de Chart 25 > Humanoids 2015 > Christian Ott > SLIP Template Model Conceptual biomechanical model: single mass, mass less legs, conservative Vertical ground reaction force Mathematical model: m x G f R f L m g 0 f i l k 0 1 x x x x Fi F i Poincare Map Existence of stable limit cycles can be shown Vertical ground reaction force resembles human data

26 DLR.de Chart 26 Human experiments as motivation 2nd order polynomial 3rd order polynomial

27 DLR.de Chart 27 Force and motion encoding (during stance) vertical horizontal force 2nd order 3rd order CoM position 4th order 5th order five parameters six parameters m x F

28 Preview / Planning 28 design parameters - touch-down height - apex height - time of stance

29 DLR.de Chart 29 > Humanoids 2015 > Christian Ott > Flight Dynamics

30 DLR.de Chart 30 > Humanoids 2015 > Christian Ott > Vertical planning (five parameters)

31 DLR.de Chart 31 Vertical planning => achieving apex height

32 DLR.de Chart 32 Horizontal planning (six parameters)?? + force ray focusing (quadratic)

33 Force ray focusing 33 least deviation/variance (=> CoP )

34 34 Minimizing variance.

35 DLR.de Chart 35 Minimizing variance.

36 Minimizing variance (mean square deviation). 36 scalar, but difficult to evaluate (non linearities)

37 DLR.de Chart 37 Leg Force evaluation

38 38 Typical force profiles

39 Deviation from point-foot (if not projected)

40 DLR.de Chart 40 > Humanoids 2015 > Christian Ott >

41 DLR.de Chart 41 > Humanoids 2015 > Christian Ott > Summary 1) Walking Control based on the Capture Point 2) Extension to 3D 3) Running via polynomial leg force design 4) Implementation requires leg force control

Humanoid Walking Control using the Capture Point

Humanoid Walking Control using the Capture Point Humanoid Walking Control using the Capture Point Christian Ott and Johannes Englsberger Institute of Robotis and Mehatronis German Aerospae Center (DLR e.v.) hristian.ott@dlr.de Joint torque sensing &

More information

Three-dimensional bipedal walking control using Divergent Component of Motion

Three-dimensional bipedal walking control using Divergent Component of Motion 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) November 3-7, 2013. Tokyo, Japan Three-dimensional bipedal walking control using Divergent Component of Motion Johannes Englsberger,

More information

Autonomous and Mobile Robotics Prof. Giuseppe Oriolo. Humanoid Robots 2: Dynamic Modeling

Autonomous and Mobile Robotics Prof. Giuseppe Oriolo. Humanoid Robots 2: Dynamic Modeling Autonomous and Mobile Robotics rof. Giuseppe Oriolo Humanoid Robots 2: Dynamic Modeling modeling multi-body free floating complete model m j I j R j ω j f c j O z y x p ZM conceptual models for walking/balancing

More information

Humanoid Robotics. Path Planning and Walking. Maren Bennewitz

Humanoid Robotics. Path Planning and Walking. Maren Bennewitz Humanoid Robotics Path Planning and Walking Maren Bennewitz 1 Introduction Given the robot s pose in a model of the environment Compute a path to a target location First: 2D path in a 2D grid map representation

More information

Simplified Walking: A New Way to Generate Flexible Biped Patterns

Simplified Walking: A New Way to Generate Flexible Biped Patterns 1 Simplified Walking: A New Way to Generate Flexible Biped Patterns Jinsu Liu 1, Xiaoping Chen 1 and Manuela Veloso 2 1 Computer Science Department, University of Science and Technology of China, Hefei,

More information

Using the Generalized Inverted Pendulum to generate less energy-consuming trajectories for humanoid walking

Using the Generalized Inverted Pendulum to generate less energy-consuming trajectories for humanoid walking Using the Generalized Inverted Pendulum to generate less energy-consuming trajectories for humanoid walking Sahab Omran, Sophie Sakka, Yannick Aoustin To cite this version: Sahab Omran, Sophie Sakka, Yannick

More information

Robust Control of Bipedal Humanoid (TPinokio)

Robust Control of Bipedal Humanoid (TPinokio) Available online at www.sciencedirect.com Procedia Engineering 41 (2012 ) 643 649 International Symposium on Robotics and Intelligent Sensors 2012 (IRIS 2012) Robust Control of Bipedal Humanoid (TPinokio)

More information

Push Recovery Control for Force-Controlled Humanoid Robots

Push Recovery Control for Force-Controlled Humanoid Robots Push Recovery Control for Force-Controlled Humanoid Robots Benjamin Stephens CMU-RI-TR-11-15 Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Robotics The

More information

CS 231. Control for articulate rigid-body dynamic simulation. Articulated rigid-body dynamics

CS 231. Control for articulate rigid-body dynamic simulation. Articulated rigid-body dynamics CS 231 Control for articulate rigid-body dynamic simulation Articulated rigid-body dynamics F = ma No control 1 No control Ragdoll effects, joint limits RT Speed: many sims at real-time rates on today

More information

Generalizations of the Capture Point to Nonlinear Center of Mass Paths and Uneven Terrain

Generalizations of the Capture Point to Nonlinear Center of Mass Paths and Uneven Terrain Generalizations of the Capture Point to Nonlinear Center of Mass Paths and Uneven Terrain Oscar E. Ramos and Kris Hauser Abstract The classical Capture Point (CP technique allows biped robots to take protective

More information

Balanced Walking with Capture Steps

Balanced Walking with Capture Steps Balanced Walking with Capture Steps Marcell Missura and Sven Behnke Autonomous Intelligent Systems, Computer Science, Univ. of Bonn, Germany {missura,behnke}@cs.uni-bonn.de http://ais.uni-bonn.de Abstract.

