COMP 9517 Computer Vision

Size: px
Start display at page:

Download "COMP 9517 Computer Vision"

Transcription

1 COMP 9517 Computer Vision Frequency Domain Techniques 1

2 Frequency Versus Spa<al Domain Spa<al domain The image plane itself Direct manipula<on of pixels Changes in pixel posi<on correspond to changes in the scene Frequency domain Fourier transform of an image Directly related to rate of changes in the image Changes in pixel posi<on correspond to changes in the spa<al frequency

3 Frequency Domain Overview Frequency in image High frequencies correspond to pixel values that change rapidly across the image Low frequency components correspond to large scale features in the image Frequency domain Defined by values of the Fourier transform and its frequency variables (u, v) 3

4 Frequency Domain Overview Frequency domain processing 4

5 Fourier Series Periodic func<on can be represented as a weighted sum of sines and cosines Even func<ons that are not periodic (but whose area under the curve is finite) can be expressed as the integral of sines and/or cosines mul<plied by a weight func<on sum = 5

6 One- Dim Fourier Transform and Inverse For a single variable con<nuous func<on f(x), the Fourier transform F(u) is defined by: F(u) = where j = 1. f(x) exp(-jπ ux) dx Given F(u), we recover f(x) using the inverse Fourier transform: f(x) = F(u) exp(jπ ux) du (1) and () cons<tute a Fourier transform pair (1) () 6

7 Two- Dim Fourier Transform and Inverse In two dimensions, we have: F(u, v) = - f(x, y) exp(-jπ (ux + vy)) dxdy (3) f(x, y) = - F(u, v) exp(jπ (ux + vy)) dudv (4) 7

8 Discrete Fourier Transform In one dimension, 1 F(u) = M M 1 x= 0 f(x) exp(-jπ ux/m) for u = 0,1,,,M -1. (5) f(x) = M 1 x= 0 F(u) exp(jπux/m) for x = 0,1,,,M -1. Note that the loca<on of 1/M does not ma\er, so long as the product of the two mul<pliers is 1/M Also in the discrete case, the Fourier transform and its inverse always exist (6) 8

9 Discrete Fourier Transform Consider Euler s formula: exp j Subs<tu<ng this expression into (5), and no<ng cos(- θ)=cos(θ), we obtain 1 F(u) = M M 1 x= 0 jsin( θ) Each term of F depends on all values of f(x), and values of f(x) are mul<plied by sines and cosines of different frequencies. The domain over which values of F(u) range is called the frequency domain, as u determines the frequency of the components of the transform. θ = cos( θi) + f(x)[cosπux/m - jsinπux/m], (7) for u = 0,1,,,M -1. (8) 9

10 - D Discrete Fourier Transform Digital images are - D discrete func<ons: F(u, v) = for u 1 MN M 1 N-1 x= 0 y= 0 f(x, y) exp(-jπ (ux/m + vy/n)), = 0,1,,,M -1and v = 0,1,,, N -1. (9) f(x, y) = for x 1 MN M 1 N-1 u= 0 v= 0 F(u, v) exp(jπ (ux/m + vy/n)), = 0,1,,,M -1and y = 0,1,,, N -1. (10) 10

11 Frequency Domain Filtering Frequency is directly related to rate of change, so frequencies in the Fourier transform may be related to pa\erns of intensity varia<ons in the image. Slowest varying frequency at u = v = 0 corresponds to average gray level of the image. Low frequencies correspond to slowly varying components in the image- for example, large areas of similar gray levels. Higher frequencies correspond to faster gray level changes- such as edges, noise etc. 11

12 Procedure for Filtering in the Frequency Domain 1. Mul<ply the input image by (- 1) x+y to centre the transform. Compute the DFT F(u,v) of the resul<ng image 3. Mul<ply F(u,v) by a filter H(u,v) 4. Compute the inverse DFT transform g*(x,y) 5. Obtain the real part g(x,y) of 4 6. Mul<ply the result by (- 1) x+y 1

13 Example: Notch Filter We wish to force the average value of an image to zero. We can achieve this by sedng F(0, 0) =0, and then taking its inverse transform. So choose the filter func<on as: H (u, v) = 0 if (u, v) = (M/, N/) H (u, v) = 1otherwise. Called the notch filter- constant func<on with a hole (notch) at the origin. A filter that a\enuates high frequencies while allowing low frequencies to pass through is called a lowpass filter. A filter that a\enuates low frequencies while allowing high frequencies to pass through is called a highpass filter. 13

14 Convolu<on Theorem: correspondence between spa<al and frequency filtering Let F(u, v) and H( u, v) be the Fourier transforms of f(x, y) and h(x,y). Let * be spa<al convolu<on, and mul<plica<on be element- by- element product. Then f(x, y) * h(x, y) and F(u, v) H(u, v) cons<tute a Fourier transform pair, i.e. spa<al convolu<on (LHS) can be obtained by taking the inverse transform of RHS, and conversely, the RHS can be obtained as the forward Fourier transform of LHS. Analogously, convolu<on in the frequency domain reduces to mul<plica<on in the spa<al domain, and vice versa. Using this theorem, we can also show that filters in the spa<al and frequency domains cons<tute a Fourier transform pair. 14

15 Exploi<ng the correspondence If filters in the spa<al and frequency domains are of the same size, then filtering is more efficient computa<onally in frequency domain. Spa<al filters tend to be smaller in size. Filtering is also more intui<ve in frequency domain- so design it there. Then, take the inverse transform, and use the resul<ng filter as a guide to design smaller filters in the spa<al domain. 15

