James Kuffner. The Robotics Institute Carnegie Mellon University. Digital Human Research Center (AIST) James Kuffner (CMU/Google)

Size: px
Start display at page:

Download "James Kuffner. The Robotics Institute Carnegie Mellon University. Digital Human Research Center (AIST) James Kuffner (CMU/Google)"

Transcription

1 James Kuffner The Robotics Institute Carnegie Mellon University Digital Human Research Center (AIST) 1

2 Stanford University University of Tokyo JSK Lab Carnegie Mellon University The Robotics Institute 2001-present Digital Human Research Center (AIST) 2001-present H5 H6 H7 Asimo HRP2 HRP3 2

3 INPUT Computer Program OUTPUT ROBOTICS Robot / World changes ACT SENSE Model of the world Robot / World State Motor Commands (behviors, pos/vel, torques) PLAN 3

4 x = f (x,u) Use a "Forward Simulator" (can be analytic or numerical) Employ heuristics to guide the search towards more promising actions (expected reward) Can cache previously planned results and outcomes to improve heuristics (adaptation and Machine Learning)

5 Bellman, Djikstra, A* Optimal solutions High memory and CPU costs Low-dimensional! limited to toy problems Practical approach: Just give me something that works Sacrifice optimality, completeness Implementable on a real robot 5

6 Uncertainty Prior models Perception Control Search Space Continuous High-dimensional Hard, real-time constraints 6

7 7

8 LEFT CAMERA RIGHT CAMERA PLANNED FOOTSTEP SEQUENCE Footstep planning among obstacles for biped robots [ Kuffner, Nishiwaki, Kagami, Inaba, Inoue, IROS2001 ] 8

9 9

10 Plan for all degrees of freedom Footstep Planning Abstract away all leg details Computationally expensive Uses the full capabilities of the robot Fast Ignores leg capabilities 10

11 (x,y,!) footstep locations relative to stance foot Fixed sampling of possible footsteps 11

12 a 2 x 2 Input a 1 x 1 Successor function x How do you choose the set of actions? 12

13 Double Support Single Support Single Support Double Support 13

14 State Representation: (x, y,!, leg) of current stance foot roll, pitch, and height determined by terrain shape Height map terrain (x,y) 14

15 Angle Input Terrain Roughness 1 N $ c #Cells h c " h p Largest Bump Metric Evaluation Stability Safety / Surroundings max c "SurrCells (h c ) 15

16 Angle Roughness Largest Bump Stability Safety All 16

17 17

18 [Kuffner, Nishiwaki, Kagami, Inaba & Inoue, ICRA 2003] 18

19 [Chestnutt, Kuffner, Nishiwaki, Kagami, Inaba & Inoue, 2003] 19

20 [ Chestnutt, Michel, Kuffner, Kanade, IROS 2007 ] 20

21 [ Chestnutt, Michel, Nishiwaki, Kagami, Kuffner, Kanade, 2006 ]

22 [ Michel, Chestnutt, Nishiwaki, Kagami, Kuffner, Kanade, IROS 2007 ]

23 Dimensionality Reduction: Plan in the low-dimensional space of contact configurations (stances). Delay Trajectory Generation: Avoid dealing with full dynamics in the inner loop of the planner (approximate path existence between stances by exploiting controller limits). Use Fast Metrics: Evaluate footstep candidates for stability and properties needed by the controller. 23

24 24

25 High-level planning Mid-level planning Low-level planning

26 [ Joel Chestnutt, CMU PhD Thesis, 2006 ]

27 Helps the low-level planner search in the right direction Used as a heuristic, not a more detailed plan Plans outward from goal using a grid-based planner Store cost to reach each location

28 Generally more informed Not admissible Can overestimate or underestimate in certain environments Performs better the closer the optimal footstep path can be followed by a mobile robot

29

30

31

32

33 [ Chestnutt, Nishiwaki, Kagami, Kuffner, Humanoids 2007 ]

34 [ M. Zucker, CMU PhD thesis, 2010 ]

35

36

37 [ Chestnutt, Takaoka, Suga, Nishiwaki, Kuffner, Kagami, IROS 2009 ] 37

38 [ Nishiwaki, Kagami, et. Al., 2010 ] 38

39 Perception PSF surface map generation Online stereo vision updates every cycle Online region tracking at 15-60Hz Online 3D point cloud env. modeling Planning One-shot footstep planner. Replanning 1000ms at 5K steps per cycle Replanning 800ms at 12K steps per cycle Replanning 800ms at >20K with online adj. Trajectory Generation Fixed, pre-computed stepping motions. Fixed stepping motions with online adjustment Online trajectory generation with partial step adjustment Online generation of leg, body, and step location trajectories Control Cart-table ZMP feedback Cart-table ZMP feedback Extended Torso ZMP feedback Whole-body ZMP feedback Step Cycle Time (ms) ,000 25,000 Footsteps searched per cycle

40 SENSE ACT PLAN Fast replanning Relationship to Receding Horizon Control Hierarchical planning 40

41 Reactive control! direct mapping from sensor inputs to control actions Look-up tables of states to actions Vector fields Feedback control policies POMDPs Limited by what you can store in memory Bag of plans Trajectory libraries / motor primitives How to select appropriate action template? 41

42 Optimality: What is the ideal cost function? Robustness & Uncertainty: Gracefully handle both sensing, modeling, and control noise Improvement over time: Exploit historical data to learn better cost functions. Search-based AI: Unification of Planning, Optimization, and Reinforcement Learning? 42

