MONITORING COASTAL INSTABILITY USING AIRBORNE AND TERRESTRIAL LIDAR

Size: px
Start display at page:

Download "MONITORING COASTAL INSTABILITY USING AIRBORNE AND TERRESTRIAL LIDAR"

Transcription

1 MONITORING COASTAL INSTABILITY USING AIRBORNE AND TERRESTRIAL LIDAR A Coastal Challenge Monitoring coastlines is a challenging task, especially due to the typically inaccessible nature of the coastal terrain. With rapid erosion rates becoming commonplace, this is increasingly becoming an area of concern. To determine the associated hazards and potential impacts upon local infrastructure, it is important to measure the erosion rates which result in unstable slopes in coastal areas. 3D Laser Mapping and Durham University are demonstrating the benefits of integrating data collected from different sensors, on different time scales, to intensively monitor rock faces on the North-Yorkshire coast in the UK near the historic town of Whitby. The coastal cliffs in this area are formed from middle Lias rocks that consist of the interbedded mudstones, shales, siltstones, ironstones and sandstones that form the Staithes Sandstone and underlying Redcar Mudstone formations. Coastal instability in this area is significant, with regular rock fall and landslide events leading to elevated rates of coastal recession and associated hazards. It is a challenging and dynamic environment comprising both bare earth and heavily vegetated terrain. Figure 1: Study Area Map The aim of the project is to understand the process through which wave erosion at the base of the cliffs causes undercutting of the cliff slope, resulting in an unstable cliff and failure of material into the sea. Using a combination of airborne laser scanning, photography, terrestrial laser scanning, weather sensors and monitoring software, this large scale monitoring project has allowed a much greater insight into the process of coastal erosion and rock fall.

2 Terrestrial scanning provides high resolution data (in time and space) that enables small changes in the slope to be identified very quickly that may be possible precursors to larger scale failures. The airborne survey gives a different dataset that is over a larger scale, lower resolution but at a much longer time interval, enabling larger scale changes to be assessed less frequently. This dataset is useful for looking at longer term, larger scale trends in the behaviour of the coast. When combined, these data sets can be used to fully understand the movements and mechanisms of a studied rock face. As a result, the seaside town of Whitby now has one of - if not the most - intensively monitored coastal rock faces in the world. The project is part of a KTP (Knowledge Transfer Partnership), a scheme funded by InnovateUK, which has a track record, improving businesses competitiveness, productivity and performance by accessing the knowledge and expertise available within UK Universities and Colleges. Airborne Surveys for Large Scale Change Two repeat surveys were captured at an interval of approximately ten months (August 2014 and June 2015) using a StreetMapper IV Mobile Mapping System (MMS) installed on a helicopter. The MMS comprised a Riegl VQ-450 laser scanner coupled with an IGI AeroControl navigation system. The AeroControl system consists of an Inertial Measurement Unit (IMU-IIe) based on fibre-optic gyros and a Sensor Management Unit with integrated high-end GPS receiver. The VQ-450 laser scanner has a measurement rate of up to 500 khz, a measurement range of up to 800 m and offers online-waveform processing enabling multiple targets to be detected for each individual laser pulse. Figure 2: Helicopter used for aerial survey mountd with StreetMapper pod The laser scanner system was housed in a protective pod giving a 180 degree downward and sideways-looking field-of-view. The field-of-view enabled both the terrain surface

3 (downward looking) and cliff faces (sideways looking) to be scanned. In addition to the laser scanning system, a downward-looking 36.3 megapixel Nikon D-800 camera with a 20 mm lens was also installed in the protective housing to capture optical imagery during the surveys. The average flying height for the surveys was ~100 m AGL giving laser measurement point spacing on the ground of ~15 cm and a GSD of ~1 cm for the optical imagery. Figure 3: (A) 3D coloured point cloud of study area (B) Results of terrain surface classification Surface displacement velocity was derived by first using an automatic classifier on the online-waveform laser data to determine bare earth and vegetated terrain. This step was important as seasonal variation and growth of vegetation can limit the ability to consistently track corresponding terrain features in time-series image sets. The terrain classification approach used the online-waveform data from the laser scanner to identify areas of the

4 terrain exhibiting more than one return per laser pulse. Pulses with multiple returns were assumed to be representative of vegetated terrain where backscatter is observed from more than one object (e.g. the ground surface and vegetation above the ground surface) and classified accordingly. Pulses with only a single return were classified as bare-earth. Figure 4: (A) Match features (Using masked SIFT keypoints) between reference and comparision survey. (B) Calculated displacement vectors. To automatically detect and track the movement of key surface features between the two successive time-series image sets, the SIFT (Scale Invariant Feature Transform) feature tracking algorithm was implemented to determine the 2-D motion of features. The algorithm automatically identifies and tracks common features in successive time-series images to determine the 2-D displacement of each tracked feature. To limit the negative impact of vegetation on the surface displacement results, the terrain classification derived from the laser data was used to exclude any tracked features falling within areas classified as vegetation from the analysis. Three-dimensional displacement vectors for the final set of (non-excluded) tracked features were then derived by projecting the feature tracks onto the point cloud-derived reference surface. Figure 5: 3D Surface distance comparision map Through combining surface elevation changes derived from laser data and displacement velocities calculated from images, it was possible to quantify both the magnitude of

5 displacement, and the rate and direction over which the displacement occurred. The results demonstrate that laser scanning and automated feature tracking using images can be effectively combined to provide measurements of slope instability. High Resolution Monitoring using SiteMonitor4D The airborne survey provided displacement information over 23km of coastline and provided information on larger scale trends occurring over the whole area. However, in order to understand the detailed mechanisms of failure it is necessary to zoom in to a small area and undertake high resolution terrestrial laser scanning. SiteMonitor software from 3D Laser Mapping was used to automatically schedule the capture and analysis of high resolution 3D laser scans. Continual and frequent measurement of the cliff face occurred using SiteMonitor over a 12 month period allowing changes resulting from rock fall to be recorded and analysed. Environmental data was captured alongside the laser scanned data, to try to understand the processes of coastal erosion by looking at projected increases in sea level and stormy weather. Whilst this process may at first glance appear straightforward, research by Durham University over the last decade has shown that this understanding is largely anecdotal. The linkage between waves and erosion evolves gradually through time, and is one that responds to a wide range of factors, and not just the action of waves alone. Figure 6: Terrestrial laser scan data coloured by laser reflectivity, slope and aspect to identify rock bands and variation in jointing pattern across the rock face (100 m width) The system was designed to scan the cliff face 24 hours a day at 30 minute intervals. Within each scan measurements of the cliff face are taken at approximately 10 cm intervals, generating over 2 million points per scan. Whilst this data capture is itself uniquely innovative, the analysis of such a large volume of information presents significant challenges. To overcome this, the system streams data live from Whitby to Durham, where the analysis is undertaken. One of the outcomes of the KTP project between 3D Laser Mapping and Durham University, as the development of new algorithms to extract additional information from time-series 3D scan data in order to understand the slope failure mechanisms. Moisture content on the rock face (due to seepage of water from the rock mass behind) is a significant factor in the prediction of slope failure. Each laser scan can show the moisture content and the time-series data can be used to show areas where there is increasing moisture therefore increasing risk of a failure. Data from the weather sensors was used to develop a correlation between rainfall and evidence of seepage into the rock face.