More information

Nao Devils Dortmund. Team Description Paper for RoboCup Matthias Hofmann, Ingmar Schwarz, and Oliver Urbann

Nao Devils Dortmund. Team Description Paper for RoboCup Matthias Hofmann, Ingmar Schwarz, and Oliver Urbann Nao Devils Dortmund Team Description Paper for RoboCup 2017 Matthias Hofmann, Ingmar Schwarz, and Oliver Urbann Robotics Research Institute Section Information Technology TU Dortmund University 44221 Dortmund,

More information

David Galdeano. LIRMM-UM2, Montpellier, France. Members of CST: Philippe Fraisse, Ahmed Chemori, Sébatien Krut and André Crosnier

David Galdeano. LIRMM-UM2, Montpellier, France. Members of CST: Philippe Fraisse, Ahmed Chemori, Sébatien Krut and André Crosnier David Galdeano LIRMM-UM2, Montpellier, France Members of CST: Philippe Fraisse, Ahmed Chemori, Sébatien Krut and André Crosnier Montpellier, Thursday September 27, 2012 Outline of the presentation Context

More information

Integration of vertical COM motion and angular momentum in an extended Capture Point tracking controller for bipedal walking

Integration of vertical COM motion and angular momentum in an extended Capture Point tracking controller for bipedal walking 212 12th IEEE-RAS International Conference on Humanoid Robots Nov.29-Dec.1, 212. Business Innovation Center Osaka, Japan Integration of vertical COM motion and angular momentum in an etended Capture Point

More information

Humanoid Robotics. Monte Carlo Localization. Maren Bennewitz

Humanoid Robotics. Monte Carlo Localization. Maren Bennewitz Humanoid Robotics Monte Carlo Localization Maren Bennewitz 1 Basis Probability Rules (1) If x and y are independent: Bayes rule: Often written as: The denominator is a normalizing constant that ensures

More information

Dynamic Behaviors on the NAO Robot With Closed-Loop Whole Body Operational Space Control

Dynamic Behaviors on the NAO Robot With Closed-Loop Whole Body Operational Space Control Dynamic Behaviors on the NAO Robot With Closed-Loop Whole Body Operational Space Control Donghyun Kim, Steven Jens Jorgensen, Peter Stone, and Luis Sentis Abstract Exploiting full-body dynamics in feedback

More information

Feedback control of humanoid robots: balancing and walking

Feedback control of humanoid robots: balancing and walking Feedbac control of humanoid robots: balancing and waling Dr.-Ing. Christian Ott German Aerosace Center DLR Institute for Robotics and Mechatronics DLR 2/5/212 1 Overview Part : Short overview of bied robots

More information

Climbing Stairs with Humanoid Robots

Climbing Stairs with Humanoid Robots Lehrstuhl für Angewandte Mechnik Fakultät für Maschinenwesen Technische Universität München Climbing Stairs with Humanoid Robots Semesterarbeit an der Fakultät für Maschinenwesen der Technischen Universität

More information

Modeling Physically Simulated Characters with Motion Networks

Modeling Physically Simulated Characters with Motion Networks In Proceedings of Motion In Games (MIG), Rennes, France, 2012 Modeling Physically Simulated Characters with Motion Networks Robert Backman and Marcelo Kallmann University of California Merced Abstract.

More information

Humanoid Robotics Modeling by Dynamic Fuzzy Neural Network

Humanoid Robotics Modeling by Dynamic Fuzzy Neural Network Proceedings of International Joint Conference on Neural Networks, Orlando, Florida, USA, August 1-17, 7 umanoid Robotics Modeling by Dynamic Fuzzy Neural Network Zhe Tang, Meng Joo Er, and Geok See Ng

More information

Motion Planning of Extreme Locomotion Maneuvers Using Multi-Contact Dynamics and Numerical Integration

Motion Planning of Extreme Locomotion Maneuvers Using Multi-Contact Dynamics and Numerical Integration Motion Planning of Extreme Locomotion Maneuvers Using Multi-Contact Dynamics and Numerical Integration and Mike Slovich The Human Center Robotics Laboratory (HCRL) The University of Texas at Austin Humanoids

More information

arxiv: v1 [cs.ro] 15 Jul 2015

arxiv: v1 [cs.ro] 15 Jul 2015 Trajectory generation for multi-contact momentum-control Alexander Herzog 1, Nicholas Rotella, Stefan Schaal 1,, Ludovic Righetti 1 ariv:7.38v1 [cs.ro] Jul Abstract Simplified models of the dynamics such