16 Example of Smoothing an Image In spa<al domain, we just convolve the image with a Gaussian kernel to smooth it In frequency domain, we can mul<ply the image by a filter achieve the same effect 16

17 Example of Smoothing an Image 1. Mul<ply the input image by (- 1) x+y to center the transform. Compute the DFT F(u,v) of the resul<ng image 3. Mul<ply F(u,v) by a filter G(u,v) 4. Computer the inverse DFT transform h*(x,y) 5. Obtain the real part h(x,y) of 4 6. Mul<ply the result by (- 1) x+y 17

18 Example of Smoothing an Image 1. Mul<ply the input image by (- 1) x+y to center the transform. Compute the DFT F(u,v) of the resul<ng image 3. Mul<ply F(u,v) by a filter G(u,v) 4. Computer the inverse DFT transform h*(x,y) 5. Obtain the real part h(x,y) of 4 6. Mul<ply the result by (- 1) x+y 18

19 Example of Smoothing an Image 1. Mul<ply the input image by (- 1) x+y to center the transform. Compute the DFT F(u,v) of the resul<ng image 3. Mul<ply F(u,v) by a filter G(u,v) 4. Computer the inverse DFT transform h*(x,y) 5. Obtain the real part h(x,y) of 4 Х 6. Mul<ply the result by (- 1) x+y 19

20 Example of Smoothing an Image 1. Mul<ply the input image by (- 1) x+y to center the transform. Compute the DFT F(u,v) of the resul<ng image 3. Mul<ply F(u,v) by a filter G(u,v) 4. Compute the inverse DFT transform h*(x,y) 5. Obtain the real part h(x,y) of 4 6. Mul<ply the result by (- 1) x+y 0

21 Example of Smoothing an Image 1. Mul<ply the input image by (- 1) x+y to center the transform. Compute the DFT F(u,v) of the resul<ng image 3. Mul<ply F(u,v) by a filter G(u,v) 4. Computer the inverse DFT transform h*(x,y) 5. Obtain the real part h(x,y) of 4 6. Mul<ply the result by (- 1) x+y f (x, y)* g(x, y) F(u, v)g(u, v) 1

22 Gaussian Filter Gaussian filters are important because their shapes are easy to specify, and both the forward and inverse Fourier transforms of a Gaussian func<on are real Gaussian func<ons. Let H(u) be a one dimensional Gaussian filter specified by: H(u) = A exp where σ is the standard devia<on of the Gaussian curve. The corresponding filter in the spa<al domain is h(x) = This is usually a lowpass filter. u σ πσ A exp π σ x

23 DoG Filter Difference of Gaussians may be used to construct highpass filters: H(u) = A exp with A B and δ 1 > δ. The corresponding filter in the spa<al domain is u σ 1 B exp u σ h(x) = πσ 1 π σ x π σ x 1 A exp πσ B exp 3

24 Image Pyramids An image pyramid is a collec<on of decreasing resolu<on images arranged in the shape of a pyramid. 4

25 Image Pyramids System block diagram for crea<ng image pyramids 1. Compute a reduced- resolu<on approxima<on of the input image by filtering and downsampling (mean, Gaussian, subsampling). Upsample the output of step 1 and filter the result (possibly with interpola<on) 3. Compute the difference between the predic<on of step and the input to step 1 Repea<ng, produce approxima<on and predic<on residual pyramids 5

26 Image Pyramids Two image pyramids and their sta<s<cs Upsample and filtering the lowest resolu<on approxima<on image Add the 1- level higher Laplacian s predic<on residual 6

27 References and Acknowledgement Gonzalez and Woods, 00, Chapter , 7.1 Szeliski Chapter Some material, including images and tables, were drawn from the textbook, Digital Image Processing by Gonzalez and Woods, and P.C. Rossin s presenta<on. 7

Point and Spatial Processing

Point and Spatial Processing Filtering 1 Point and Spatial Processing Spatial Domain g(x,y) = T[ f(x,y) ] f(x,y) input image g(x,y) output image T is an operator on f Defined over some neighborhood of (x,y) can operate on a set of

More information

Digital Image Processing. Lecture 6

Digital Image Processing. Lecture 6 Digital Image Processing Lecture 6 (Enhancement in the Frequency domain) Bu-Ali Sina University Computer Engineering Dep. Fall 2016 Image Enhancement In The Frequency Domain Outline Jean Baptiste Joseph

More information

Biomedical Image Analysis. Spatial Filtering

Biomedical Image Analysis. Spatial Filtering Biomedical Image Analysis Contents: Spatial Filtering The mechanics of Spatial Filtering Smoothing and sharpening filters BMIA 15 V. Roth & P. Cattin 1 The Mechanics of Spatial Filtering Spatial filter:

More information

Lecture 6: Edge Detection

Lecture 6: Edge Detection #1 Lecture 6: Edge Detection Saad J Bedros sbedros@umn.edu Review From Last Lecture Options for Image Representation Introduced the concept of different representation or transformation Fourier Transform

More information

Motivation. The main goal of Computer Graphics is to generate 2D images. 2D images are continuous 2D functions (or signals)

Motivation. The main goal of Computer Graphics is to generate 2D images. 2D images are continuous 2D functions (or signals) Motivation The main goal of Computer Graphics is to generate 2D images 2D images are continuous 2D functions (or signals) monochrome f(x,y) or color r(x,y), g(x,y), b(x,y) These functions are represented