6 Figure 7: Terrestrial laser scan map of moisture content and seepage on the cliff face Combining Survey Methods for Greater Insight Combining Terrestrial Laser Scanning (TLS) and Airborne Laser Scanning (ALS) projects gives both a detailed survey and a larger scale survey, both of which are important for developing better models of how coastal erosion happens. This improved insight will ultimately lead to better prediction and management of slope failure. As has been demonstrated in this project, both SiteMonitor and StreetMapper can be used to provide a total monitoring solution, versatile enough for even the most challenging of environments. The implications of the research is to move beyond Whitby and the coastlines of the UK. The more usual location of 3D Laser Mapping s SiteMonitor system is in some of the world s largest open pit mines, where rockfall and slope failure presents a significant challenge for sustaining mine productivity. The insight into the fundamental mechanics of how rockfall evolves, gained from the research at the cliffs in Whitby, is designed to be transferrable to these settings and enhance the reliability of slope failure early warning systems. Contacts: Editorial and advertising enquiries, call Eileen Pegg, +44 (0) Reader enquiries to Eileen Pegg, eileenpegg@3dlasermapping.com tel: +44 (0) , Please colour separation requests to Fax +44 (0) Notes to Editors: 3D Laser Mapping is a trusted supplier of technology for monitoring and mobile mapping. Committed to supplying solutions for informed decision making, we work with a network of specialist partners and customers around the world to deliver solutions you can count on. Established in 1999, 3D Laser Mapping is a research led, privately owned company based in Nottingham, UK. We also operate out of local offices in Perth, Australia, Centurion, South Africa and Denver, USA..

Measuring the potential impact of offshore mining on coastal instability through integrated time-series laser scanning and photography

Measuring the potential impact of offshore mining on coastal instability through integrated time-series laser scanning and photography Measuring the potential impact of offshore mining on coastal instability through integrated time-series laser scanning and photography by Neil Slatcher, Roberto Vargas, Chris Cox and Liene Starka, 3D Laser

More information

MANY DISCOVER THE BENEFITS OF 3D MEASUREMENT TECHNOLOGY IN LONDON

MANY DISCOVER THE BENEFITS OF 3D MEASUREMENT TECHNOLOGY IN LONDON MANY DISCOVER THE BENEFITS OF 3D MEASUREMENT TECHNOLOGY IN LONDON Last week UK delegates were shown the benefits and uses of 3D measurement systems and software at a free event held by 3D Laser Mapping,

More information

Lidar Sensors, Today & Tomorrow. Christian Sevcik RIEGL Laser Measurement Systems

Lidar Sensors, Today & Tomorrow. Christian Sevcik RIEGL Laser Measurement Systems Lidar Sensors, Today & Tomorrow Christian Sevcik RIEGL Laser Measurement Systems o o o o Online Waveform technology Stand alone operation no field computer required Remote control through wireless network

More information

Mobile Mapping The StreetMapper Approach. Andrew Fuller LiDAR Systems Engineer

Mobile Mapping The StreetMapper Approach. Andrew Fuller LiDAR Systems Engineer Mobile Mapping The StreetMapper Approach Andrew Fuller LiDAR Systems Engineer UK company based in Nottingham Global 3D Laser Mapping Solutions Innovative solutions StreetMapper Over 11 years experience

More information

StreetMapper 360 & StreetMapper Portable

StreetMapper 360 & StreetMapper Portable StreetMapper 360 & StreetMapper Portable 11th February 2010 Dr. Chris Cox & Mr. Olaf Gross 3D Laser Mapping LIDAR Specialists StreetMapper Distributor for RIEGL (UK, Ireland, Southern Africa) Terrasolid

More information

Terrestrial Laser Scanning: Applications in Civil Engineering Pauline Miller

Terrestrial Laser Scanning: Applications in Civil Engineering Pauline Miller Terrestrial Laser Scanning: Applications in Civil Engineering Pauline Miller School of Civil Engineering & Geosciences Newcastle University Overview Laser scanning overview Research applications geometric

More information

Terrestrial GPS setup Fundamentals of Airborne LiDAR Systems, Collection and Calibration. JAMIE YOUNG Senior Manager LiDAR Solutions

Terrestrial GPS setup Fundamentals of Airborne LiDAR Systems, Collection and Calibration. JAMIE YOUNG Senior Manager LiDAR Solutions Terrestrial GPS setup Fundamentals of Airborne LiDAR Systems, Collection and Calibration JAMIE YOUNG Senior Manager LiDAR Solutions Topics Terrestrial GPS reference Planning and Collection Considerations

More information

Terrain Modeling and Mapping for Telecom Network Installation Using Scanning Technology. Maziana Muhamad

Terrain Modeling and Mapping for Telecom Network Installation Using Scanning Technology. Maziana Muhamad Terrain Modeling and Mapping for Telecom Network Installation Using Scanning Technology Maziana Muhamad Summarising LiDAR (Airborne Laser Scanning) LiDAR is a reliable survey technique, capable of: acquiring

More information

An Introduction to Lidar & Forestry May 2013

An Introduction to Lidar & Forestry May 2013 An Introduction to Lidar & Forestry May 2013 Introduction to Lidar & Forestry Lidar technology Derivatives from point clouds Applied to forestry Publish & Share Futures Lidar Light Detection And Ranging