More information

arxiv: v2 [cs.ro] 27 Dec 2017

arxiv: v2 [cs.ro] 27 Dec 2017 Walking Stabilization Using Step Timing and Location Adjustment on the Humanoid Robot, Atlas Robert J. Griffin 1,2, Georg Wiedebach 2, Sylvain Bertrand 2, Alexander Leonessa 1, Jerry Pratt 2 arxiv:1703.00477v2

More information

A Model-Based Control Approach for Locomotion Control of Legged Robots

A Model-Based Control Approach for Locomotion Control of Legged Robots Biorobotics Laboratory A Model-Based Control Approach for Locomotion Control of Legged Robots Semester project Master Program: Robotics and Autonomous Systems Micro-Technique Department Student: Salman

More information

A CONTROL ARCHITECTURE FOR DYNAMICALLY STABLE GAITS OF SMALL SIZE HUMANOID ROBOTS. Andrea Manni,1, Angelo di Noi and Giovanni Indiveri

A CONTROL ARCHITECTURE FOR DYNAMICALLY STABLE GAITS OF SMALL SIZE HUMANOID ROBOTS. Andrea Manni,1, Angelo di Noi and Giovanni Indiveri A CONTROL ARCHITECTURE FOR DYNAMICALLY STABLE GAITS OF SMALL SIZE HUMANOID ROBOTS Andrea Manni,, Angelo di Noi and Giovanni Indiveri Dipartimento di Ingegneria dell Innovazione, Università di Lecce, via

More information

Upper Body Joints Control for the Quasi static Stabilization of a Small-Size Humanoid Robot

Upper Body Joints Control for the Quasi static Stabilization of a Small-Size Humanoid Robot Upper Body Joints Control for the Quasi static Stabilization of a Small-Size Humanoid Robot Andrea Manni, Angelo di Noi and Giovanni Indiveri Dipartimento Ingegneria dell Innovazione, Università di Lecce

More information

Mobile Robots Locomotion

Mobile Robots Locomotion Mobile Robots Locomotion Institute for Software Technology 1 Course Outline 1. Introduction to Mobile Robots 2. Locomotion 3. Sensors 4. Localization 5. Environment Modelling 6. Reactive Navigation 2 Today

More information

Generating Whole Body Motions for a Biped Humanoid Robot from Captured Human Dances

Generating Whole Body Motions for a Biped Humanoid Robot from Captured Human Dances Generating Whole Body Motions for a Biped Humanoid Robot from Captured Human Dances Shinichiro Nakaoka Atsushi Nakazawa Kazuhito Yokoi Hirohisa Hirukawa Katsushi Ikeuchi Institute of Industrial Science,

More information

Self-Collision Detection. Planning for Humanoid Robots. Digital Human Research Center. Talk Overview

Self-Collision Detection. Planning for Humanoid Robots. Digital Human Research Center. Talk Overview Self-Collision Detection and Motion Planning for Humanoid Robots James Kuffner (CMU & AIST Japan) Digital Human Research Center Self-Collision Detection Feature-based Minimum Distance Computation: Approximate

More information

THE simple spring mass model (SMM) describes a point. Experimental Evaluation of Deadbeat Running on the ATRIAS Biped

THE simple spring mass model (SMM) describes a point. Experimental Evaluation of Deadbeat Running on the ATRIAS Biped IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 217 1 Experimental Evaluation of Deadbeat Running on the ATRIAS Biped William C. Martin 1, Albert Wu 1, and Hartmut Geyer 1 Abstract

More information

James Kuffner. The Robotics Institute Carnegie Mellon University. Digital Human Research Center (AIST) James Kuffner (CMU/Google)

James Kuffner. The Robotics Institute Carnegie Mellon University. Digital Human Research Center (AIST) James Kuffner (CMU/Google) James Kuffner The Robotics Institute Carnegie Mellon University Digital Human Research Center (AIST) 1 Stanford University 1995-1999 University of Tokyo JSK Lab 1999-2001 Carnegie Mellon University The

More information

Development of an optomechanical measurement system for dynamic stability analysis

Development of an optomechanical measurement system for dynamic stability analysis Development of an optomechanical measurement system for dynamic stability analysis Simone Pasinetti Dept. of Information Engineering (DII) University of Brescia Brescia, Italy simone.pasinetti@unibs.it

More information

Real Time Biped Walking Gait Pattern Generator for a Real Robot

Real Time Biped Walking Gait Pattern Generator for a Real Robot Real Time Biped Walking Gait Pattern Generator for a Real Robot Feng Xue 1, Xiaoping Chen 1, Jinsu Liu 1, and Daniele Nardi 2 1 Department of Computer Science and Technology, University of Science and

More information

Approximate Policy Transfer applied to Simulated. Bongo Board balance toy

Approximate Policy Transfer applied to Simulated. Bongo Board balance toy Approximate Policy Transfer applied to Simulated Bongo Board Balance Stuart O. Anderson, Jessica K. Hodgins, Christopher G. Atkeson Robotics Institute Carnegie Mellon University soa,jkh,cga@ri.cmu.edu

More information

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Animation, Motion Capture, & Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based