43 Joel Chestnutt Satoshi Kagami Koichi Nishiwaki Matt Zucker Chris Atketson Drew Bagnell Martin Stolle Phil Michel Yutaka Takaoka Keisuke Suga Rosen Diankov Takeo Kanade Dmitry Berenson Mike Stilman Manfred Lau

Self-Collision Detection. Planning for Humanoid Robots. Digital Human Research Center. Talk Overview

Self-Collision Detection. Planning for Humanoid Robots. Digital Human Research Center. Talk Overview Self-Collision Detection and Motion Planning for Humanoid Robots James Kuffner (CMU & AIST Japan) Digital Human Research Center Self-Collision Detection Feature-based Minimum Distance Computation: Approximate

More information

Self-Collision Detection and Prevention for Humanoid Robots. Talk Overview

Self-Collision Detection and Prevention for Humanoid Robots. Talk Overview Self-Collision Detection and Prevention for Humanoid Robots James Kuffner, Jr. Carnegie Mellon University Koichi Nishiwaki The University of Tokyo Satoshi Kagami Digital Human Lab (AIST) Masayuki Inaba

More information

Online Environment Reconstruction for Biped Navigation

Online Environment Reconstruction for Biped Navigation Online Environment Reconstruction for Biped Navigation Philipp Michel, Joel Chestnutt, Satoshi Kagami, Koichi Nishiwaki, James Kuffner and Takeo Kanade The Robotics Institute Digital Human Research Center

More information

Humanoid Robotics. Path Planning and Walking. Maren Bennewitz

Humanoid Robotics. Path Planning and Walking. Maren Bennewitz Humanoid Robotics Path Planning and Walking Maren Bennewitz 1 Introduction Given the robot s pose in a model of the environment Compute a path to a target location First: 2D path in a 2D grid map representation

More information

Planning, Execution and Learning Application: Examples of Planning for Mobile Manipulation and Articulated Robots

Planning, Execution and Learning Application: Examples of Planning for Mobile Manipulation and Articulated Robots 15-887 Planning, Execution and Learning Application: Examples of Planning for Mobile Manipulation and Articulated Robots Maxim Likhachev Robotics Institute Carnegie Mellon University Two Examples Planning

More information

Sound and fast footstep planning for humanoid robots

Sound and fast footstep planning for humanoid robots Sound and fast footstep planning for humanoid robots Nicolas Perrin, Olivier Stasse, Léo Baudouin, Florent Lamiraux, Eiichi Yoshida Abstract In this paper we present some concepts for sound and fast footstep

More information

A Tiered Planning Strategy for Biped Navigation JOEL CHESTNUTT 1 JAMES J. KUFFNER 1,2

A Tiered Planning Strategy for Biped Navigation JOEL CHESTNUTT 1 JAMES J. KUFFNER 1,2 International Journal of Humanoid Robotics c World Scientific Publishing Company A Tiered Planning Strategy for Biped Navigation JOEL CHESTNUTT 1 JAMES J. KUFFNER 1,2 1 Robotics Institute, Carnegie Mellon

More information

Integrated Perception, Mapping, and Footstep Planning for Humanoid Navigation Among 3D Obstacles

Integrated Perception, Mapping, and Footstep Planning for Humanoid Navigation Among 3D Obstacles Integrated Perception, Mapping, and Footstep Planning for Humanoid Navigation Among 3D Obstacles Daniel Maier Christian Lutz Maren Bennewitz Abstract In this paper, we present an integrated navigation

More information

Motion Planning for Humanoid Robots

Motion Planning for Humanoid Robots Motion Planning for Humanoid Robots Presented by: Li Yunzhen What is Humanoid Robots & its balance constraints? Human-like Robots A configuration q is statically-stable if the projection of mass center

More information

Integrating Grasp Planning and Visual Feedback for Reliable Manipulation

Integrating Grasp Planning and Visual Feedback for Reliable Manipulation 9th IEEE-RAS International Conference on Humanoid Robots December 7-0, 2009 Paris, France Integrating Grasp Planning and Visual Feedback for Reliable Manipulation Rosen Diankov Takeo Kanade James Kuffner

More information

Real-time Replanning Using 3D Environment for Humanoid Robot

Real-time Replanning Using 3D Environment for Humanoid Robot Real-time Replanning Using 3D Environment for Humanoid Robot Léo Baudouin, Nicolas Perrin, Thomas Moulard, Florent Lamiraux LAAS-CNRS, Université de Toulouse 7, avenue du Colonel Roche 31077 Toulouse cedex

More information

Planning & Decision-making in Robotics Case Study: Planning for Autonomous Driving

Planning & Decision-making in Robotics Case Study: Planning for Autonomous Driving 16-782 Planning & Decision-making in Robotics Case Study: Planning for Autonomous Driving Maxim Likhachev Robotics Institute Carnegie Mellon University Typical Planning Architecture for Autonomous Vehicle

More information

Simplified Walking: A New Way to Generate Flexible Biped Patterns

Simplified Walking: A New Way to Generate Flexible Biped Patterns 1 Simplified Walking: A New Way to Generate Flexible Biped Patterns Jinsu Liu 1, Xiaoping Chen 1 and Manuela Veloso 2 1 Computer Science Department, University of Science and Technology of China, Hefei,

More information

Learning Footstep Prediction from Motion. capture

Learning Footstep Prediction from Motion. capture Learning Footstep Prediction from Motion Capture Andreas Schmitz, Marcell Missura, and Sven Behnke University of Bonn, Computer Science VI, Autonomous Intelligent Systems Roemerstr. 164, 53117 Bonn, Germany