More information

Image Restoration. Yao Wang Polytechnic Institute of NYU, Brooklyn, NY 11201

Image Restoration. Yao Wang Polytechnic Institute of NYU, Brooklyn, NY 11201 Image Restoration Yao Wang Polytechnic Institute of NYU, Brooklyn, NY 11201 Partly based on A. K. Jain, Fundamentals of Digital Image Processing, and Gonzalez/Woods, Digital Image Processing Figures from

More information

Computer Vision and Graphics (ee2031) Digital Image Processing I

Computer Vision and Graphics (ee2031) Digital Image Processing I Computer Vision and Graphics (ee203) Digital Image Processing I Dr John Collomosse J.Collomosse@surrey.ac.uk Centre for Vision, Speech and Signal Processing University of Surrey Learning Outcomes After

More information

Lecture 5: Frequency Domain Transformations

Lecture 5: Frequency Domain Transformations #1 Lecture 5: Frequency Domain Transformations Saad J Bedros sbedros@umn.edu From Last Lecture Spatial Domain Transformation Point Processing for Enhancement Area/Mask Processing Transformations Image

More information

Lecture 2: 2D Fourier transforms and applications

Lecture 2: 2D Fourier transforms and applications Lecture 2: 2D Fourier transforms and applications B14 Image Analysis Michaelmas 2017 Dr. M. Fallon Fourier transforms and spatial frequencies in 2D Definition and meaning The Convolution Theorem Applications

More information

Reading. 2. Fourier analysis and sampling theory. Required: Watt, Section 14.1 Recommended:

Reading. 2. Fourier analysis and sampling theory. Required: Watt, Section 14.1 Recommended: Reading Required: Watt, Section 14.1 Recommended: 2. Fourier analysis and sampling theory Ron Bracewell, The Fourier Transform and Its Applications, McGraw-Hill. Don P. Mitchell and Arun N. Netravali,

More information

The main goal of Computer Graphics is to generate 2D images 2D images are continuous 2D functions (or signals)

The main goal of Computer Graphics is to generate 2D images 2D images are continuous 2D functions (or signals) Motivation The main goal of Computer Graphics is to generate 2D images 2D images are continuous 2D functions (or signals) monochrome f(x,y) or color r(x,y), g(x,y), b(x,y) These functions are represented

More information

Filtering Images. Contents

Filtering Images. Contents Image Processing and Data Visualization with MATLAB Filtering Images Hansrudi Noser June 8-9, 010 UZH, Multimedia and Robotics Summer School Noise Smoothing Filters Sigmoid Filters Gradient Filters Contents

More information

Tutorial 5. Jun Xu, Teaching Asistant March 2, COMP4134 Biometrics Authentication

Tutorial 5. Jun Xu, Teaching Asistant March 2, COMP4134 Biometrics Authentication Tutorial 5 Jun Xu, Teaching Asistant nankaimathxujun@gmail.com COMP4134 Biometrics Authentication March 2, 2017 Table of Contents Problems Problem 1: Answer The Questions Problem 2: Indeterminate Region

More information

Fourier analysis and sampling theory

Fourier analysis and sampling theory Reading Required: Shirley, Ch. 9 Recommended: Fourier analysis and sampling theory Ron Bracewell, The Fourier Transform and Its Applications, McGraw-Hill. Don P. Mitchell and Arun N. Netravali, Reconstruction

More information

To Do. Advanced Computer Graphics. Sampling and Reconstruction. Outline. Sign up for Piazza

To Do. Advanced Computer Graphics. Sampling and Reconstruction. Outline. Sign up for Piazza Advanced Computer Graphics CSE 63 [Spring 207], Lecture 3 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir Sign up for Piazza To Do Assignment, Due Apr 28. Anyone need help finding partners? Any issues with

More information

Digital Image Processing. Image Enhancement in the Frequency Domain

Digital Image Processing. Image Enhancement in the Frequency Domain Digital Image Processing Image Enhancement in the Frequency Domain Topics Frequency Domain Enhancements Fourier Transform Convolution High Pass Filtering in Frequency Domain Low Pass Filtering in Frequency

More information

Fourier Transform and Texture Filtering

Fourier Transform and Texture Filtering Fourier Transform and Texture Filtering Lucas J. van Vliet www.ph.tn.tudelft.nl/~lucas Image Analysis Paradigm scene Image formation sensor pre-processing Image enhancement Image restoration Texture filtering

More information

Outline. Sampling and Reconstruction. Sampling and Reconstruction. Foundations of Computer Graphics (Fall 2012)

Outline. Sampling and Reconstruction. Sampling and Reconstruction. Foundations of Computer Graphics (Fall 2012) Foundations of Computer Graphics (Fall 2012) CS 184, Lectures 19: Sampling and Reconstruction http://inst.eecs.berkeley.edu/~cs184 Outline Basic ideas of sampling, reconstruction, aliasing Signal processing

More information

Edge and local feature detection - 2. Importance of edge detection in computer vision

Edge and local feature detection - 2. Importance of edge detection in computer vision Edge and local feature detection Gradient based edge detection Edge detection by function fitting Second derivative edge detectors Edge linking and the construction of the chain graph Edge and local feature

More information

PSD2B Digital Image Processing. Unit I -V

PSD2B Digital Image Processing. Unit I -V PSD2B Digital Image Processing Unit I -V Syllabus- Unit 1 Introduction Steps in Image Processing Image Acquisition Representation Sampling & Quantization Relationship between pixels Color Models Basics