More information

1st International Round Table on Intelligent Control for Space Missions

1st International Round Table on Intelligent Control for Space Missions DLR.de Chart 1 Space Missions Model-Based Control vs. Intelligent Control Dr.-Ing. Johann Bals Institute of System Dynamics and Control DLR - German Aerospace Center Oberpfaffenhofen, Germany 1st International

More information

Last Time? Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based Animation Forward and

More information

Homework 2 Questions? Animation, Motion Capture, & Inverse Kinematics. Velocity Interpolation. Handing Free Surface with MAC

Homework 2 Questions? Animation, Motion Capture, & Inverse Kinematics. Velocity Interpolation. Handing Free Surface with MAC Homework 2 Questions? Animation, Motion Capture, & Inverse Kinematics Velocity Interpolation Original image from Foster & Metaxas, 1996 In 2D: For each axis, find the 4 closest face velocity samples: Self-intersecting

More information

A COMBINED LIMIT CYCLE - ZERO MOMENT POINT BASED APPROACH FOR OMNI-DIRECTIONAL QUADRUPEDAL BOUNDING

A COMBINED LIMIT CYCLE - ZERO MOMENT POINT BASED APPROACH FOR OMNI-DIRECTIONAL QUADRUPEDAL BOUNDING May 4, 17 11:38 WSPC - Proceedings Trim Size: 9in x 6in clawar17orsolino 1 A COMBINED LIMIT CYCLE - ZERO MOMENT POINT BASED APPROACH FOR OMNI-DIRECTIONAL QUADRUPEDAL BOUNDING ROMEO ORSOLINO, MICHELE FOCCHI,

More information

Announcements: Quiz. Animation, Motion Capture, & Inverse Kinematics. Last Time? Today: How do we Animate? Keyframing. Procedural Animation

Announcements: Quiz. Animation, Motion Capture, & Inverse Kinematics. Last Time? Today: How do we Animate? Keyframing. Procedural Animation Announcements: Quiz Animation, Motion Capture, & Inverse Kinematics On Friday (3/1), in class One 8.5x11 sheet of notes allowed Sample quiz (from a previous year) on website Focus on reading comprehension

More information

LOCOMOTION AND BALANCE CONTROL OF HUMANOID ROBOTS WITH DYNAMIC AND KINEMATIC CONSTRAINTS. Yu Zheng

LOCOMOTION AND BALANCE CONTROL OF HUMANOID ROBOTS WITH DYNAMIC AND KINEMATIC CONSTRAINTS. Yu Zheng LOCOMOTION AND BALANCE CONTROL OF HUMANOID ROBOTS WITH DYNAMIC AND KINEMATIC CONSTRAINTS Yu Zheng A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment

More information

Research Subject. Dynamics Computation and Behavior Capture of Human Figures (Nakamura Group)

Research Subject. Dynamics Computation and Behavior Capture of Human Figures (Nakamura Group) Research Subject Dynamics Computation and Behavior Capture of Human Figures (Nakamura Group) (1) Goal and summary Introduction Humanoid has less actuators than its movable degrees of freedom (DOF) which

More information

Fuzzy Control for Bipedal Robot Considering Energy Balance

Fuzzy Control for Bipedal Robot Considering Energy Balance Contemporary Engineering Sciences, Vol., 28, no. 39, 945-952 HIKARI Ltd, www.m-hikari.com https://doi.org/.2988/ces.28.837 Fuzzy Control for Bipedal Robot Considering Energy Balance Jhonattan Gordillo

More information

A Walking Pattern Generator for Biped Robots on Uneven Terrains

A Walking Pattern Generator for Biped Robots on Uneven Terrains A Walking Pattern Generator for Biped Robots on Uneven Terrains Yu Zheng, Ming C. Lin, Dinesh Manocha Albertus Hendrawan Adiwahono, Chee-Meng Chew Abstract We present a new method to generate biped walking

More information

USING OPTIMIZATION TECHNIQUES FOR THE DESIGN AND CONTROL OF FAST BIPEDS

USING OPTIMIZATION TECHNIQUES FOR THE DESIGN AND CONTROL OF FAST BIPEDS 1 USING OPTIMIZATION TECHNIQUES FOR THE DESIGN AND CONTROL OF FAST BIPEDS T. LUKSCH and K. BERNS Robotics Research Lab, University of Kaiserslautern, Kaiserslautern, Germany E-mail: t.luksch@informatik.uni-kl.de

More information

Hopping Gait Generation for a Biped Robot with Hill-Type Muscles

Hopping Gait Generation for a Biped Robot with Hill-Type Muscles Hopping Gait Generation for a Biped Robot with Hill-Type Muscles Behnam Dadashzadeh, Mohammad Esmaeili, Behrooz Koohestani, S.M.R.S. Noorani School of Engineering-Emerging Technologies University of Tabriz

More information

Dynamic State Estimation using Quadratic Programming

Dynamic State Estimation using Quadratic Programming 214 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 214) September 14-18, 214, Chicago, IL, USA Dynamic State Estimation using Quadratic Programming X Xinjilefu, Siyuan Feng and

More information

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Animation, Motion Capture, & Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based

