1. Inversions. A geometric construction relating points O, A and B looks as follows.

Size: px
Start display at page:

Download "1. Inversions. A geometric construction relating points O, A and B looks as follows."

Transcription

1 1. Inversions Definitions of inversion. Inversion is a kind of symmetry about a irle. It is defined as follows. he inversion of degree R 2 entered at a point maps a point to the point on the ray suh that R is the geometri mean of and, that is = R 2, or = R2. geometri onstrution relating points, and looks as follows. R C n the inversion is not defined, and is not the image of any point under the inversion. hus, the inversion is really a mapping of the plane puntured at to itself. bserve that points of the irle entered at of radius R are fixed under the inversion, points of the disk bounded by this irle are mapped to points outside the disk and vie versa. his irle is alled the irle of the inversion and the inversion is referred to as the inversion about this irle. he square of an inversion, that is an inversion omposed with itself, is the identity map. In other words, an inversion is invertible map and the map inverse to an inversion is the same inversion. he definitions of refletion about a line and inversion does not look similar. However these two transformations admit similar definitions. 1.. heorem. ny irle passing through points symmetri about a line is orthogonal to the line. For any two points non-symmetri about a line l there exists a irle passing through the points whih is not orthogonal to l. 1

2 2 C Exerise. Prove heorem 1.. his theorem allows todefine refletion about aline l asamapwhih maps a point to a point suh that any irle passing through and is orthogonal to l. 1.. heorem. ny irle passing through a point and its image under the inversion about a irle is orthogonal to. If is not the image of under the inversion about a irle, then there exists a irle passing through the points whih is not orthogonal to. u Proof. For any irle u passing through points and the degree of the enter of inversion with respet to u is. herefore 2 =, where is the segment of the line tangent to u between the enter of inversion and the point of tangeny. n the other hand, is equal to the degree R 2 of the inversion, that is to the square of the radius of irle. herefore. Hene, is a radius of. s a radius of, it is perpendiular to the tangent of. hus at the lines to u and are perpendiular to eah other. proof of the seond statement is an exerise Images of lines and irles. bviously, a line passing through the enter of an inversion is mapped by the inversion to itself. 1.C. heorem. he image under an inversion of a line l not passing through the enter of the inversion is a irle passing through and having at a tangent line parallel to l.

3 3 l Proof. Drop the perpendiular to l from. Let be its intersetion with l. Let be the image of under the inversion. ake arbitrary point l. Denote by its image under the inversion. y the definition of inversion =. herefore =. yss-test for similar triangles, is similar to. herefore =. he latter angle is right, beause l. Hene belongs to the irle with diameter. Vie versa, let us take any point of the irle with diameter. Draw a ray and denote the intersetion of this ray with l by. riangles and similar by the -test. Hene = and =. herefore, is the image of under the inversion. 1.D. Corollary. he image under an inversion of a irle passing through the enter of the inversion is a line whih is parallel to the line tangent to at. Proof. his follows from heorem 1.C, beause an inversion is inverse to itself. 1.E. heorem. he image under an inversion of a irle that does not pass through the enter of the inversion is a irle that is the image of under a homothety entered at. Proof. Let be a point of irle, and be the image of under the inversion. Denote by the seond intersetion point of the ray with. y definition of inversion, = R2, where R2 is the degree

4 4 of inversion. n the other hand, = d2, where d2 is the degree of with respet to the irle. Reall that d does not depend on the points and, this is the length of segment of a tangent line from to between and the point of tangeny. Substituting this formula to the formula for, we get = R2 d. 2 his means that is the image of under the homothety with enter and ratio R2. Hene, the image of under the inversion is the image d 2 of under this homothety. 1.F. heorem. omposition of two inversions with the same enter is a homothety entered at the same enter. he ratio of this homothety is the ratio of the degrees of the inversions. Proof. Exerise. 1.G. heorem. n inversion preserves angles between lines and irles. Proof. Let us begin with speial ases. he first ase is the angle between two lines, l and m. heir images will be irles l and m passing through, the enter of inversion. We are interested in the angle between these irles at the point whih is the image of the intersetion l m. First, let s onsider the angle at the other intersetion point, whih is the point. he angle between the irles at is by definition is the angle between their tangent lines. ut the tangent line to l (resp. m ) at is parallel to l (resp. m), so the angle between tangent lines is the same as the angle between l and m. t the other intersetion point - the point l m - the angle is the same as the angle at by symmetry. ne an also prove the same fat in a different way, as follows. Consider, first, the angle between two lines, one of whih passes through the enter of inversion. m Q P l