More information

Real-Time Footstep Planning in 3D Environments

Real-Time Footstep Planning in 3D Environments Real-Time Footstep Planning in 3D Environments Philipp Karkowski Stefan Oßwald Maren Bennewitz Abstract A variety of approaches exist that tackle the problem of humanoid locomotion. The spectrum ranges

More information

Real-Time Footstep Planning Using a Geometric Approach

Real-Time Footstep Planning Using a Geometric Approach Real-Time Footstep Planning Using a Geometric Approach Philipp Karkowski Maren Bennewitz Abstract To this date, many footstep planning systems rely on external sensors for mapping and traversability analysis

More information

Transfer of Policies Based on Trajectory Libraries

Transfer of Policies Based on Trajectory Libraries Transfer of Policies Based on Trajectory Libraries Martin Stolle, Hanns Tappeiner, Joel Chestnutt, Christopher G. Atkeson Robotics Institute, Carnegie Mellon University 5000 Forbes Ave, Pittsburgh, PA

More information

Using Previous Experience for Humanoid Navigation Planning

Using Previous Experience for Humanoid Navigation Planning Using Previous Experience for Humanoid Navigation Planning Yu-Chi Lin 1 and Dmitry Berenson 1 Abstract We propose a humanoid robot navigation planning framework that reuses previous experience to decrease

More information

Small-Space Controllability of a Walking Humanoid Robot

Small-Space Controllability of a Walking Humanoid Robot Small-Space Controllability of a Walking Humanoid Robot Se bastien Dalibard, Antonio El Khoury, Florent Lamiraux, Michel Taı x, Jean-Paul Laumond hal-00602384, version 2-19 Sep 2011 CNRS ; LAAS ; 7 avenue

More information

Planning and Executing Navigation Among Movable Obstacles

Planning and Executing Navigation Among Movable Obstacles Planning and Executing Navigation Among Movable Obstacles Mike Stilman, 1 Koichi Nishiwaki, 2 Satoshi Kagami, 2 James J. Kuffner 1,2 1 The Robotics Institute 2 Digital Human Research Center Carnegie Mellon

More information

Real-time Replanning Using 3D Environment for Humanoid Robot

Real-time Replanning Using 3D Environment for Humanoid Robot Real-time Replanning Using 3D Environment for Humanoid Robot Léo Baudouin, Nicolas Perrin, Thomas Moulard, Florent Lamiraux, Olivier Stasse, Eiichi Yoshida To cite this version: Léo Baudouin, Nicolas Perrin,

More information

CS231A: Project Final Report Object Localization and Tracking using Microsoft Kinect

CS231A: Project Final Report Object Localization and Tracking using Microsoft Kinect CS231A: Project Final Report Object Localization and Tracking using Microsoft Kinect Gerald Brantner Laura Stelzner Martina Troesch Abstract Localization and tracking of objects is a fundamental component

More information

Control Approaches for Walking and Running

Control Approaches for Walking and Running DLR.de Chart 1 > Humanoids 2015 > Christian Ott > 02.11.2015 Control Approaches for Walking and Running Christian Ott, Johannes Englsberger German Aerospace Center (DLR) DLR.de Chart 2 > Humanoids 2015

More information

Humanoid Teleoperation for Whole Body Manipulation

Humanoid Teleoperation for Whole Body Manipulation Humanoid Teleoperation for Whole Body Manipulation Mike Stilman, Koichi Nishiwaki and Satoshi Kagami Abstract We present results of successful telemanipulation of large, heavy objects by a humanoid robot.

More information

EE631 Cooperating Autonomous Mobile Robots

EE631 Cooperating Autonomous Mobile Robots EE631 Cooperating Autonomous Mobile Robots Lecture: Multi-Robot Motion Planning Prof. Yi Guo ECE Department Plan Introduction Premises and Problem Statement A Multi-Robot Motion Planning Algorithm Implementation

More information

A comparison of Search-based Planners for a Legged Robot

A comparison of Search-based Planners for a Legged Robot Motion and Control, Wasowo Palace, Wasowo, Poland, July 3-5, 2013 A comparison of Search-based Planners for a Legged Robot Muhammad Asif Arain 1, Ioannis Havoutis 2, Claudio Semini 2, Jonas Buchli 3 and

More information

A Framework for Extreme Locomotion Planning

A Framework for Extreme Locomotion Planning 2012 IEEE International Conference on Robotics and Automation RiverCentre, Saint Paul, Minnesota, USA May 14-18, 2012 A Framework for Extreme Locomotion Planning Christopher M. Dellin and Siddhartha S.