More information

Controlling Humanoid Robots with Human Motion Data: Experimental Validation

Controlling Humanoid Robots with Human Motion Data: Experimental Validation 21 IEEE-RAS International Conference on Humanoid Robots Nashville, TN, USA, December 6-8, 21 Controlling Humanoid Robots with Human Motion Data: Experimental Validation Katsu Yamane, Stuart O. Anderson,

More information

Robotics 2 Information

Robotics 2 Information Robotics 2 Information Prof. Alessandro De Luca Robotics 2! 2017/18! Second semester! Monday, February 26 Wednesday, May 30, 2018! Courses of study (code)! Master in Artificial Intelligence and Robotics

More information

Automatic Control and Robotics. Implementation of a robot platform to study bipedal walking. Master Thesis

Automatic Control and Robotics. Implementation of a robot platform to study bipedal walking. Master Thesis Automatic Control and Robotics Implementation of a robot platform to study bipedal walking Master Thesis Autor: Director/s: Dimitris Zervas Dr. Manel Velasco and Dr. Cecilio Angulo Convocatòria: April

More information

Optimal and Robust Walking using Intrinsic Properties of a Series-Elastic Robot

Optimal and Robust Walking using Intrinsic Properties of a Series-Elastic Robot Optimal and Robust Walking using Intrinsic Properties of a Series-Elastic Robot Alexander Werner, Bernd Henze, Florian Loeffl, and Christian Ott Abstract Series-Elastic Actuators (SEA) have been proposed

More information

Physical Interaction between Human And a Bipedal Humanoid Robot -Realization of Human-follow Walking-

Physical Interaction between Human And a Bipedal Humanoid Robot -Realization of Human-follow Walking- Physical Interaction between Human And a Bipedal Humanoid Robot -Realization of Human-follow Walking- *Samuel Agus SEIAWAN **Sang Ho HYON ***Jin ichi YAMAGUCHI * ***Atsuo AKANISHI *Department of Mechanical

More information

Modelling and simulation of the humanoid robot HOAP-3 in the OpenHRP3 platform

Modelling and simulation of the humanoid robot HOAP-3 in the OpenHRP3 platform Modelling and simulation of the humanoid robot -3 in the 3 platform C.A. Monje, P. Pierro, T. Ramos, M. González-Fierro, C. Balaguer. Abstract The aim of this work is to model and simulate the humanoid

More information

Motion Planning of Emergency Stop for Humanoid Robot by State Space Approach

Motion Planning of Emergency Stop for Humanoid Robot by State Space Approach Motion Planning of Emergency Stop for Humanoid Robot by State Space Approach Mitsuharu Morisawa, Kenji Kaneko, Fumio Kanehiro, Shuuji Kajita, Kiyoshi Fujiwara, Kensuke Harada, Hirohisa Hirukawa National

More information

Animation, Motion Capture, & Inverse Kinematics. Announcements: Quiz

Animation, Motion Capture, & Inverse Kinematics. Announcements: Quiz Animation, Motion Capture, & Inverse Kinematics Announcements: Quiz On Tuesday (3/10), in class One 8.5x11 sheet of notes allowed Sample quiz (from a previous year) on website Focus on reading comprehension

More information

Biped Walking Control Based on Hybrid Position/Force Control

Biped Walking Control Based on Hybrid Position/Force Control The 29 IEEE/RSJ International Conference on Intelligent Robots and Systems October -5, 29 St. Louis, USA Biped Walking Control Based on Hybrid Position/Force Control Thomas Buschmann, Sebastian Lohmeier

More information

Fast foot prints re-planning and motion generation during walking in physical human-humanoid interaction

Fast foot prints re-planning and motion generation during walking in physical human-humanoid interaction Fast foot prints re-planning and motion generation during walking in physical human-humanoid interaction Olivier Stasse, Paul Evrard, Nicolas Perrin, Nicolas Mansard, Abderrahmane Kheddar Abstract In this

More information

Last 2 modules were about. What the other robot did : Robotics systems and science Lecture 15: Grasping and Manipulation

Last 2 modules were about. What the other robot did : Robotics systems and science Lecture 15: Grasping and Manipulation 6.141: Robotics systems and science Lecture 15: Grasping and Manipulation Lecture Notes Prepared by Daniela Rus EECS/MIT Spring 2009 What the robot did over Spring break Reading: Chapter3, Craig: Robotics

More information

USING THE GENERALIZED INVERTED PENDULUM TO GENERATE LESS ENERGY-CONSUMING TRAJECTORIES FOR HUMANOID WALKING

USING THE GENERALIZED INVERTED PENDULUM TO GENERATE LESS ENERGY-CONSUMING TRAJECTORIES FOR HUMANOID WALKING A R C H I V E O F M E C H A N I C A L E N G I N E E R I N G VOL. LXIII 2016 Number 2 10.1515/meceng-2016-0014 Key words: Inverted pendulum, pivot point, walking robots, energy consumption, joint torques

More information

Dynamic Modeling of Biped Robot using Lagrangian and Recursive Newton-Euler Formulations

Dynamic Modeling of Biped Robot using Lagrangian and Recursive Newton-Euler Formulations Dynamic Modeling of Biped Robot using Lagrangian and Recursive Newton-Euler Formulations Hayder F. N. Al-Shuka Baghdad University,Mech. Eng. Dep.,Iraq Burkhard J. Corves RWTH Aachen University, IGM, Germany