More information

CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS

CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS PASSIVE ACTIVE DIGITAL CAMERA THERMAL (e.g. TIMS) VIDEO CAMERA MULTI- SPECTRAL SCANNERS VISIBLE & NIR MICROWAVE HYPERSPECTRAL (e.g. AVIRIS) SLAR Real Aperture

More information

UAS based laser scanning for forest inventory and precision farming

UAS based laser scanning for forest inventory and precision farming UAS based laser scanning for forest inventory and precision farming M. Pfennigbauer, U. Riegl, P. Rieger, P. Amon RIEGL Laser Measurement Systems GmbH, 3580 Horn, Austria Email: mpfennigbauer@riegl.com,

More information

LIDAR MAPPING FACT SHEET

LIDAR MAPPING FACT SHEET 1. LIDAR THEORY What is lidar? Lidar is an acronym for light detection and ranging. In the mapping industry, this term is used to describe an airborne laser profiling system that produces location and

More information

Lecture 11. LiDAR, RADAR

Lecture 11. LiDAR, RADAR NRMT 2270, Photogrammetry/Remote Sensing Lecture 11 Calculating the Number of Photos and Flight Lines in a Photo Project LiDAR, RADAR Tomislav Sapic GIS Technologist Faculty of Natural Resources Management

More information

Photo based Terrain Data Acquisition & 3D Modeling

Photo based Terrain Data Acquisition & 3D Modeling Photo based Terrain Data Acquisition & 3D Modeling June 7, 2013 Howard Hahn Kansas State University Partial funding by: KSU Office of Research and Sponsored Programs Introduction: Need Application 1 Monitoring

More information

SPAR, ELMF 2013, Amsterdam. Laser Scanning on the UK Highways Agency Network. Hamish Grierson Blom Uk

SPAR, ELMF 2013, Amsterdam. Laser Scanning on the UK Highways Agency Network. Hamish Grierson Blom Uk SPAR, ELMF 2013, Amsterdam Laser Scanning on the UK Highways Agency Network Hamish Grierson Blom Uk www.blomasa.com www.blom-uk.co.uk Blom UK Part of the Blom Group Blom Group - Europe s largest aerial

More information

LIDAR and Terrain Models: In 3D!

LIDAR and Terrain Models: In 3D! LIDAR and Terrain Models: In 3D! Stuart.green@teagasc.ie http://www.esri.com/library/whitepapers/pdfs/lidar-analysis-forestry.pdf http://www.csc.noaa.gov/digitalcoast/_/pdf/refinement_of_topographic_lidar_to_create_a_bare_e

More information

Airborne LiDAR Data Acquisition for Forestry Applications. Mischa Hey WSI (Corvallis, OR)

Airborne LiDAR Data Acquisition for Forestry Applications. Mischa Hey WSI (Corvallis, OR) Airborne LiDAR Data Acquisition for Forestry Applications Mischa Hey WSI (Corvallis, OR) WSI Services Corvallis, OR Airborne Mapping: Light Detection and Ranging (LiDAR) Thermal Infrared Imagery 4-Band

More information

APPENDIX E2. Vernal Pool Watershed Mapping

APPENDIX E2. Vernal Pool Watershed Mapping APPENDIX E2 Vernal Pool Watershed Mapping MEMORANDUM To: U.S. Fish and Wildlife Service From: Tyler Friesen, Dudek Subject: SSHCP Vernal Pool Watershed Analysis Using LIDAR Data Date: February 6, 2014

More information

James Van Rens CEO Riegl USA, Inc. Mining Industry and UAV s combined with LIDAR Commercial UAV Las Vegas October 2015 James Van Rens CEO Riegl USA

James Van Rens CEO Riegl USA, Inc. Mining Industry and UAV s combined with LIDAR Commercial UAV Las Vegas October 2015 James Van Rens CEO Riegl USA James Van Rens CEO Riegl USA, Inc. Mining Industry and UAV s combined with LIDAR Commercial UAV Las Vegas October 2015 James Van Rens CEO Riegl USA COST EFFECIENCY CONTINUUM LIDAR and IMU Partnership Technology

More information

LiDAR-Maps. and More for. Engineers. TechTime New Mapping Tools for Transportation Engineering. Airborne LiDAR. Digital Cameras

LiDAR-Maps. and More for. Engineers. TechTime New Mapping Tools for Transportation Engineering. Airborne LiDAR. Digital Cameras LiDAR-Maps Airborne LiDAR and More for Digital Cameras Engineers and Their Applications Presenter: Azadeh Koohzare, Ph.D., P.Eng. Project Manager, Geodesy and Geomatics AKoohzare@mcelhanney.com 604-683-8521

More information

Airborne Laser Survey Systems: Technology and Applications

Airborne Laser Survey Systems: Technology and Applications Abstract Airborne Laser Survey Systems: Technology and Applications Guangping HE Lambda Tech International, Inc. 2323B Blue Mound RD., Waukesha, WI-53186, USA Email: he@lambdatech.com As mapping products

More information

UTILIZACIÓN DE DATOS LIDAR Y SU INTEGRACIÓN CON SISTEMAS DE INFORMACIÓN GEOGRÁFICA

UTILIZACIÓN DE DATOS LIDAR Y SU INTEGRACIÓN CON SISTEMAS DE INFORMACIÓN GEOGRÁFICA UTILIZACIÓN DE DATOS LIDAR Y SU INTEGRACIÓN CON SISTEMAS DE INFORMACIÓN GEOGRÁFICA Aurelio Castro Cesar Piovanetti Geographic Mapping Technologies Corp. (GMT) Consultores en GIS info@gmtgis.com Geographic

More information

Investigating the Structural Condition of Individual Trees using LiDAR Metrics

Investigating the Structural Condition of Individual Trees using LiDAR Metrics Investigating the Structural Condition of Individual Trees using LiDAR Metrics Jon Murray 1, George Alan Blackburn 1, Duncan Whyatt 1, Christopher Edwards 2. 1 Lancaster Environment Centre, Lancaster University,

More information

Airborne Laser Scanning: Remote Sensing with LiDAR

Airborne Laser Scanning: Remote Sensing with LiDAR Airborne Laser Scanning: Remote Sensing with LiDAR ALS / LIDAR OUTLINE Laser remote sensing background Basic components of an ALS/LIDAR system Two distinct families of ALS systems Waveform Discrete Return

More information

ALS40 Airborne Laser Scanner

ALS40 Airborne Laser Scanner ALS40 Airborne Laser Scanner Airborne LIDAR for Professionals High Performance Laser Scanning Direct Measurement of Ground Surface from the Air The ALS40 Airborne Laser Scanner measures the topography