More information

Adaptive Motion Control: Dynamic Kick for a Humanoid Robot

Adaptive Motion Control: Dynamic Kick for a Humanoid Robot Adaptive Motion Control: Dynamic Kick for a Humanoid Robot Yuan Xu and Heinrich Mellmann Institut für Informatik, LFG Künstliche Intelligenz Humboldt-Universität zu Berlin, Germany {xu,mellmann}@informatik.hu-berlin.de

More information

Vision-Based Trajectory Control for Humanoid Navigation

Vision-Based Trajectory Control for Humanoid Navigation 213 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids). October 15-17, 213. Atlanta, GA Vision-Based Trajectory Control for Humanoid Navigation Giuseppe Oriolo, Antonio Paolillo, Lorenzo

More information

Instant Prediction for Reactive Motions with Planning

Instant Prediction for Reactive Motions with Planning The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems October 11-15, 2009 St. Louis, USA Instant Prediction for Reactive Motions with Planning Hisashi Sugiura, Herbert Janßen, and

More information

Online Generation of Humanoid Walking Motion based on a Fast. The University of Tokyo, Tokyo, Japan,

Online Generation of Humanoid Walking Motion based on a Fast. The University of Tokyo, Tokyo, Japan, Online Generation of Humanoid Walking Motion based on a Fast Generation Method of Motion Pattern that Follows Desired ZMP Koichi Nishiwaki 1, Satoshi Kagami 2,Yasuo Kuniyoshi 1, Masayuki Inaba 1,Hirochika

More information

Dynamically Stepping Over Obstacles by the Humanoid Robot HRP-2

Dynamically Stepping Over Obstacles by the Humanoid Robot HRP-2 Dynamically Stepping Over Obstacles by the Humanoid Robot HRP-2 Björn Verrelst, Olivier Stasse, Kazuhito Yokoi Bram Vanderborght Joint Japanese-French Robotics Laboratory (JRL) Robotics & Multibody Mechanics

More information

video 1 video 2 Motion Planning (It s all in the discretization) Digital Actors Basic problem Basic problem Two Possible Discretizations

video 1 video 2 Motion Planning (It s all in the discretization) Digital Actors Basic problem Basic problem Two Possible Discretizations Motion Planning (It s all in the discretization) Motion planning is the ability for an agent to compute its own motions in order to achieve certain goals. ll autonomous robots and digital actors should

More information

Autonomous Navigation of Humanoid Using Kinect. Harshad Sawhney Samyak Daga 11633

Autonomous Navigation of Humanoid Using Kinect. Harshad Sawhney Samyak Daga 11633 Autonomous Navigation of Humanoid Using Kinect Harshad Sawhney 11297 Samyak Daga 11633 Motivation Humanoid Space Missions http://www.buquad.com Motivation Disaster Recovery Operations http://www.designnews.com

More information

Real-Time Navigation in 3D Environments Based on Depth Camera Data

Real-Time Navigation in 3D Environments Based on Depth Camera Data Real-Time Navigation in 3D Environments Based on Depth Camera Data Daniel Maier Armin Hornung Maren Bennewitz Abstract In this paper, we present an integrated approach for robot localization, obstacle

More information

Search-based Planning Library SBPL. Maxim Likhachev Robotics Institute Carnegie Mellon University

Search-based Planning Library SBPL. Maxim Likhachev Robotics Institute Carnegie Mellon University Search-based Planning Library SBPL Maxim Likhachev Robotics Institute Carnegie Mellon University Outline Overview Few SBPL-based planners in details - 3D (x,y,θ) lattice-based planning for navigation (available

More information

Tractable Locomotion Planning for RoboSimian

Tractable Locomotion Planning for RoboSimian Tractable Locomotion Planning for RoboSimian Brian W. Satzinger, Chelsea Lau, Marten Byl, Katie Byl Abstract This paper investigates practical solutions for lowbandwidth, teleoperated mobility for RoboSimian

More information

Full-body Motion Planning and Control for The Car Egress Task of the DARPA Robotics Challenge

Full-body Motion Planning and Control for The Car Egress Task of the DARPA Robotics Challenge Full-body Motion Planning and Control for The Car Egress Task of the DARPA Robotics Challenge Chenggang Liu 1, Christopher G. Atkeson 1, Siyuan Feng 1, and X Xinjilefu 1 Abstract We present a motion planning

More information

Generating Whole Body Motions for a Biped Humanoid Robot from Captured Human Dances

Generating Whole Body Motions for a Biped Humanoid Robot from Captured Human Dances Generating Whole Body Motions for a Biped Humanoid Robot from Captured Human Dances Shinichiro Nakaoka Atsushi Nakazawa Kazuhito Yokoi Hirohisa Hirukawa Katsushi Ikeuchi Institute of Industrial Science,

More information

Quadruped Robots and Legged Locomotion

Quadruped Robots and Legged Locomotion Quadruped Robots and Legged Locomotion J. Zico Kolter Computer Science Department Stanford University Joint work with Pieter Abbeel, Andrew Ng Why legged robots? 1 Why Legged Robots? There is a need for

More information

Distributed Real-Time Processing for Humanoid Robots

Distributed Real-Time Processing for Humanoid Robots Distributed Real-Time Processing for Humanoid Robots Toshihiro Matsui *1, Hirohisa Hirukawa *2, Yutaka Ishikawa *3, Nobuyuki Yamasaki *4 Satoshi Kagami *1, Fumio Kanehiro *2, Hajime Saito *2, Tetsuya Inamura

More information

Teams of Collaborating Robots for Flexible Manufacturing From Distributed Algorithms to Big Control

Teams of Collaborating Robots for Flexible Manufacturing From Distributed Algorithms to Big Control Teams of Collaborating Robots for Flexible Manufacturing From Distributed Algorithms to Big Control Mac Schwager Assistant Professor Aeronautics and Astronautics Stanford University MSL Jun 8, 2018 Platform

More information

SHORT PAPER Efficient reaching motion planning method for low-level autonomy of teleoperated humanoid robots

SHORT PAPER Efficient reaching motion planning method for low-level autonomy of teleoperated humanoid robots Advanced Robotics, 214 Vol. 28, No. 7, 433 439, http://dx.doi.org/1.18/1691864.213.876931 SHORT PAPER Efficient reaching motion planning method for low-level autonomy of teleoperated humanoid robots Fumio