More information

Online Gain Switching Algorithm for Joint Position Control of a Hydraulic Humanoid Robot

Online Gain Switching Algorithm for Joint Position Control of a Hydraulic Humanoid Robot Online Gain Switching Algorithm for Joint Position Control of a Hydraulic Humanoid Robot Jung-Yup Kim *, Christopher G. Atkeson *, Jessica K. Hodgins *, Darrin C. Bentivegna *,** and Sung Ju Cho * * Robotics

More information

Developing a Robot Model using System-Level Design

Developing a Robot Model using System-Level Design Developing a Robot Model using System-Level Design What was once the stuff of dreams, being secretly developed in high-security government labs for applications in defense and space exploration, is now

More information

Capturability-Based Analysis and Control of Legged Locomotion, Part 2: Application to M2V2, a Lower Body Humanoid

Capturability-Based Analysis and Control of Legged Locomotion, Part 2: Application to M2V2, a Lower Body Humanoid Capturability-Based Analysis and Control of Legged Locomotion, Part 2: Application to M2V2, a Lower Body Humanoid Jerry Pratt Twan Koolen Tomas de Boer John Rebula Sebastien Cotton John Carff Matthew Johnson

More information

Programmable Springs: Developing Actuators with Programmable Compliance for Autonomous Robots

Programmable Springs: Developing Actuators with Programmable Compliance for Autonomous Robots Programmable Springs: Developing Actuators with Programmable Compliance for Autonomous Robots Bill Bigge, Inman R. Harvey Centre for Computational Neuroscience and Robotics, University of Sussex, Brighton

More information

On-ground experimental verification of a torque controlled free-floating robot

On-ground experimental verification of a torque controlled free-floating robot On-ground experimental verification of a torque controlled free-floating robot Marco De Stefano, Jordi Artigas, Alessandro M. Giordano, Roberto Lampariello and Alin-Albu Schaeffer Institute of Robotics

More information

Adaptive Motion Control: Dynamic Kick for a Humanoid Robot

Adaptive Motion Control: Dynamic Kick for a Humanoid Robot Adaptive Motion Control: Dynamic Kick for a Humanoid Robot Yuan Xu and Heinrich Mellmann Institut für Informatik, LFG Künstliche Intelligenz Humboldt-Universität zu Berlin, Germany {xu,mellmann}@informatik.hu-berlin.de

More information

Motion Capture & Simulation

Motion Capture & Simulation Motion Capture & Simulation Motion Capture Character Reconstructions Joint Angles Need 3 points to compute a rigid body coordinate frame 1 st point gives 3D translation, 2 nd point gives 2 angles, 3 rd

More information

Walking without thinking about it

Walking without thinking about it Walking without thinking about it Andrei Herdt, Nicolas Perrin, Pierre-Brice Wieber To cite this version: Andrei Herdt, Nicolas Perrin, Pierre-Brice Wieber Walking without thinking about it IROS 1 - IEEE-RSJ

More information

Sound and fast footstep planning for humanoid robots

Sound and fast footstep planning for humanoid robots Sound and fast footstep planning for humanoid robots Nicolas Perrin, Olivier Stasse, Léo Baudouin, Florent Lamiraux, Eiichi Yoshida Abstract In this paper we present some concepts for sound and fast footstep

More information

3D Simultaneous Localization and Mapping and Navigation Planning for Mobile Robots in Complex Environments

3D Simultaneous Localization and Mapping and Navigation Planning for Mobile Robots in Complex Environments 3D Simultaneous Localization and Mapping and Navigation Planning for Mobile Robots in Complex Environments Sven Behnke University of Bonn, Germany Computer Science Institute VI Autonomous Intelligent Systems

More information

Modeling, System Identification, and Control for Dynamic Locomotion of the LittleDog Robot on Rough Terrain. Michael Yurievich Levashov

Modeling, System Identification, and Control for Dynamic Locomotion of the LittleDog Robot on Rough Terrain. Michael Yurievich Levashov Modeling, System Identification, and Control for Dynamic Locomotion of the LittleDog Robot on Rough Terrain by Michael Yurievich Levashov B.S. Aerospace Engineering, B.S. Physics University of Maryland

More information

INTERACTIVE AVATAR CONTROL: CASE STUDIES ON PHYSICS AND PERFORMANCE BASED CHARACTER ANIMATION. STEVIE GIOVANNI (B.Sc. Hons.) A THESIS SUBMITTED

INTERACTIVE AVATAR CONTROL: CASE STUDIES ON PHYSICS AND PERFORMANCE BASED CHARACTER ANIMATION. STEVIE GIOVANNI (B.Sc. Hons.) A THESIS SUBMITTED INTERACTIVE AVATAR CONTROL: CASE STUDIES ON PHYSICS AND PERFORMANCE BASED CHARACTER ANIMATION STEVIE GIOVANNI (B.Sc. Hons.) A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF COMPUTER