More information

Third Rock from the Sun

Third Rock from the Sun Geodesy 101 AHD LiDAR Best Practice The Mystery of LiDAR Best Practice Glenn Jones SSSi GIS in the Coastal Environment Batemans Bay November 9, 2010 Light Detection and Ranging (LiDAR) Basic principles

More information

Leica ALS70. Airborne Laser Scanners Performance for diverse Applications

Leica ALS70. Airborne Laser Scanners Performance for diverse Applications Leica ALS70 Airborne Laser Scanners Performance for diverse Applications Three Models, One Result. Highest Productivity in all Applications. Imagine an affordable 500 khz pulse rate city-mapping LIDAR

More information

Case Study for Long- Range Beyond Visual Line of Sight Project. March 15, 2018 RMEL Transmission and Planning Conference

Case Study for Long- Range Beyond Visual Line of Sight Project. March 15, 2018 RMEL Transmission and Planning Conference Case Study for Long- Range Beyond Visual Line of Sight Project March 15, 2018 RMEL Transmission and Planning Conference 2014 HDR Architecture, 2016 2014 HDR, Inc., all all rights reserved. Helicopters

More information

Merging LiDAR Data with Softcopy Photogrammetry Data

Merging LiDAR Data with Softcopy Photogrammetry Data Merging LiDAR Data with Softcopy Photogrammetry Data Cindy McCallum WisDOT\Bureau of Technical Services Surveying & Mapping Section Photogrammetry Unit Overview Terms and processes Why use data from LiDAR

More information

N.J.P.L.S. An Introduction to LiDAR Concepts and Applications

N.J.P.L.S. An Introduction to LiDAR Concepts and Applications N.J.P.L.S. An Introduction to LiDAR Concepts and Applications Presentation Outline LIDAR Data Capture Advantages of Lidar Technology Basics Intensity and Multiple Returns Lidar Accuracy Airborne Laser

More information

Overview. 1. Aerial LiDAR in Wisconsin (20 minutes) 2. Demonstration of data in CAD (30 minutes) 3. High Density LiDAR (20 minutes)

Overview. 1. Aerial LiDAR in Wisconsin (20 minutes) 2. Demonstration of data in CAD (30 minutes) 3. High Density LiDAR (20 minutes) Overview 1. Aerial LiDAR in Wisconsin (20 minutes) 2. Demonstration of data in CAD (30 minutes) 3. High Density LiDAR (20 minutes) 4. Aerial lidar technology advancements (15 minutes) 5. Q & A 1. Aerial

More information

Innovation in 3D. Product Overview

Innovation in 3D. Product Overview Innovation in 3D Product Overview TERRESTRIAL LASER SCANNING VQ-1560i MULTIPLE-TIME- AROUND-PROCESSING VZ-400i ECHO DIGITIZATION AIRBORNE LASER SCANNING VUX-1UAV HIGHLY ACCURATE EFFICIENT LIGHTWEIGHT RiCOPTER

More information

Leica Systems Overview

Leica Systems Overview RC30 AERIAL CAMERA SYSTEM Leica Systems Overview The Leica RC30 aerial film camera is the culmination of decades of development, started with Wild's first aerial camera in the 1920s. Beautifully engineered

More information

CHANGE DETECTION FOR TOPOGRAPHIC MAPPING USING THREE- DIMENSIONAL DATA STRUCTURES

CHANGE DETECTION FOR TOPOGRAPHIC MAPPING USING THREE- DIMENSIONAL DATA STRUCTURES CHANGE DETECTION FOR TOPOGRAPHIC MAPPING USING THREE- DIMENSIONAL DATA STRUCTURES D. M. Barber a, D. Holland b, J. P. Mills c a DSTL, Porton Down, Salisbury, SP4 OJQ, UK dbarber@dstl.gov.uk b Ordnance

More information

Mayden VP of Business Development Surdex Corporation

Mayden VP of Business Development Surdex Corporation Making Sense of Sensors Randy Mayden, Mayden VP of Business Development Surdex Corporation randym@surdex.com EARLYAERIAL PHOTOGRAPHY 2 FIRSTAERIAL CAMERA 3 AERIAL CAMERA SYSTEM DEVELOPMENT Aerial Camera

More information

Integrated Multi-Source LiDAR and Imagery

Integrated Multi-Source LiDAR and Imagery Figure 1: AirDaC aerial scanning system Integrated Multi-Source LiDAR and Imagery The derived benefits of LiDAR scanning in the fields of engineering, surveying, and planning are well documented. It has

More information

UAS for Surveyors. An emerging technology for the Geospatial Industry. Ian Murgatroyd : Technical Sales Rep. Trimble

UAS for Surveyors. An emerging technology for the Geospatial Industry. Ian Murgatroyd : Technical Sales Rep. Trimble UAS for Surveyors An emerging technology for the Geospatial Industry Ian Murgatroyd : Technical Sales Rep. Trimble Project Overview Voyager Quarry, located near Perth Australia Typical of hard rock mines,

More information

Leica - Airborne Digital Sensors (ADS80, ALS60) Update / News in the context of Remote Sensing applications

Leica - Airborne Digital Sensors (ADS80, ALS60) Update / News in the context of Remote Sensing applications Luzern, Switzerland, acquired with GSD=5 cm, 2008. Leica - Airborne Digital Sensors (ADS80, ALS60) Update / News in the context of Remote Sensing applications Arthur Rohrbach, Sensor Sales Dir Europe,

More information

ENY-C2005 Geoinformation in Environmental Modeling Lecture 4b: Laser scanning

ENY-C2005 Geoinformation in Environmental Modeling Lecture 4b: Laser scanning 1 ENY-C2005 Geoinformation in Environmental Modeling Lecture 4b: Laser scanning Petri Rönnholm Aalto University 2 Learning objectives To recognize applications of laser scanning To understand principles

More information

Quinnipiac Post Flight Aerial Acquisition Report

Quinnipiac Post Flight Aerial Acquisition Report Quinnipiac Post Flight Aerial Acquisition Report August 2011 Post-Flight Aerial Acquisition and Calibration Report FEMA REGION 1 Quinnipiac Watershed, Connecticut, Massachusesetts FEDERAL EMERGENCY MANAGEMENT

More information

Course Outline (1) #6 Data Acquisition for Built Environment. Fumio YAMAZAKI

Course Outline (1) #6 Data Acquisition for Built Environment. Fumio YAMAZAKI AT09.98 Applied GIS and Remote Sensing for Disaster Mitigation #6 Data Acquisition for Built Environment 9 October, 2002 Fumio YAMAZAKI yamazaki@ait.ac.th http://www.star.ait.ac.th/~yamazaki/ Course Outline

More information

An Overview of Applanix.