More information

Outline. Foundations of Computer Graphics (Spring 2012)

Outline. Foundations of Computer Graphics (Spring 2012) Foundations of Computer Graphics (Spring 2012) CS 184, Lectures 19: Sampling and Reconstruction http://inst.eecs.berkeley.edu/~cs184 Basic ideas of sampling, reconstruction, aliasing Signal processing

More information

Image restoration. Lecture 14. Milan Gavrilovic Centre for Image Analysis Uppsala University

Image restoration. Lecture 14. Milan Gavrilovic Centre for Image Analysis Uppsala University Image restoration Lecture 14 Milan Gavrilovic milan@cb.uu.se Centre for Image Analysis Uppsala University Computer Assisted Image Analysis 2009-05-08 M. Gavrilovic (Uppsala University) L14 Image restoration

More information

VU Signal and Image Processing. Image Restoration. Torsten Möller + Hrvoje Bogunović + Raphael Sahann

VU Signal and Image Processing. Image Restoration. Torsten Möller + Hrvoje Bogunović + Raphael Sahann 052600 VU Signal and Image Processing Image Restoration Torsten Möller + Hrvoje Bogunović + Raphael Sahann torsten.moeller@univie.ac.at hrvoje.bogunovic@meduniwien.ac.at raphael.sahann@univie.ac.at vda.cs.univie.ac.at/teaching/sip/17s/

More information

IMAGE ENHANCEMENT IN THE FREQUENCY DOMAIN (1)

IMAGE ENHANCEMENT IN THE FREQUENCY DOMAIN (1) KOM3 Image Processing in Indstrial Systems Dr Mharrem Mercimek IMAGE ENHANCEMENT IN THE FREQUENCY DOMAIN KOM3 Image Processing in Indstrial Systems Some of the contents are adopted from R. C. Gonzalez

More information

Vivekananda. Collegee of Engineering & Technology. Question and Answers on 10CS762 /10IS762 UNIT- 5 : IMAGE ENHANCEMENT.

Vivekananda. Collegee of Engineering & Technology. Question and Answers on 10CS762 /10IS762 UNIT- 5 : IMAGE ENHANCEMENT. Vivekananda Collegee of Engineering & Technology Question and Answers on 10CS762 /10IS762 UNIT- 5 : IMAGE ENHANCEMENT Dept. Prepared by Harivinod N Assistant Professor, of Computer Science and Engineering,

More information

Relationship between Fourier Space and Image Space. Academic Resource Center

Relationship between Fourier Space and Image Space. Academic Resource Center Relationship between Fourier Space and Image Space Academic Resource Center Presentation Outline What is an image? Noise Why do we transform images? What is the Fourier Transform? Examples of images in

More information

Feature extraction. Bi-Histogram Binarization Entropy. What is texture Texture primitives. Filter banks 2D Fourier Transform Wavlet maxima points

Feature extraction. Bi-Histogram Binarization Entropy. What is texture Texture primitives. Filter banks 2D Fourier Transform Wavlet maxima points Feature extraction Bi-Histogram Binarization Entropy What is texture Texture primitives Filter banks 2D Fourier Transform Wavlet maxima points Edge detection Image gradient Mask operators Feature space

More information

Statistical Image Compression using Fast Fourier Coefficients

Statistical Image Compression using Fast Fourier Coefficients Statistical Image Compression using Fast Fourier Coefficients M. Kanaka Reddy Research Scholar Dept.of Statistics Osmania University Hyderabad-500007 V. V. Haragopal Professor Dept.of Statistics Osmania

More information

Visual Pathways to the Brain

Visual Pathways to the Brain Visual Pathways to the Brain 1 Left half of visual field which is imaged on the right half of each retina is transmitted to right half of brain. Vice versa for right half of visual field. From each eye

More information

EEM 561 Machine Vision. Week 3: Fourier Transform and Image Pyramids

EEM 561 Machine Vision. Week 3: Fourier Transform and Image Pyramids EEM 561 Machine Vision Week 3: Fourier Transform and Image Pyramids Spring 2015 Instructor: Hatice Çınar Akakın, Ph.D. haticecinarakakin@anadolu.edu.tr Anadolu University Linear Image Transformations In

More information

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier Computer Vision 2 SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung Computer Vision 2 Dr. Benjamin Guthier 1. IMAGE PROCESSING Computer Vision 2 Dr. Benjamin Guthier Content of this Chapter Non-linear

More information

Coordinate Transformations in Advanced Calculus

Coordinate Transformations in Advanced Calculus Coordinate Transformations in Advanced Calculus by Sacha Nandlall T.A. for MATH 264, McGill University Email: sacha.nandlall@mail.mcgill.ca Website: http://www.resanova.com/teaching/calculus/ Fall 2006,

More information

Basics. Sampling and Reconstruction. Sampling and Reconstruction. Outline. (Spatial) Aliasing. Advanced Computer Graphics (Fall 2010)

Basics. Sampling and Reconstruction. Sampling and Reconstruction. Outline. (Spatial) Aliasing. Advanced Computer Graphics (Fall 2010) Advanced Computer Graphics (Fall 2010) CS 283, Lecture 3: Sampling and Reconstruction Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs283/fa10 Some slides courtesy Thomas Funkhouser and Pat Hanrahan