More information

Synthesis of Stylized Walking Controllers for Planar Bipeds

Synthesis of Stylized Walking Controllers for Planar Bipeds Synthesis of Stylized Walking Controllers for Planar Bipeds by Dana Sharon B.Sc., University of British Columbia, 2002 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master

More information

Abstract. 1 Introduction. 2 Concept of the mobile experimental

Abstract. 1 Introduction. 2 Concept of the mobile experimental ISR / ROBOTIK 2010 Mobile Experimental Platform for the Development of Environmentally Interactive Control Algorithms towards the Implementation on a Walking Humanoid Robot Giulio Milighetti, Janko Petereit

More information

Dynamically Balanced Omnidirectional Humanoid Robot Locomotion. An Honors Paper for the Department of Computer Science. By Johannes Heide Strom

Dynamically Balanced Omnidirectional Humanoid Robot Locomotion. An Honors Paper for the Department of Computer Science. By Johannes Heide Strom Dynamically Balanced Omnidirectional Humanoid Robot Locomotion An Honors Paper for the Department of Computer Science By Johannes Heide Strom Bowdoin College, 2009 c 2009 Johannes Heide Strom Contents

More information

Dynamic Analysis of Manipulator Arm for 6-legged Robot

Dynamic Analysis of Manipulator Arm for 6-legged Robot American Journal of Mechanical Engineering, 2013, Vol. 1, No. 7, 365-369 Available online at http://pubs.sciepub.com/ajme/1/7/42 Science and Education Publishing DOI:10.12691/ajme-1-7-42 Dynamic Analysis

More information

Predictive method for balance of mobile service robots

Predictive method for balance of mobile service robots Predictive method for balance of mobile service robots Bastings, B.M.; Nijmeijer, H.; Kostic, D.; Kiela, H.J. Published: 1/1/214 Document Version Publisher s PDF, also known as Version of Record (includes

More information

Biped Walking Pattern Generation by using Preview Control of Zero-Moment Point

Biped Walking Pattern Generation by using Preview Control of Zero-Moment Point Proceedings of the 23 IEEE International Conference on Robotics & Automation Taipei, Taiwan, September 4-9, 23 Biped Walking Pattern Generation by using Preview Control of Zero-Moment Point Shuuji KAJITA,

More information

Towards a multi-segment ambulatory microrobot

Towards a multi-segment ambulatory microrobot 2 IEEE International Conference on Robotics and Automation Anchorage Convention District May 3-8, 2, Anchorage, Alaska, USA Towards a multi-segment ambulatory microrobot Katie L. Hoffman and Robert J.

More information

Online Generation of Humanoid Walking Motion based on a Fast. The University of Tokyo, Tokyo, Japan,

Online Generation of Humanoid Walking Motion based on a Fast. The University of Tokyo, Tokyo, Japan, Online Generation of Humanoid Walking Motion based on a Fast Generation Method of Motion Pattern that Follows Desired ZMP Koichi Nishiwaki 1, Satoshi Kagami 2,Yasuo Kuniyoshi 1, Masayuki Inaba 1,Hirochika

More information

Feasibility and Optimization of Fast Quadruped Walking with One- Versus Two-at-a-Time Swing Leg Motions for RoboSimian

Feasibility and Optimization of Fast Quadruped Walking with One- Versus Two-at-a-Time Swing Leg Motions for RoboSimian Feasibility and Optimization of Fast Quadruped Walking with One- Versus Two-at-a-Time Swing Leg Motions for RoboSimian Peter Ha and Katie Byl Abstract This paper presents two planning methods for generating

More information

Online Hierarchical Optimization for. Humanoid Control

Online Hierarchical Optimization for. Humanoid Control Online Hierarchical Optimization for Humanoid Control Siyuan Feng CMU-RI-TR-16-03 February 2016 The Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213 Thesis Committee: Christopher G. Atkeson,

More information

Self-Collision Detection and Prevention for Humanoid Robots. Talk Overview

Self-Collision Detection and Prevention for Humanoid Robots. Talk Overview Self-Collision Detection and Prevention for Humanoid Robots James Kuffner, Jr. Carnegie Mellon University Koichi Nishiwaki The University of Tokyo Satoshi Kagami Digital Human Lab (AIST) Masayuki Inaba

More information

Evolutionary Motion Design for Humanoid Robots

Evolutionary Motion Design for Humanoid Robots Evolutionary Motion Design for Humanoid Robots Toshihiko Yanase Department of Frontier Informatics The University of Tokyo Chiba 277-8561, Japan yanase@iba.k.u-tokyo.ac.jp Hitoshi Iba Department of Frontier

More information

Real-time Replanning Using 3D Environment for Humanoid Robot

Real-time Replanning Using 3D Environment for Humanoid Robot Real-time Replanning Using 3D Environment for Humanoid Robot Léo Baudouin, Nicolas Perrin, Thomas Moulard, Florent Lamiraux LAAS-CNRS, Université de Toulouse 7, avenue du Colonel Roche 31077 Toulouse cedex

More information

Developing Algorithms for Robotics and Autonomous Systems

Developing Algorithms for Robotics and Autonomous Systems Developing Algorithms for Robotics and Autonomous Systems Jorik Caljouw 2015 The MathWorks, Inc. 1 Key Takeaway of this Talk Success in developing an autonomous robotics system requires: 1. Multi-domain