An Overview of Applanix. An Overview of Applanix The Company The Industry Leader in Developing Aided Inertial Technology Founded on Canadian Aerospace and Defense Industry Expertise Providing Precise Position and Orientation Systems

More information

Aerial and Mobile LiDAR Data Fusion

Aerial and Mobile LiDAR Data Fusion Creating Value Delivering Solutions Aerial and Mobile LiDAR Data Fusion Dr. Srini Dharmapuri, CP, PMP What You Will Learn About LiDAR Fusion Mobile and Aerial LiDAR Technology Components & Parameters Project

More information

High resolution survey and orthophoto project of the Dosso-Gaya region in the Republic of Niger. by Tim Leary, Woolpert Inc.

High resolution survey and orthophoto project of the Dosso-Gaya region in the Republic of Niger. by Tim Leary, Woolpert Inc. High resolution survey and orthophoto project of the Dosso-Gaya region in the Republic of Niger by Tim Leary, Woolpert Inc. Geospatial Solutions Photogrammetry & Remote Sensing LiDAR Professional Surveying

More information

a Geo-Odyssey of UAS LiDAR Mapping Henno Morkel UAS Segment Specialist DroneCon 17 May 2018

a Geo-Odyssey of UAS LiDAR Mapping Henno Morkel UAS Segment Specialist DroneCon 17 May 2018 a Geo-Odyssey of UAS LiDAR Mapping Henno Morkel UAS Segment Specialist DroneCon 17 May 2018 Abbreviations UAS Unmanned Aerial Systems LiDAR Light Detection and Ranging UAV Unmanned Aerial Vehicle RTK Real-time

More information

Landslides Detection and Monitoring along Dieppe Coastal Cliffs Ability of boat-based Mobile Laser Scanning

Landslides Detection and Monitoring along Dieppe Coastal Cliffs Ability of boat-based Mobile Laser Scanning Vertical Geology Conference 2014, University of Lausanne Landslides Detection and Monitoring along Dieppe Coastal Cliffs Ability of boat-based Mobile Laser Scanning Clément Michoud 1, Dario Carrea 1, S.

More information

Developing Methodology for Efficient Eelgrass Habitat Mapping Across Lidar Systems

Developing Methodology for Efficient Eelgrass Habitat Mapping Across Lidar Systems Developing Methodology for Efficient Eelgrass Habitat Mapping Across Lidar Systems VICTORIA PRICE 1, JENNIFER DIJKSTRA 1, JARLATH O NEIL-DUNNE 2, CHRISTOPHER PARRISH 3, ERIN NAGEL 1, SHACHAK PE ERI 1 UNIVERSITY

More information

A SENSOR FUSION APPROACH TO COASTAL MAPPING

A SENSOR FUSION APPROACH TO COASTAL MAPPING A SENSOR FUSION APPROACH TO COASTAL MAPPING Maryellen Sault, NOAA, National Ocean Service, National Geodetic Survey Christopher Parrish, NOAA, National Ocean Service, National Geodetic Survey Stephen White,

More information

LiDAR & Orthophoto Data Report

LiDAR & Orthophoto Data Report LiDAR & Orthophoto Data Report Tofino Flood Plain Mapping Data collected and prepared for: District of Tofino, BC 121 3 rd Street Tofino, BC V0R 2Z0 Eagle Mapping Ltd. #201 2071 Kingsway Ave Port Coquitlam,

More information

Airborne LiDAR Surveys and Data Delivery in the Pipeline Industry

Airborne LiDAR Surveys and Data Delivery in the Pipeline Industry Airborne LiDAR Surveys and Data Delivery in the Pipeline Industry Carlos Femmer Faron Olivier October 25, 2011 October 25, 2011 GITA GIS for Oil and Gas Pipeline 2011 Organization Fugro is a decentralized

More information

LiDAR Remote Sensing Data Collection: Yaquina and Elk Creek Watershed, Leaf-On Acquisition

LiDAR Remote Sensing Data Collection: Yaquina and Elk Creek Watershed, Leaf-On Acquisition LiDAR Remote Sensing Data Collection: Yaquina and Elk Creek Watershed, Leaf-On Acquisition Submitted by: 4605 NE Fremont, Suite 211 Portland, Oregon 97213 April, 2006 Table of Contents LIGHT DETECTION

More information

High Resolution Laserscanning, not only for 3D-City Models

High Resolution Laserscanning, not only for 3D-City Models Lohr 133 High Resolution Laserscanning, not only for 3D-City Models UWE LOHR, Ravensburg ABSTRACT The TopoSys laserscanner system is designed to produce digital elevation models (DEMs) of the environment

More information

VEHICLE BASED WAVEFORM LASER SCANNING IN A COASTAL ENVIRONMENT

VEHICLE BASED WAVEFORM LASER SCANNING IN A COASTAL ENVIRONMENT VEHICLE BASED WAVEFORM LASER SCANNING IN A COASTAL ENVIRONMENT D. M. Barber *, J. P. Mills School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK * d.m.barber@ncl.ac.uk

More information

LORI COLLINS, RESEARCH ASSOCIATE PROFESSOR CONTRIBUTIONS BY: RICHARD MCKENZIE AND GARRETT SPEED, DHHC USF L IBRARIES

LORI COLLINS, RESEARCH ASSOCIATE PROFESSOR CONTRIBUTIONS BY: RICHARD MCKENZIE AND GARRETT SPEED, DHHC USF L IBRARIES LORI COLLINS, RESEARCH ASSOCIATE PROFESSOR CONTRIBUTIONS BY: RICHARD MCKENZIE AND GARRETT SPEED, DHHC USF L IBRARIES AERIAL AND TERRESTRIAL SURVEY WORKFLOWS Workflow from project planning applications