More information

3D Simultaneous Localization and Mapping and Navigation Planning for Mobile Robots in Complex Environments

3D Simultaneous Localization and Mapping and Navigation Planning for Mobile Robots in Complex Environments 3D Simultaneous Localization and Mapping and Navigation Planning for Mobile Robots in Complex Environments Sven Behnke University of Bonn, Germany Computer Science Institute VI Autonomous Intelligent Systems

More information

Advanced Robotics Path Planning & Navigation

Advanced Robotics Path Planning & Navigation Advanced Robotics Path Planning & Navigation 1 Agenda Motivation Basic Definitions Configuration Space Global Planning Local Planning Obstacle Avoidance ROS Navigation Stack 2 Literature Choset, Lynch,

More information

Spring 2016, Robot Autonomy, Final Report (Team 7) Motion Planning for Autonomous All-Terrain Vehicle

Spring 2016, Robot Autonomy, Final Report (Team 7) Motion Planning for Autonomous All-Terrain Vehicle Spring 2016, 16662 Robot Autonomy, Final Report (Team 7) Motion Planning for Autonomous All-Terrain Vehicle Guan-Horng Liu 1, Samuel Wang 1, Shu-Kai Lin 1, Chris Wang 2, and Tiffany May 1 Advisors: Mr.

More information

Dynamically-Stable Motion Planning for Humanoid Robots

Dynamically-Stable Motion Planning for Humanoid Robots Autonomous Robots 12, 105 118, 2002 c 2002 Kluwer Academic Publishers. Manufactured in The Netherlands. Dynamically-Stable Motion Planning for Humanoid Robots JAMES J. KUFFNER, JR. Robotics Institute,

More information

Fast foot prints re-planning and motion generation during walking in physical human-humanoid interaction

Fast foot prints re-planning and motion generation during walking in physical human-humanoid interaction Fast foot prints re-planning and motion generation during walking in physical human-humanoid interaction Olivier Stasse, Paul Evrard, Nicolas Perrin, Nicolas Mansard, Abderrahmane Kheddar Abstract In this

More information

Motion Planning for Whole Body Tasks by Humanoid Robots

Motion Planning for Whole Body Tasks by Humanoid Robots Proceedings of the IEEE International Conference on Mechatronics & Automation Niagara Falls, Canada July 5 Motion Planning for Whole Body Tasks by Humanoid Robots Eiichi Yoshida 1, Yisheng Guan 1, Neo

More information

Visuo-Motor Learning for Face-to-face Pass between Heterogeneous Humanoids

Visuo-Motor Learning for Face-to-face Pass between Heterogeneous Humanoids Visuo-Motor Learning for Face-to-face Pass between Heterogeneous Humanoids Masaki Ogino a,, Masaaki Kikuchi a, Minoru Asada a,b a Dept. of Adaptive Machine Systems b HANDAI Frontier Research Center Graduate

More information

Spring 2016 :: :: Robot Autonomy :: Team 7 Motion Planning for Autonomous All-Terrain Vehicle

Spring 2016 :: :: Robot Autonomy :: Team 7 Motion Planning for Autonomous All-Terrain Vehicle Spring 2016 :: 16662 :: Robot Autonomy :: Team 7 Motion Planning for Autonomous All-Terrain Vehicle Guan-Horng Liu, Samuel Wang, Shu-Kai Lin, Chris Wang, Tiffany May Advisor : Mr. George Kantor OUTLINE

More information

An Optimization Approach to Rough Terrain Locomotion

An Optimization Approach to Rough Terrain Locomotion An Optimization Approach to Rough Terrain Locomotion Matt Zucker J. Andrew Bagnell Christopher G. Atkeson James Kuffner The Robotics Institute, Carnegie Mellon University {mzucker,dbagnell,cga,kuffner}@cs.cmu.edu

More information

Motion autonomy for humanoids: experiments on HRP-2 No. 14. Introduction

Motion autonomy for humanoids: experiments on HRP-2 No. 14. Introduction COMPUTER ANIMATION AND VIRTUAL WORLDS Comp. Anim. Virtual Worlds 2009; 20: 511 522 Published online 13 February 2009 in Wiley InterScience (www.interscience.wiley.com).280 Motion autonomy for humanoids:

More information

Non-Gaited Humanoid Locomotion Planning

Non-Gaited Humanoid Locomotion Planning Non-Gaited Humanoid Locomotion Planning Kris Hauser, Tim Bretl, and Jean-Claude Latombe Stanford University Stanford, CA 94307, USA khauser@cs.stanford.edu, tbretl@stanford.edu, latombe@cs.stanford.edu

More information

A Walking Pattern Generator for Biped Robots on Uneven Terrains

A Walking Pattern Generator for Biped Robots on Uneven Terrains A Walking Pattern Generator for Biped Robots on Uneven Terrains Yu Zheng, Ming C. Lin, Dinesh Manocha Albertus Hendrawan Adiwahono, Chee-Meng Chew Abstract We present a new method to generate biped walking

More information

Whole-Body Motion Planning for Manipulation of Articulated Objects

Whole-Body Motion Planning for Manipulation of Articulated Objects Whole-Body Motion Planning for Manipulation of Articulated Objects Felix Burget Armin Hornung Maren Bennewitz Abstract Humanoid service robots performing complex object manipulation tasks need to plan

More information

Coordinated Motion Planning for 3D Animation - With Use of a Chinese Lion Dance as an Example