More information

Chapter4 Image Enhancement

Chapter4 Image Enhancement Chapter4 Image Enhancement Preview 4.1 General introduction and Classification 4.2 Enhancement by Spatial Transforming(contrast enhancement) 4.3 Enhancement by Spatial Filtering (image smoothing) 4.4 Enhancement

More information

Image Enhancement in Spatial Domain. By Dr. Rajeev Srivastava

Image Enhancement in Spatial Domain. By Dr. Rajeev Srivastava Image Enhancement in Spatial Domain By Dr. Rajeev Srivastava CONTENTS Image Enhancement in Spatial Domain Spatial Domain Methods 1. Point Processing Functions A. Gray Level Transformation functions for

More information

EECS490: Digital Image Processing. Lecture #16

EECS490: Digital Image Processing. Lecture #16 Lecture #16 Wiener Filters Constrained Least Squares Filter Computed Tomography Basics Reconstruction and the Radon Transform Fourier Slice Theorem Filtered Backprojections Fan Beams Motion Blurring Model

More information

Filtering, scale, orientation, localization, and texture. Nuno Vasconcelos ECE Department, UCSD (with thanks to David Forsyth)

Filtering, scale, orientation, localization, and texture. Nuno Vasconcelos ECE Department, UCSD (with thanks to David Forsyth) Filtering, scale, orientation, localization, and texture Nuno Vasconcelos ECE Department, UCSD (with thanks to David Forsyth) Beyond edges we have talked a lot about edges while they are important, it

More information

CS4670: Computer Vision

CS4670: Computer Vision CS4670: Computer Vision Noah Snavely Lecture 9: Image alignment http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/ Szeliski: Chapter 6.1 Reading All 2D Linear Transformations

More information

Edge Detection. CS664 Computer Vision. 3. Edges. Several Causes of Edges. Detecting Edges. Finite Differences. The Gradient

Edge Detection. CS664 Computer Vision. 3. Edges. Several Causes of Edges. Detecting Edges. Finite Differences. The Gradient Edge Detection CS664 Computer Vision. Edges Convert a gray or color image into set of curves Represented as binary image Capture properties of shapes Dan Huttenlocher Several Causes of Edges Sudden changes

More information

Frequency analysis, pyramids, texture analysis, applications (face detection, category recognition)

Frequency analysis, pyramids, texture analysis, applications (face detection, category recognition) Frequency analysis, pyramids, texture analysis, applications (face detection, category recognition) Outline Measuring frequencies in images: Definitions, properties Sampling issues Relation with Gaussian

More information

Edge Detection. CSE 576 Ali Farhadi. Many slides from Steve Seitz and Larry Zitnick

Edge Detection. CSE 576 Ali Farhadi. Many slides from Steve Seitz and Larry Zitnick Edge Detection CSE 576 Ali Farhadi Many slides from Steve Seitz and Larry Zitnick Edge Attneave's Cat (1954) Origin of edges surface normal discontinuity depth discontinuity surface color discontinuity

More information

Edges, interpolation, templates. Nuno Vasconcelos ECE Department, UCSD (with thanks to David Forsyth)

Edges, interpolation, templates. Nuno Vasconcelos ECE Department, UCSD (with thanks to David Forsyth) Edges, interpolation, templates Nuno Vasconcelos ECE Department, UCSD (with thanks to David Forsyth) Edge detection edge detection has many applications in image processing an edge detector implements

More information

Image Understanding Edge Detection

Image Understanding Edge Detection Image Understanding Edge Detection 1 Introduction Thegoalofedgedetectionistoproducesomethinglikealinedrawingofanimage. Inpractice we will look for places in the image where the intensity changes quickly.

More information

convolution shift invariant linear system Fourier Transform Aliasing and sampling scale representation edge detection corner detection

convolution shift invariant linear system Fourier Transform Aliasing and sampling scale representation edge detection corner detection COS 429: COMPUTER VISON Linear Filters and Edge Detection convolution shift invariant linear system Fourier Transform Aliasing and sampling scale representation edge detection corner detection Reading:

More information

Computer Vision I. Announcements. Fourier Tansform. Efficient Implementation. Edge and Corner Detection. CSE252A Lecture 13.

Computer Vision I. Announcements. Fourier Tansform. Efficient Implementation. Edge and Corner Detection. CSE252A Lecture 13. Announcements Edge and Corner Detection HW3 assigned CSE252A Lecture 13 Efficient Implementation Both, the Box filter and the Gaussian filter are separable: First convolve each row of input image I with

More information

Model Fitting. CS6240 Multimedia Analysis. Leow Wee Kheng. Department of Computer Science School of Computing National University of Singapore

Model Fitting. CS6240 Multimedia Analysis. Leow Wee Kheng. Department of Computer Science School of Computing National University of Singapore Model Fitting CS6240 Multimedia Analysis Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore (CS6240) Model Fitting 1 / 34 Introduction Introduction Model

More information

Chapter 3: Intensity Transformations and Spatial Filtering

Chapter 3: Intensity Transformations and Spatial Filtering Chapter 3: Intensity Transformations and Spatial Filtering 3.1 Background 3.2 Some basic intensity transformation functions 3.3 Histogram processing 3.4 Fundamentals of spatial filtering 3.5 Smoothing

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging 1 Lucas Parra, CCNY BME I5000: Biomedical Imaging Lecture 11 Point Spread Function, Inverse Filtering, Wiener Filtering, Sharpening,... Lucas C. Parra, parra@ccny.cuny.edu Blackboard: http://cityonline.ccny.cuny.edu/