More information

THE RAILMAPPER - A DEDICATED MOBILE LIDAR MAPPING SYSTEM FOR RAILWAY NETWORKS

THE RAILMAPPER - A DEDICATED MOBILE LIDAR MAPPING SYSTEM FOR RAILWAY NETWORKS THE RAILMAPPER - A DEDICATED MOBILE LIDAR MAPPING SYSTEM FOR RAILWAY NETWORKS Jens Kremer & Albrecht Grimm IGI mbh, Langenauer Straße 46, 57223 Kreuztal, Germany (j.kremer, a.grimm)@igi-systems.com ICWG

More information

LIDAR an Introduction and Overview

LIDAR an Introduction and Overview LIDAR an Introduction and Overview Rooster Rock State Park & Crown Point. Oregon DOGAMI Lidar Project Presented by Keith Marcoe GEOG581, Fall 2007. Portland State University. Light Detection And Ranging

More information

2. POINT CLOUD DATA PROCESSING

2. POINT CLOUD DATA PROCESSING Point Cloud Generation from suas-mounted iphone Imagery: Performance Analysis A. D. Ladai, J. Miller Towill, Inc., 2300 Clayton Road, Suite 1200, Concord, CA 94520-2176, USA - (andras.ladai, jeffrey.miller)@towill.com

More information

Integrating the Generations, FIG Working Week 2008,Stockholm, Sweden June 2008

Integrating the Generations, FIG Working Week 2008,Stockholm, Sweden June 2008 H. Murat Yilmaz, Aksaray University,Turkey Omer Mutluoglu, Selçuk University, Turkey Murat Yakar, Selçuk University,Turkey Cutting and filling volume calculation are important issues in many engineering

More information

Die im Vortrag gezeigten Video Clips können unter http://www.streetmapper.net/gallery/animations.htm heruntergeladen werden. Stuttgart, 19. Juni 2007 Mobile Mapping - 3D-Datenerfassung kommt in Fahrt Jens

More information

AIRBORNE GEIGER MODE LIDAR - LATEST ADVANCEMENTS IN REMOTE SENSING APPLICATIONS RANDY RHOADS

AIRBORNE GEIGER MODE LIDAR - LATEST ADVANCEMENTS IN REMOTE SENSING APPLICATIONS RANDY RHOADS Place image here (10 x 3.5 ) AIRBORNE GEIGER MODE LIDAR - LATEST ADVANCEMENTS IN REMOTE SENSING APPLICATIONS RANDY RHOADS Geospatial Industry Manager HARRIS.COM #HARRISCORP Harris Company Information SECURITY

More information

Mobile LiDAR for Ground Applications. Spar 2006, March Paul Mrstik, Terrapoint Canada Inc. Craig Glennie, Terrapoint USA LLC

Mobile LiDAR for Ground Applications. Spar 2006, March Paul Mrstik, Terrapoint Canada Inc. Craig Glennie, Terrapoint USA LLC Mobile LiDAR for Ground Applications Spar 2006, March 27 2006 Paul Mrstik, Terrapoint Canada Inc. Craig Glennie, Terrapoint USA LLC Agenda Introduction to Terrapoint What is mobile LiDAR? Advantages of

More information

Light Detection and Ranging (LiDAR)

Light Detection and Ranging (LiDAR) Light Detection and Ranging (LiDAR) http://code.google.com/creative/radiohead/ Types of aerial sensors passive active 1 Active sensors for mapping terrain Radar transmits microwaves in pulses determines

More information

3D Laser Scanning Technology. Fast, Safe, Accurate. Rugged hardware and powerful software combined with streamlined survey workflow

3D Laser Scanning Technology. Fast, Safe, Accurate. Rugged hardware and powerful software combined with streamlined survey workflow 3D Laser Scanning Technology Fast, Safe, Accurate Rugged hardware and powerful software combined with streamlined survey workflow Maptek specialises in the research, development and application of 3D laser

More information

LAS extrabytes implementation in RIEGL software WHITEPAPER

LAS extrabytes implementation in RIEGL software WHITEPAPER in RIEGL software WHITEPAPER _ Author: RIEGL Laser Measurement Systems GmbH Date: May 25, 2012 Status: Release Pages: 13 All rights are reserved in the event of the grant or the registration of a utility

More information

MODELLING FOREST CANOPY USING AIRBORNE LIDAR DATA

MODELLING FOREST CANOPY USING AIRBORNE LIDAR DATA MODELLING FOREST CANOPY USING AIRBORNE LIDAR DATA Jihn-Fa JAN (Taiwan) Associate Professor, Department of Land Economics National Chengchi University 64, Sec. 2, Chih-Nan Road, Taipei 116, Taiwan Telephone:

More information

LiDAR Data Processing:

LiDAR Data Processing: LiDAR Data Processing: Concepts and Methods for LEFI Production Gordon W. Frazer GWF LiDAR Analytics Outline of Presentation Data pre-processing Data quality checking and options for repair Data post-processing

More information

IDENTIFYING STRUCTURAL CHARACTERISTICS OF TREE SPECIES FROM LIDAR DATA

IDENTIFYING STRUCTURAL CHARACTERISTICS OF TREE SPECIES FROM LIDAR DATA IDENTIFYING STRUCTURAL CHARACTERISTICS OF TREE SPECIES FROM LIDAR DATA Tomáš Dolanský University of J.E.Purkyne, Faculty of the Environment, Department of Informatics and Geoinformatics e-mail: tomas.dolansky@ujep.cz

More information

2010 LiDAR Project. GIS User Group Meeting June 30, 2010

2010 LiDAR Project. GIS User Group Meeting June 30, 2010 2010 LiDAR Project GIS User Group Meeting June 30, 2010 LiDAR = Light Detection and Ranging Technology that utilizes lasers to determine the distance to an object or surface Measures the time delay between

More information

Surveying like never before

Surveying like never before CAD functionalities GCP Mapping and Aerial Image Processing Software for Land Surveying Specialists Surveying like never before www.3dsurvey.si Modri Planet d.o.o., Distributors: info@3dsurvey.si +386

More information

TAKING LIDAR SUBSEA. Adam Lowry, Nov 2016

TAKING LIDAR SUBSEA. Adam Lowry, Nov 2016 TAKING LIDAR SUBSEA Adam Lowry, Nov 2016 3D AT DEPTH Based in the technology hub of Boulder, Colorado, 3D at Depth is dedicated to the development of underwater laser measurement sensors and software Patented

More information

Overview of the Trimble TX5 Laser Scanner

Overview of the Trimble TX5 Laser Scanner Overview of the Trimble TX5 Laser Scanner Trimble TX5 Revolutionary and versatile scanning solution Compact / Lightweight Efficient Economical Ease of Use Small and Compact Smallest and most compact 3D