Coordinated Motion Planning for 3D Animation - With Use of a Chinese Lion Dance as an Example 174 ECTI TRANSACTIONS ON ELECTRICAL ENG., ELECTRONICS, AND COMMUNICATIONS VOL.5, NO.2 August 2007 Coordinated Motion Planning for 3D Animation - With Use of a Chinese Lion Dance as an Example Fu-Sheng

More information

Collision Detection. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering

Collision Detection. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering RBE 550 MOTION PLANNING BASED ON DR. DMITRY BERENSON S RBE 550 Collision Detection Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Euler Angle RBE

More information

Hough Transform Run Length Encoding for Real-Time Image Processing

Hough Transform Run Length Encoding for Real-Time Image Processing IMTC 25 Instrumentation and Measurement Technology Conference Ottawa, Canada, 17-19 May 25 Hough Transform Run Length Encoding for Real-Time Image Processing C. H. Messom 1, G. Sen Gupta 2,3, S. Demidenko

More information

Hough Transform Run Length Encoding for Real-Time Image Processing

Hough Transform Run Length Encoding for Real-Time Image Processing Hough Transform Run Length Encoding for Real-Time Image Processing C. H. Messom 1, G. Sen Gupta 2,3, S. Demidenko 4 1 IIMS, Massey University, Albany, New Zealand 2 IIS&T, Massey University, Palmerston

More information

Fast Object Approximation for Real-Time 3D Obstacle Avoidance with Biped Robots

Fast Object Approximation for Real-Time 3D Obstacle Avoidance with Biped Robots Fast Object Approximation for Real-Time 3D Obstacle Avoidance with Biped Robots Daniel Wahrmann, Arne-Christoph Hildebrandt, Robert Wittmann, Felix Sygulla, Daniel Rixen and Thomas Buschmann Abstract In

More information

Reinforcement Planning: RL for Optimal Planners

Reinforcement Planning: RL for Optimal Planners Reinforcement Planning: RL for Optimal Planners Matt Zucker and J. Andrew Bagnell CMU-RI-TR-10-14 April 2010 Robotics Institute Carnegie Mellon University Pittsburgh, Pennsylvania 15213 c Carnegie Mellon

More information

Robot Motion Planning

Robot Motion Planning Robot Motion Planning James Bruce Computer Science Department Carnegie Mellon University April 7, 2004 Agent Planning An agent is a situated entity which can choose and execute actions within in an environment.

More information

Feasibility and Optimization of Fast Quadruped Walking with One- Versus Two-at-a-Time Swing Leg Motions for RoboSimian

Feasibility and Optimization of Fast Quadruped Walking with One- Versus Two-at-a-Time Swing Leg Motions for RoboSimian Feasibility and Optimization of Fast Quadruped Walking with One- Versus Two-at-a-Time Swing Leg Motions for RoboSimian Peter Ha and Katie Byl Abstract This paper presents two planning methods for generating

More information

Anytime, Dynamic Planning in High-dimensional Search Spaces

Anytime, Dynamic Planning in High-dimensional Search Spaces 2007 IEEE International Conference on Robotics and Automation Roma, Italy, 10-14 April 2007 WeD11.2 Anytime, Dynamic Planning in High-dimensional Search Spaces Dave Ferguson Intel Research Pittsburgh 4720

More information

Geometric Path Planning McGill COMP 765 Oct 12 th, 2017

Geometric Path Planning McGill COMP 765 Oct 12 th, 2017 Geometric Path Planning McGill COMP 765 Oct 12 th, 2017 The Motion Planning Problem Intuition: Find a safe path/trajectory from start to goal More precisely: A path is a series of robot configurations

More information

Real-time footstep planning for humanoid robots among 3D obstacles using a hybrid bounding box

Real-time footstep planning for humanoid robots among 3D obstacles using a hybrid bounding box Real-time footstep planning for humanoid robots among 3D obstacles using a hybrid bounding box Nicolas Perrin, Olivier Stasse, Florent Lamiraux, Youn Kim, Dinesh Manocha To cite this version: Nicolas Perrin,

More information

Leg Motion Primitives for a Humanoid Robot to Imitate Human Dances

Leg Motion Primitives for a Humanoid Robot to Imitate Human Dances Leg Motion Primitives for a Humanoid Robot to Imitate Human Dances Shinichiro Nakaoka 1, Atsushi Nakazawa 2, Kazuhito Yokoi 3 and Katsushi Ikeuchi 1 1 The University of Tokyo,Tokyo, Japan (nakaoka@cvl.iis.u-tokyo.ac.jp)

More information

Motion Planning for Humanoid Walking in a Layered Environment

Motion Planning for Humanoid Walking in a Layered Environment Appear in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2003 Motion Planning for Humanoid Walking in a Layered Environment Tsai-Yen Li Computer Science Department

More information

Continuous Humanoid Locomotion over Uneven Terrain using Stereo Fusion

Continuous Humanoid Locomotion over Uneven Terrain using Stereo Fusion Continuous Humanoid Locomotion over Uneven Terrain using Stereo Fusion Maurice F. Fallon1, Pat Marion2, Robin Deits2, Thomas Whelan3, Matthew Antone2, John McDonald3 and Russ Tedrake2 Abstract For humanoid

More information

Robotics. CSPP Artificial Intelligence March 10, 2004

Robotics. CSPP Artificial Intelligence March 10, 2004 Robotics CSPP 56553 Artificial Intelligence March 10, 2004 Roadmap Robotics is AI-complete Integration of many AI techniques Classic AI Search in configuration space (Ultra) Modern AI Subsumption architecture