More information

Texture Segmentation Using Multichannel Gabor Filtering

Texture Segmentation Using Multichannel Gabor Filtering IOSR Journal of Electronics and Communication Engineering (IOSRJECE) ISSN : 2278-2834 Volume 2, Issue 6 (Sep-Oct 2012), PP 22-26 Texture Segmentation Using Multichannel Gabor Filtering M. Sivalingamaiah

More information

Lecture 7: Most Common Edge Detectors

Lecture 7: Most Common Edge Detectors #1 Lecture 7: Most Common Edge Detectors Saad Bedros sbedros@umn.edu Edge Detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, most semantic and shape information from the

More information

Edge detection. Gradient-based edge operators

Edge detection. Gradient-based edge operators Edge detection Gradient-based edge operators Prewitt Sobel Roberts Laplacian zero-crossings Canny edge detector Hough transform for detection of straight lines Circle Hough Transform Digital Image Processing:

More information

Image Restoration and Reconstruction

Image Restoration and Reconstruction Image Restoration and Reconstruction Image restoration Objective process to improve an image, as opposed to the subjective process of image enhancement Enhancement uses heuristics to improve the image

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Third Edition Rafael C. Gonzalez University of Tennessee Richard E. Woods MedData Interactive PEARSON Prentice Hall Pearson Education International Contents Preface xv Acknowledgments

More information

Introduction to Computer Vision. Week 3, Fall 2010 Instructor: Prof. Ko Nishino

Introduction to Computer Vision. Week 3, Fall 2010 Instructor: Prof. Ko Nishino Introduction to Computer Vision Week 3, Fall 2010 Instructor: Prof. Ko Nishino Last Week! Image Sensing " Our eyes: rods and cones " CCD, CMOS, Rolling Shutter " Sensing brightness and sensing color! Projective

More information

Area and Jacobians. Outline

Area and Jacobians. Outline Area and Jacobians Outline 1. Jacobians Let f : 2 2 be a smooth map from the uv-plane to the xy-plane. The Jacobian of f is the absolute value of the determinant of the derivative matrix: Jf = det(df)

More information

ME/CS 132: Introduction to Vision-based Robot Navigation! Low-level Image Processing" Larry Matthies"

ME/CS 132: Introduction to Vision-based Robot Navigation! Low-level Image Processing Larry Matthies ME/CS 132: Introduction to Vision-based Robot Navigation! Low-level Image Processing" Larry Matthies" lhm@jpl.nasa.gov, 818-354-3722" Announcements" First homework grading is done! Second homework is due

More information

Image Restoration and Reconstruction

Image Restoration and Reconstruction Image Restoration and Reconstruction Image restoration Objective process to improve an image Recover an image by using a priori knowledge of degradation phenomenon Exemplified by removal of blur by deblurring

More information

Digital Image Fundamentals II

Digital Image Fundamentals II Digital Image Fundamentals II 1. Image modeling and representations 2. Pixels and Pixel relations 3. Arithmetic operations of images 4. Image geometry operation 5. Image processing with Matlab - Image

More information

Scaled representations

Scaled representations Scaled representations Big bars (resp. spots, hands, etc.) and little bars are both interesting Stripes and hairs, say Inefficient to detect big bars with big filters And there is superfluous detail in

More information

Autoregressive and Random Field Texture Models

Autoregressive and Random Field Texture Models 1 Autoregressive and Random Field Texture Models Wei-Ta Chu 2008/11/6 Random Field 2 Think of a textured image as a 2D array of random numbers. The pixel intensity at each location is a random variable.

More information

Edge Detection. Announcements. Edge detection. Origin of Edges. Mailing list: you should have received messages

Edge Detection. Announcements. Edge detection. Origin of Edges. Mailing list: you should have received messages Announcements Mailing list: csep576@cs.washington.edu you should have received messages Project 1 out today (due in two weeks) Carpools Edge Detection From Sandlot Science Today s reading Forsyth, chapters

More information

COMPUTER VISION > OPTICAL FLOW UTRECHT UNIVERSITY RONALD POPPE

COMPUTER VISION > OPTICAL FLOW UTRECHT UNIVERSITY RONALD POPPE COMPUTER VISION 2017-2018 > OPTICAL FLOW UTRECHT UNIVERSITY RONALD POPPE OUTLINE Optical flow Lucas-Kanade Horn-Schunck Applications of optical flow Optical flow tracking Histograms of oriented flow Assignment

More information

Examination in Digital Image Processing, TSBB08

Examination in Digital Image Processing, TSBB08 Examination in Digital Image Processing, TSBB8 Time: 215-1-23, 14.-18. Location: TER4 Examiner: Maria Magnusson will visit the classroom at 15. and 16.45, tel. 281336, 73-84 38 67 Permitted equipment:

More information

Image Reconstruction from Projection

Image Reconstruction from Projection Image Reconstruction from Projection Reconstruct an image from a series of projections X-ray computed tomography (CT) Computed tomography is a medical imaging method employing tomography where digital

More information

Concepts in. Edge Detection

Concepts in. Edge Detection Concepts in Edge Detection Dr. Sukhendu Das Deptt. of Computer Science and Engg., Indian Institute of Technology, Madras Chennai 636, India. http://www.cs.iitm.ernet.in/~sdas Email: sdas@iitm.ac.in Edge

More information

Image Pyramids and Applications

Image Pyramids and Applications Image Pyramids and Applications Computer Vision Jia-Bin Huang, Virginia Tech Golconda, René Magritte, 1953 Administrative stuffs HW 1 will be posted tonight, due 11:59 PM Sept 25 Anonymous feedback Previous

More information

Image Processing. Traitement d images. Yuliya Tarabalka Tel.