More information

NEXTMap World 10 Digital Elevation Model

NEXTMap World 10 Digital Elevation Model NEXTMap Digital Elevation Model Intermap Technologies, Inc. 8310 South Valley Highway, Suite 400 Englewood, CO 80112 10012015 NEXTMap (top) provides an improvement in vertical accuracy and brings out greater

More information

EVOLUTION OF POINT CLOUD

EVOLUTION OF POINT CLOUD Figure 1: Left and right images of a stereo pair and the disparity map (right) showing the differences of each pixel in the right and left image. (source: https://stackoverflow.com/questions/17607312/difference-between-disparity-map-and-disparity-image-in-stereo-matching)

More information

Merlin vessel-based lidar system

Merlin vessel-based lidar system Brochure: Merlin vessel-based lidar system Merlin vessel-based lidar system Map the full environment in one pass Scanning the full marine environment in a single operation reduces the amount of time crew

More information

About LIDAR Data. What Are LIDAR Data? How LIDAR Data Are Collected

About LIDAR Data. What Are LIDAR Data? How LIDAR Data Are Collected 1 of 6 10/7/2006 3:24 PM Project Overview Data Description GIS Tutorials Applications Coastal County Maps Data Tools Data Sets & Metadata Other Links About this CD-ROM Partners About LIDAR Data What Are

More information

2-4 April 2019 Taets Art and Event Park, Amsterdam CLICK TO KNOW MORE

2-4 April 2019 Taets Art and Event Park, Amsterdam CLICK TO KNOW MORE Co-Host Host 2-4 April 2019 Taets Art and Event Park, Amsterdam CLICK TO KNOW MORE Presentation Outline review modern survey methodologies available to support railway requirements measuring everything

More information

ISPRS Com1 Update Airborne Sensor Systems. Arthur Rohrbach SGPBF meeting, RSL, Fall 2006

ISPRS Com1 Update Airborne Sensor Systems. Arthur Rohrbach SGPBF meeting, RSL, Fall 2006 ISPRS Com1 Update Airborne Sensor Systems Arthur Rohrbach SGPBF meeting, RSL, Fall 2006 Significant Meetings / News (for Sensor Systems) 1/2 ASPRS, Reno, USA (May-06) Vexcel, Austria Leica, Switzerland

More information

Quality Assurance and Quality Control Procedures for Survey-Grade Mobile Mapping Systems

Quality Assurance and Quality Control Procedures for Survey-Grade Mobile Mapping Systems Quality Assurance and Quality Control Procedures for Survey-Grade Mobile Mapping Systems Latin America Geospatial Forum November, 2015 Agenda 1. Who is Teledyne Optech 2. The Lynx Mobile Mapper 3. Mobile

More information

Automated Extraction of Buildings from Aerial LiDAR Point Cloud and Digital Imaging Datasets for 3D Cadastre - Preliminary Results

Automated Extraction of Buildings from Aerial LiDAR Point Cloud and Digital Imaging Datasets for 3D Cadastre - Preliminary Results Automated Extraction of Buildings from Aerial LiDAR Point Cloud and Digital Imaging Datasets for 3D Pankaj Kumar 1*, Alias Abdul Rahman 1 and Gurcan Buyuksalih 2 ¹Department of Geoinformation Universiti

More information

Earth Observation, Climate and Space for Smarter Government

Earth Observation, Climate and Space for Smarter Government Earth Observation, Climate and Space for Smarter Government Beth Greenaway, Head of Earth Observation 30 March 2015 http://www.bis.gov.uk/ukspaceagency Overview UK Space Agency EO Importance and priorities

More information

LiDAR data overview. Dr. Keiko Saito Global Facility for Disaster Reduction and Recovery (GFDRR)

LiDAR data overview. Dr. Keiko Saito Global Facility for Disaster Reduction and Recovery (GFDRR) LiDAR data overview Dr. Keiko Saito Global Facility for Disaster Reduction and Recovery (GFDRR) LiDAR (Light Detecting And Ranging) 3D height profile Laser emitted from sensor onboard aircraft to measure

More information

EXTRACTING SURFACE FEATURES OF THE NUECES RIVER DELTA USING LIDAR POINTS INTRODUCTION

EXTRACTING SURFACE FEATURES OF THE NUECES RIVER DELTA USING LIDAR POINTS INTRODUCTION EXTRACTING SURFACE FEATURES OF THE NUECES RIVER DELTA USING LIDAR POINTS Lihong Su, Post-Doctoral Research Associate James Gibeaut, Associate Research Professor Harte Research Institute for Gulf of Mexico

More information

Use of aerial survey and laser scanning for production of national data base of surface water hydrology. Vasja Bric Geodetic Institute of Slovenia

Use of aerial survey and laser scanning for production of national data base of surface water hydrology. Vasja Bric Geodetic Institute of Slovenia Use of aerial survey and laser scanning for production of national data base of surface water hydrology Vasja Bric Geodetic Institute of Slovenia Tønsberg, 12 January 2016 Floods and other weather events

More information

AN INTEGRATED SENSOR ORIENTATION SYSTEM FOR AIRBORNE PHOTOGRAMMETRIC APPLICATIONS

AN INTEGRATED SENSOR ORIENTATION SYSTEM FOR AIRBORNE PHOTOGRAMMETRIC APPLICATIONS AN INTEGRATED SENSOR ORIENTATION SYSTEM FOR AIRBORNE PHOTOGRAMMETRIC APPLICATIONS M. J. Smith a, *, N. Kokkas a, D.W.G. Park b a Faculty of Engineering, The University of Nottingham, Innovation Park, Triumph

More information

Boresight alignment method for mobile laser scanning systems

Boresight alignment method for mobile laser scanning systems Boresight alignment method for mobile laser scanning systems P. Rieger, N. Studnicka, M. Pfennigbauer RIEGL Laser Measurement Systems GmbH A-3580 Horn, Austria Contents A new principle of boresight alignment

More information

VALIDATION OF A NEW 30 METER GROUND SAMPLED GLOBAL DEM USING ICESAT LIDARA ELEVATION REFERENCE DATA

VALIDATION OF A NEW 30 METER GROUND SAMPLED GLOBAL DEM USING ICESAT LIDARA ELEVATION REFERENCE DATA VALIDATION OF A NEW 30 METER GROUND SAMPLED GLOBAL DEM USING ICESAT LIDARA ELEVATION REFERENCE DATA M. Lorraine Tighe Director, Geospatial Solutions Intermap Session: Photogrammetry & Image Processing