More information

Introduction to Autonomous Mobile Robots

Introduction to Autonomous Mobile Robots Introduction to Autonomous Mobile Robots second edition Roland Siegwart, Illah R. Nourbakhsh, and Davide Scaramuzza The MIT Press Cambridge, Massachusetts London, England Contents Acknowledgments xiii

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 4,000 116,000 120M Open access books available International authors and editors Downloads Our

More information

Synthesis of Constrained Walking Skills

Synthesis of Constrained Walking Skills Synthesis of Constrained Walking Skills Stelian Coros Philippe Beaudoin KangKangYin Michiel van de Panne University of British Columbia (a) (b) (c) (d) Figure 1: Constrained walking skills. (a) Offline

More information

Integrating Dynamics into Motion Planning for Humanoid Robots

Integrating Dynamics into Motion Planning for Humanoid Robots Integrating Dynamics into Motion Planning for Humanoid Robots Fumio Kanehiro, Wael Suleiman, Florent Lamiraux, Eiichi Yoshida and Jean-Paul Laumond Abstract This paper proposes an whole body motion planning

More information

Motion Planning for Humanoid Robots: Highlights with HRP-2

Motion Planning for Humanoid Robots: Highlights with HRP-2 Motion Planning for Humanoid Robots: Highlights with HRP-2 Eiichi Yoshida 1,2 and Jean-Paul Laumond 2 AIST/IS-CNRS/ST2I Joint French-Japanese Robotics Laboratory (JRL) 1 Intelligent Systems Research Institute,

More information

Search-based Planning with Motion Primitives. Maxim Likhachev Carnegie Mellon University

Search-based Planning with Motion Primitives. Maxim Likhachev Carnegie Mellon University Search-based Planning with Motion Primitives Maxim Likhachev Carnegie Mellon University generate a graph representation of the planning problem search the graph for a solution What is Search-based Planning

More information

Spring 2010: Lecture 9. Ashutosh Saxena. Ashutosh Saxena

Spring 2010: Lecture 9. Ashutosh Saxena. Ashutosh Saxena CS 4758/6758: Robot Learning Spring 2010: Lecture 9 Why planning and control? Video Typical Architecture Planning 0.1 Hz Control 50 Hz Does it apply to all robots and all scenarios? Previous Lecture: Potential

More information

TURN AROUND BEHAVIOR GENERATION AND EXECUTION FOR UNMANNED GROUND VEHICLES OPERATING IN ROUGH TERRAIN

TURN AROUND BEHAVIOR GENERATION AND EXECUTION FOR UNMANNED GROUND VEHICLES OPERATING IN ROUGH TERRAIN 1 TURN AROUND BEHAVIOR GENERATION AND EXECUTION FOR UNMANNED GROUND VEHICLES OPERATING IN ROUGH TERRAIN M. M. DABBEERU AND P. SVEC Department of Mechanical Engineering, University of Maryland, College

More information

Real-Time Path Planning in Unknown Environments for Bipedal Robots

Real-Time Path Planning in Unknown Environments for Bipedal Robots IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MAY, 07 Real-Time Path Planning in Unknown Environments for Bipedal Robots Arne-Christoph Hildebrandt, Moritz Klischat, Daniel Wahrmann,

More information

Coordinated Motion Planning for 3D Animation With Use of a Chinese Lion Dance as an Example

Coordinated Motion Planning for 3D Animation With Use of a Chinese Lion Dance as an Example Coordinated Motion Planning for 3D Animation With Use of a Chinese Lion Dance as an Example Fu-Sheng Yu and Tsai-Yen Li Computer Science Department, National Chengchi University, Taiwan, g9331@cs.nccu.edu.tw

More information

Tight Coupling between Manipulation and Perception using SLAM

Tight Coupling between Manipulation and Perception using SLAM Tight Coupling between Manipulation and Perception using SLAM Benzun Pious Wisely Babu Christopher Bove Michael A. Gennert Robotics Engineering Department Worcester Polytechnic Institute Worcester, MA

More information

Development of Vision System on Humanoid Robot HRP-2

Development of Vision System on Humanoid Robot HRP-2 Development of Vision System on Humanoid Robot HRP-2 Yutaro Fukase Institute of Technology, Shimizu Corporation, Japan fukase@shimz.co.jp Junichiro Maeda Institute of Technology, Shimizu Corporation, Japan

More information

Fast and Dynamically Stable Optimization-based Planning for High-DOF Human-like Robots

Fast and Dynamically Stable Optimization-based Planning for High-DOF Human-like Robots Fast and Dynamically Stable Optimization-based Planning for High-DOF Human-like Robots Chonhyon Park and Dinesh Manocha http://gamma.cs.unc.edu/itomp/ (Videos included) Abstract We present a novel optimization-based

More information

Visual Navigation for Flying Robots Exploration, Multi-Robot Coordination and Coverage

Visual Navigation for Flying Robots Exploration, Multi-Robot Coordination and Coverage Computer Vision Group Prof. Daniel Cremers Visual Navigation for Flying Robots Exploration, Multi-Robot Coordination and Coverage Dr. Jürgen Sturm Agenda for Today Exploration with a single robot Coordinated

More information

Range Sensing Based Autonomous Canal Following Using a Simulated Multi-copter. Ali Ahmad