Image Processing. Traitement d images. Yuliya Tarabalka  Tel. Traitement d images Yuliya Tarabalka yuliya.tarabalka@hyperinet.eu yuliya.tarabalka@gipsa-lab.grenoble-inp.fr Tel. 04 76 82 62 68 Noise reduction Image restoration Restoration attempts to reconstruct an

More information

Multimedia Computing: Algorithms, Systems, and Applications: Edge Detection

Multimedia Computing: Algorithms, Systems, and Applications: Edge Detection Multimedia Computing: Algorithms, Systems, and Applications: Edge Detection By Dr. Yu Cao Department of Computer Science The University of Massachusetts Lowell Lowell, MA 01854, USA Part of the slides

More information

Continuous Space Fourier Transform (CSFT)

Continuous Space Fourier Transform (CSFT) C. A. Bouman: Digital Image Processing - January 8, 8 Continuous Space Fourier Transform (CSFT) Forward CSFT: F(u,v) = Inverse CSFT: f(x,y) = f(x,y)e jπ(ux+vy) dxdy F(u,v)e jπ(ux+vy) dudv Space coordinates:.

More information

Copyright 2005 Center for Imaging Science Rochester Institute of Technology Rochester, NY

Copyright 2005 Center for Imaging Science Rochester Institute of Technology Rochester, NY Development of Algorithm for Fusion of Hyperspectral and Multispectral Imagery with the Objective of Improving Spatial Resolution While Retaining Spectral Data Thesis Christopher J. Bayer Dr. Carl Salvaggio

More information

Probability Model for 2 RV s

Probability Model for 2 RV s Probability Model for 2 RV s The joint probability mass function of X and Y is P X,Y (x, y) = P [X = x, Y= y] Joint PMF is a rule that for any x and y, gives the probability that X = x and Y= y. 3 Example:

More information

Texture. Outline. Image representations: spatial and frequency Fourier transform Frequency filtering Oriented pyramids Texture representation

Texture. Outline. Image representations: spatial and frequency Fourier transform Frequency filtering Oriented pyramids Texture representation Texture Outline Image representations: spatial and frequency Fourier transform Frequency filtering Oriented pyramids Texture representation 1 Image Representation The standard basis for images is the set

More information

Neighborhood operations

Neighborhood operations Neighborhood operations Generate an output pixel on the basis of the pixel and its neighbors Often involve the convolution of an image with a filter kernel or mask g ( i, j) = f h = f ( i m, j n) h( m,

More information

C2: Medical Image Processing Linwei Wang

C2: Medical Image Processing Linwei Wang C2: Medical Image Processing 4005-759 Linwei Wang Content Enhancement Improve visual quality of the image When the image is too dark, too light, or has low contrast Highlight certain features of the image

More information

Digital Image Processing. Week 2

Digital Image Processing. Week 2 Geometric spatial transformations and image registration - modify the spatial relationship between pixels in an image - these transformations are often called rubber-sheet transformations (analogous to

More information

Limits and Continuity: section 12.2

Limits and Continuity: section 12.2 Limits and Continuity: section 1. Definition. Let f(x,y) be a function with domain D, and let (a,b) be a point in the plane. We write f (x,y) = L if for each ε > 0 there exists some δ > 0 such that if

More information

Parametric Surfaces. Substitution

Parametric Surfaces. Substitution Calculus Lia Vas Parametric Surfaces. Substitution Recall that a curve in space is given by parametric equations as a function of single parameter t x = x(t) y = y(t) z = z(t). A curve is a one-dimensional

More information

To Do. Advanced Computer Graphics. Discrete Convolution. Outline. Outline. Implementing Discrete Convolution

To Do. Advanced Computer Graphics. Discrete Convolution. Outline. Outline. Implementing Discrete Convolution Advanced Computer Graphics CSE 163 [Spring 2018], Lecture 4 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir To Do Assignment 1, Due Apr 27. Please START EARLY This lecture completes all the material you

More information

Analysis and Synthesis of Texture

Analysis and Synthesis of Texture Analysis and Synthesis of Texture CMPE 264: Image Analysis and Computer Vision Spring 02, Hai Tao 31/5/02 Extracting image structure by filter banks Q Represent image textures using the responses of a

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 10 130221 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Canny Edge Detector Hough Transform Feature-Based

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 WRI C225 Lecture 04 130131 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Histogram Equalization Image Filtering Linear

More information

5. Feature Extraction from Images

5. Feature Extraction from Images 5. Feature Extraction from Images Aim of this Chapter: Learn the Basic Feature Extraction Methods for Images Main features: Color Texture Edges Wie funktioniert ein Mustererkennungssystem Test Data x i

More information

CS4442/9542b Artificial Intelligence II prof. Olga Veksler

CS4442/9542b Artificial Intelligence II prof. Olga Veksler CS4442/9542b Artificial Intelligence II prof. Olga Veksler Lecture 8 Computer Vision Introduction, Filtering Some slides from: D. Jacobs, D. Lowe, S. Seitz, A.Efros, X. Li, R. Fergus, J. Hayes, S. Lazebnik,

More information

CS 534: Computer Vision Texture

CS 534: Computer Vision Texture CS 534: Computer Vision Texture Ahmed Elgammal Dept of Computer Science CS 534 Texture - 1 Outlines Finding templates by convolution What is Texture Co-occurrence matrices for texture Spatial Filtering

More information

An introduction to image enhancement in the spatial domain.