More information

NATIONWIDE POINT CLOUDS AND 3D GEO- INFORMATION: CREATION AND MAINTENANCE GEORGE VOSSELMAN

NATIONWIDE POINT CLOUDS AND 3D GEO- INFORMATION: CREATION AND MAINTENANCE GEORGE VOSSELMAN NATIONWIDE POINT CLOUDS AND 3D GEO- INFORMATION: CREATION AND MAINTENANCE GEORGE VOSSELMAN OVERVIEW National point clouds Airborne laser scanning in the Netherlands Quality control Developments in lidar

More information

Automated Feature Extraction from Aerial Imagery for Forestry Projects

Automated Feature Extraction from Aerial Imagery for Forestry Projects Automated Feature Extraction from Aerial Imagery for Forestry Projects Esri UC 2015 UC706 Tuesday July 21 Bart Matthews - Photogrammetrist US Forest Service Southwestern Region Brad Weigle Sr. Program

More information

Trends in Digital Aerial Acquisition Systems

Trends in Digital Aerial Acquisition Systems Trends in Digital Aerial Acquisition Systems Ernest Yap Regional Sales Manager, Airborne-Americas eyap@applanix.com 1 Medium Format Digital Cameras Medium Format Digital Cameras Where does the Medium

More information

Advanced point cloud processing

Advanced point cloud processing Advanced point cloud processing George Vosselman ITC Enschede, the Netherlands INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH OBSERVATION Laser scanning platforms Airborne systems mounted

More information

IMPROVED TARGET DETECTION IN URBAN AREA USING COMBINED LIDAR AND APEX DATA

IMPROVED TARGET DETECTION IN URBAN AREA USING COMBINED LIDAR AND APEX DATA IMPROVED TARGET DETECTION IN URBAN AREA USING COMBINED LIDAR AND APEX DATA Michal Shimoni 1 and Koen Meuleman 2 1 Signal and Image Centre, Dept. of Electrical Engineering (SIC-RMA), Belgium; 2 Flemish

More information

Critical Aspects when using Total Stations and Laser Scanners for Geotechnical Monitoring

Critical Aspects when using Total Stations and Laser Scanners for Geotechnical Monitoring Critical Aspects when using Total Stations and Laser Scanners for Geotechnical Monitoring Lienhart, W. Institute of Engineering Geodesy and Measurement Systems, Graz University of Technology, Austria Abstract

More information

Corridor Survey of Both Existing and New to be Built Pipelines on Land Using LiDAR Scanning

Corridor Survey of Both Existing and New to be Built Pipelines on Land Using LiDAR Scanning Corridor Survey of Both Existing and New to be Built Pipelines on Land Using LiDAR Scanning 1. Introduction For good monitoring and planning an onshore pipeline and to feed the Geographic Information System,

More information

Learning Objectives LIGHT DETECTION AND RANGING. Sensing. Blacksburg, VA July 24 th 30 th, 2010 LiDAR: Mapping the world in 3-D Page 1

Learning Objectives LIGHT DETECTION AND RANGING. Sensing. Blacksburg, VA July 24 th 30 th, 2010 LiDAR: Mapping the world in 3-D Page 1 LiDAR: Mapping the world in 3-D Val Thomas Department of Forest Resources & Environmental Conservation July 29, 2010 Learning Objectives Part 1: Lidar theory What is lidar? How does lidar work? What are

More information

The Use of UAV s for Gathering Spatial Information. James Van Rens CEO MAPPS Winter Conference January, 2015

The Use of UAV s for Gathering Spatial Information. James Van Rens CEO MAPPS Winter Conference January, 2015 The Use of UAV s for Gathering Spatial Information James Van Rens CEO MAPPS Winter Conference January, 2015 1 UAV Technological Timeline 1980 s RPV (Remotely Piloted Vehicle) Operator on ground, almost

More information

3D Laser Scanner. Fast, Portable, Accurate. Long range laser scanner Modular design configured to suit your survey needs

3D Laser Scanner. Fast, Portable, Accurate. Long range laser scanner Modular design configured to suit your survey needs 3D Laser Scanner Fast, Portable, Accurate Long range laser scanner Modular design configured to suit your survey needs Introducing the Maptek I-Site 8820 laser scanner The Maptek I-Site 8820 laser scanner

More information

Methods to survey, process, and georeference terrestrial LIDAR data to map regional seacliff erosion with uncertainty analysis

Methods to survey, process, and georeference terrestrial LIDAR data to map regional seacliff erosion with uncertainty analysis Methods to survey, process, and georeference terrestrial LIDAR data to map regional seacliff erosion with uncertainty analysis Michael Olsen, Liz Johnstone, Adam Young, Scott Ashford, Neal Driscoll, and

More information

Smart Systems for Aerial Survey & Mobile Mapping

Smart Systems for Aerial Survey & Mobile Mapping Moscow, Feb. 2013 NEWS from IGI Smart Systems for Aerial Survey & Mobile Mapping Christian Grimm IGI, 57223 Kreuztal / Germany IGI mbh Langenauer Str. 46 57223 Kreuztal, Germany www.igi.eu www.litemapper.eu

More information

APPLICATION OF INNOVATIVE AIRBORNE LiDAR SURVEY SYSTEM FOR A HIGHWAY PROJECT IN MALAYSIA

APPLICATION OF INNOVATIVE AIRBORNE LiDAR SURVEY SYSTEM FOR A HIGHWAY PROJECT IN MALAYSIA APPLICATION OF INNOVATIVE AIRBORNE LiDAR SURVEY SYSTEM FOR A HIGHWAY PROJECT IN MALAYSIA TRUDY RANJINI GANENDRA & ZULHAIMI ZAKARIA (Board of Engineers Malaysia, Institute of Engineers Malaysia) MALAYSIA

More information

Digital Defence LiDAR based Smart 3D Geospatial Intelligence for Smart Defence

Digital Defence LiDAR based Smart 3D Geospatial Intelligence for Smart Defence www. geokno.com Digital Defence LiDAR based Smart 3D Geospatial Intelligence for Smart Defence Presentation Agenda About Geokno About LiDAR Technology LiDAR Products for Security Forces Development uses

More information