More information

A Cost Oriented Humanoid Robot Motion Control System

A Cost Oriented Humanoid Robot Motion Control System Preprints of the 19th World Congress The International Federation of Automatic Control A Cost Oriented Humanoid Robot Motion Control System J. Baltes*, P. Kopacek**,M. Schörghuber** *Department of Computer

More information

Key-Words: - seven-link human biped model, Lagrange s Equation, computed torque control

Key-Words: - seven-link human biped model, Lagrange s Equation, computed torque control Motion Control of Human Bipedal Model in Sagittal Plane NURFARAHIN ONN, MOHAMED HUSSEIN, COLLIN HOWE HING TANG, MOHD ZARHAMDY MD ZAIN, MAZIAH MOHAMAD and WEI YING LAI Faculty of Mechanical Engineering

More information

Simulation. x i. x i+1. degrees of freedom equations of motion. Newtonian laws gravity. ground contact forces

Simulation. x i. x i+1. degrees of freedom equations of motion. Newtonian laws gravity. ground contact forces Dynamic Controllers Simulation x i Newtonian laws gravity ground contact forces x i+1. x degrees of freedom equations of motion Simulation + Control x i Newtonian laws gravity ground contact forces internal

More information

Multiple Contact Planning for Minimizing Damage of Humanoid Falls

Multiple Contact Planning for Minimizing Damage of Humanoid Falls Multiple Contact Planning for Minimizing Damage of Humanoid Falls Sehoon Ha 1 and C. Karen Liu 2 Abstract This paper introduces a new planning algorithm to minimize the damage of humanoid falls by utilizing

More information

Motion Planning for Whole Body Tasks by Humanoid Robots

Motion Planning for Whole Body Tasks by Humanoid Robots Proceedings of the IEEE International Conference on Mechatronics & Automation Niagara Falls, Canada July 5 Motion Planning for Whole Body Tasks by Humanoid Robots Eiichi Yoshida 1, Yisheng Guan 1, Neo

More information

Thomas Bräunl EMBEDDED ROBOTICS. Mobile Robot Design and Applications with Embedded Systems. Second Edition. With 233 Figures and 24 Tables.

Thomas Bräunl EMBEDDED ROBOTICS. Mobile Robot Design and Applications with Embedded Systems. Second Edition. With 233 Figures and 24 Tables. Thomas Bräunl EMBEDDED ROBOTICS Mobile Robot Design and Applications with Embedded Systems Second Edition With 233 Figures and 24 Tables Springer CONTENTS PART I: EMBEDDED SYSTEMS 1 Robots and Controllers

More information

Ann L. Torres. at the. June others the right to do so.

Ann L. Torres. at the. June others the right to do so. Virtual Model Control of a Hexapod Walking Robot by Ann L. Torres Submitted to the Department of Mechanical Engineering in partial fulllment of the requirements for the degree of Bachelor of Science in

More information

Inverse Kinematics for Humanoid Robots using Artificial Neural Networks

Inverse Kinematics for Humanoid Robots using Artificial Neural Networks Inverse Kinematics for Humanoid Robots using Artificial Neural Networks Javier de Lope, Rafaela González-Careaga, Telmo Zarraonandia, and Darío Maravall Department of Artificial Intelligence Faculty of

More information

State Estimation for Humanoid Robots

State Estimation for Humanoid Robots State Estimation for Humanoid Robots CMU-RI-TR-15-2 Xinjilefu Robotics Institute Carnegie Mellon University Pittsburgh, Pennsylvania 15213 Submitted in partial fulfillment of the requirements for the degree

More information

Dynamically Stepping Over Obstacles by the Humanoid Robot HRP-2

Dynamically Stepping Over Obstacles by the Humanoid Robot HRP-2 Dynamically Stepping Over Obstacles by the Humanoid Robot HRP-2 Björn Verrelst, Olivier Stasse, Kazuhito Yokoi Bram Vanderborght Joint Japanese-French Robotics Laboratory (JRL) Robotics & Multibody Mechanics

More information

The Mathematical Model and Computer Simulation of a Quadruped Robot

The Mathematical Model and Computer Simulation of a Quadruped Robot Research Experience for Undergraduates 2014 Milwaukee School of Engineering National Science Foundation Grant June 1- August 8, 2014 The Mathematical Model and Computer Simulation of a Quadruped Robot

More information

Inverse Kinematics for Humanoid Robots Using Artificial Neural Networks

Inverse Kinematics for Humanoid Robots Using Artificial Neural Networks Inverse Kinematics for Humanoid Robots Using Artificial Neural Networks Javier de Lope, Rafaela González-Careaga, Telmo Zarraonandia, and Darío Maravall Department of Artificial Intelligence Faculty of

More information

Darmstadt Dribblers 2004: Humanoid Robot

Darmstadt Dribblers 2004: Humanoid Robot Darmstadt Dribblers 2004: Humanoid Robot Jutta Kiener, Maximilian Stelzer, and Oskar von Stryk Simulation and Systems Optimization Group Department of Computer Science Technische Universität Darmstadt,

More information