An introduction to image enhancement in the spatial domain. University of Antwerp Department of Mathematics and Computer Science An introduction to image enhancement in the spatial domain. Sven Maerivoet November, 17th 2000 Contents 1 Introduction 1 1.1 Spatial

More information

Image Processing: Discrete Images

Image Processing: Discrete Images 7 Image Processing: Discrete Images In the previous chapter we explored linear, shift-invariant systems in the continuous two-dimensional domain. In practice, we deal with images that are both limited

More information

Noise Model. Important Noise Probability Density Functions (Cont.) Important Noise Probability Density Functions

Noise Model. Important Noise Probability Density Functions (Cont.) Important Noise Probability Density Functions Others -- Noise Removal Techniques -- Edge Detection Techniques -- Geometric Operations -- Color Image Processing -- Color Spaces Xiaojun Qi Noise Model The principal sources of noise in digital images

More information

Biomedical Image Analysis. Homomorphic Filtering and applications to PET

Biomedical Image Analysis. Homomorphic Filtering and applications to PET Biomedical Image Analysis Homomorphic Filtering and applications to PET Contents: Image enhancement and correction Brightness normalization and contrast enhancement Applications to SPECT BMIA 15 V. Roth

More information

Segmentation and Grouping

Segmentation and Grouping Segmentation and Grouping How and what do we see? Fundamental Problems ' Focus of attention, or grouping ' What subsets of pixels do we consider as possible objects? ' All connected subsets? ' Representation

More information

Edge detection. Convert a 2D image into a set of curves. Extracts salient features of the scene More compact than pixels

Edge detection. Convert a 2D image into a set of curves. Extracts salient features of the scene More compact than pixels Edge Detection Edge detection Convert a 2D image into a set of curves Extracts salient features of the scene More compact than pixels Origin of Edges surface normal discontinuity depth discontinuity surface

More information

CS4442/9542b Artificial Intelligence II prof. Olga Veksler

CS4442/9542b Artificial Intelligence II prof. Olga Veksler CS4442/9542b Artificial Intelligence II prof. Olga Veksler Lecture 2 Computer Vision Introduction, Filtering Some slides from: D. Jacobs, D. Lowe, S. Seitz, A.Efros, X. Li, R. Fergus, J. Hayes, S. Lazebnik,

More information

Lecture 4: Spatial Domain Transformations

Lecture 4: Spatial Domain Transformations # Lecture 4: Spatial Domain Transformations Saad J Bedros sbedros@umn.edu Reminder 2 nd Quiz on the manipulator Part is this Fri, April 7 205, :5 AM to :0 PM Open Book, Open Notes, Focus on the material

More information

Exercise: Simulating spatial processing in the visual pathway with convolution

Exercise: Simulating spatial processing in the visual pathway with convolution Exercise: Simulating spatial processing in the visual pathway with convolution This problem uses convolution to simulate the spatial filtering performed by neurons in the early stages of the visual pathway,

More information

Math 251 Quiz 5 Fall b. Calculate. 2. Sketch the region. Write as one double integral by interchanging the order of integration: 2

Math 251 Quiz 5 Fall b. Calculate. 2. Sketch the region. Write as one double integral by interchanging the order of integration: 2 Math 251 Quiz 5 Fall 2002 1. a. Calculate 5 1 0 1 x dx dy b. Calculate 1 5 1 0 xdxdy 2. Sketch the region. Write as one double integral by interchanging the order of integration: 0 2 dx 2 x dy f(x,y) +

More information

IMAGE ENHANCEMENT IN THE SPATIAL DOMAIN

IMAGE ENHANCEMENT IN THE SPATIAL DOMAIN 1 Image Enhancement in the Spatial Domain 3 IMAGE ENHANCEMENT IN THE SPATIAL DOMAIN Unit structure : 3.0 Objectives 3.1 Introduction 3.2 Basic Grey Level Transform 3.3 Identity Transform Function 3.4 Image

More information

Lecture 4: Image Processing

Lecture 4: Image Processing Lecture 4: Image Processing Definitions Many graphics techniques that operate only on images Image processing: operations that take images as input, produce images as output In its most general form, an

More information

Image processing in frequency Domain

Image processing in frequency Domain Image processing in frequency Domain Introduction to Frequency Domain Deal with images in: -Spatial domain -Frequency domain Frequency Domain In the frequency or Fourier domain, the value and location

More information

Computer Vision: 4. Filtering. By I-Chen Lin Dept. of CS, National Chiao Tung University

Computer Vision: 4. Filtering. By I-Chen Lin Dept. of CS, National Chiao Tung University Computer Vision: 4. Filtering By I-Chen Lin Dept. of CS, National Chiao Tung University Outline Impulse response and convolution. Linear filter and image pyramid. Textbook: David A. Forsyth and Jean Ponce,

More information

Gradient and Directional Derivatives

Gradient and Directional Derivatives Gradient and Directional Derivatives MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Background Given z = f (x, y) we understand that f : gives the rate of change of z in

More information

Edge Detection (with a sidelight introduction to linear, associative operators). Images

Edge Detection (with a sidelight introduction to linear, associative operators). Images Images (we will, eventually, come back to imaging geometry. But, now that we know how images come from the world, we will examine operations on images). Edge Detection (with a sidelight introduction to

More information