Range Sensing Based Autonomous Canal Following Using a Simulated Multi-copter. Ali Ahmad Range Sensing Based Autonomous Canal Following Using a Simulated Multi-copter Ali Ahmad MS Student of Electrical Engineering Laboratory for Cyber Physical Networks and Systems LUMS School of Science &

More information

Motion Planning of Ladder Climbing for Humanoid Robots

Motion Planning of Ladder Climbing for Humanoid Robots Motion Planning of Ladder Climbing for Humanoid Robots Yajia Zhang, Jingru Luo, Kris Hauser School of Informatics & Computing Indiana University Bloomington, IN 47408 Robert Ellenberg, Paul Oh Mechanical

More information

Planning Support Contact-Points for Acyclic Motions and Experiments on HRP-2

Planning Support Contact-Points for Acyclic Motions and Experiments on HRP-2 Planning Support Contact-Points for Acyclic Motions and Experiments on HRP-2 Adrien Escande, Abderrahmane Kheddar, Sylvain Miossec, Sylvain Garsault To cite this version: Adrien Escande, Abderrahmane Kheddar,

More information

Policies Based on Trajectory Libraries

Policies Based on Trajectory Libraries Policies Based on Trajectory Libraries Martin Stolle Christopher G. Atkeson Robotics Institute, Carnegie Mellon University 5 Forbes Ave, Pittsburgh, PA 1513 {mstolle, cga}@andrew.cmu.edu Abstract We present

More information

Footstep Planning for a Six-Legged in-pipe Robot Moving in Spatially Curved Pipes

Footstep Planning for a Six-Legged in-pipe Robot Moving in Spatially Curved Pipes Footstep Planning for a Six-Legged in-pipe Robot Moving in Spatially Curved Pipes Sergei Savin, Ludmila Vorochaeva Department of Mechanics, Mechatronics and Robotics Southwest State University Kursk, Russia

More information

A Robot Path Planning Framework that Learns from Experience

A Robot Path Planning Framework that Learns from Experience A Robot Path Planning Framework that Learns from Experience Dmitry Berenson Pieter Abbeel Ken Goldberg University of California, Berkeley, Berkeley, CA, USA {berenson, pabbeel}@eecs.berkeley.edu, goldberg@berkeley.edu

More information

Navigation and Metric Path Planning

Navigation and Metric Path Planning Navigation and Metric Path Planning October 4, 2011 Minerva tour guide robot (CMU): Gave tours in Smithsonian s National Museum of History Example of Minerva s occupancy map used for navigation Objectives

More information

Biped Walking Control Based on Hybrid Position/Force Control

Biped Walking Control Based on Hybrid Position/Force Control The 29 IEEE/RSJ International Conference on Intelligent Robots and Systems October -5, 29 St. Louis, USA Biped Walking Control Based on Hybrid Position/Force Control Thomas Buschmann, Sebastian Lohmeier

More information

UAV Autonomous Navigation in a GPS-limited Urban Environment

UAV Autonomous Navigation in a GPS-limited Urban Environment UAV Autonomous Navigation in a GPS-limited Urban Environment Yoko Watanabe DCSD/CDIN JSO-Aerial Robotics 2014/10/02-03 Introduction 2 Global objective Development of a UAV onboard system to maintain flight

More information

An Improved Hierarchical Motion Planner for Humanoid Robots

An Improved Hierarchical Motion Planner for Humanoid Robots 2008 8 th IEEE-RAS International Conference on Humanoid Robots December 1 ~ 3, 2008 / Daejeon, Korea An Improved Hierarchical Motion Planner for Humanoid Robots Salvatore Candido 1, Yong-Tae Kim 2, Seth

More information

Footstep Planning in Rough Terrain for Bipedal Robots using Curved Contact Patches

Footstep Planning in Rough Terrain for Bipedal Robots using Curved Contact Patches Footstep Planning in Rough Terrain for Bipedal Robots using Curved Contact Patches Dimitrios Kanoulas 1, Alexander Stumpf 2, Vignesh Sushrutha Raghavan 1, Chengxu Zhou 1, Alexia Toumpa 1, Oskar von Stryk

More information

Measurement of 3D Foot Shape Deformation in Motion

Measurement of 3D Foot Shape Deformation in Motion Measurement of 3D Foot Shape Deformation in Motion Makoto Kimura Masaaki Mochimaru Takeo Kanade Digital Human Research Center National Institute of Advanced Industrial Science and Technology, Japan The

More information

Introduction to Information Science and Technology (IST) Part IV: Intelligent Machines and Robotics Planning

Introduction to Information Science and Technology (IST) Part IV: Intelligent Machines and Robotics Planning Introduction to Information Science and Technology (IST) Part IV: Intelligent Machines and Robotics Planning Sören Schwertfeger / 师泽仁 ShanghaiTech University ShanghaiTech University - SIST - 10.05.2017

More information

Humanoid Robotics. Monte Carlo Localization. Maren Bennewitz

Humanoid Robotics. Monte Carlo Localization. Maren Bennewitz Humanoid Robotics Monte Carlo Localization Maren Bennewitz 1 Basis Probability Rules (1) If x and y are independent: Bayes rule: Often written as: The denominator is a normalizing constant that ensures

More information

Footstep Planning on Uneven Terrain with Mixed-Integer Convex Optimization

Footstep Planning on Uneven Terrain with Mixed-Integer Convex Optimization Footstep Planning on Uneven Terrain with Mixed-Integer Convex Optimization Robin Deits 1 and Russ Tedrake 2 Abstract We present a new method for planning footstep placements for a robot walking on uneven

More information