5 Let the lines be l and m, the enter of inversion be m. hen the image of m under the inversion is m, while the image of l is a irle passing through. he enter Q of lies on the perpendiular P dropped from to l. he angles P and P are omplementary. he angles Q and Q are equal as angles in an isoseles triangle Q. he angle Q is right as an angle between a radius Q and tangent line. herefore angles and Q are omplementary. Consequently, P =. n angle between arbitrary two lines an be represented as the sum ordiffereneofanglesbetweenthesamelinesandalinepassingthrough the enter of inversion. Consider now the angle between a line m passing through the enter of inversion and a irle whih does not pass through. See the piture: 1 1 m 5 Let be the image of under the inversion. We know from heorem 1.E that and are related by homothety entered at that sends the point 1 to. his homoethety sends the enter of one irle to the enter of the other. hus, triangles and 1 are similar, and angles and 1 are ongruent. ut is an isoseles triangle, so 1 = 1. We would like to show that angle between the line m and the irle (i.e. the angle 1 between m and the tangent line to at ) is the same as the angle between the line m and the irle (i.e. the angle between m and the tangent line to at ). ut these angles omplement the ongruent angles and 1 to right angles (sine a tangent line is perpendiualr to a radius), therefore they are ongruent. he ase of the angle between a line passing through and a irle passing through is an exerise. o omplete the proof, notie that an angle between arbitrary two irles, or an arbitrary line and an arbitrary irle, an be represented as the sum or differene of angles between the same lines or irles and a line passing through the enter of inversion. hus, the general ase redues to the speial ones above.

LAMC Junior Circle April 15, Constructing Triangles.

LAMC Junior Circle April 15, Constructing Triangles. LAMC Junior Cirle April 15, 2012 Olga Radko radko@math.ula.edu Oleg Gleizer oleg1140@gmail.om Construting Triangles. Copyright: for home use only. This handout is a part of the book in preparation. Using

More information

Chapter 8: Right Triangle Trigonometry

Chapter 8: Right Triangle Trigonometry Haberman MTH 11 Setion I: The Trigonometri Funtions Chapter 8: Right Triangle Trigonometry As we studied in Part 1 of Chapter 3, if we put the same angle in the enter of two irles of different radii, we

More information

MATH 30 GEOMETRY UNIT OUTLINE AND DEFINITIONS Prepared by: Mr. F.

MATH 30 GEOMETRY UNIT OUTLINE AND DEFINITIONS Prepared by: Mr. F. 1 MTH 30 GEMETRY UNIT UTLINE ND DEFINITINS Prepared by: Mr. F. Some f The Typical Geometric Properties We Will Investigate: The converse holds in many cases too! The Measure f The entral ngle Tangent To

More information

Triangles. Learning Objectives. Pre-Activity

Triangles. Learning Objectives. Pre-Activity Setion 3.2 Pre-tivity Preparation Triangles Geena needs to make sure that the dek she is building is perfetly square to the brae holding the dek in plae. How an she use geometry to ensure that the boards

More information

Inversive Plane Geometry

Inversive Plane Geometry Inversive Plane Geometry An inversive plane is a geometry with three undefined notions: points, circles, and an incidence relation between points and circles, satisfying the following three axioms: (I.1)

More information

Chapter 7 Test. 6. Choose the set that is the possible side lengths of a right triangle. a. 1, 1, 2 c. 3, 4, 7 b. 1, 3, 2 d.

Chapter 7 Test. 6. Choose the set that is the possible side lengths of a right triangle. a. 1, 1, 2 c. 3, 4, 7 b. 1, 3, 2 d. Chapter 7 Test 1. How long is a string reahing from the top of a 9-ft pole to a point on the ground that is 7 ft from the ase of the pole? a. 120 ft. 42 ft. 32 ft d. 130 ft 2. A radio station is going

More information

Lesson 2: Right Triangle Trigonometry

Lesson 2: Right Triangle Trigonometry Lesson : Right Triangle Trigonometry lthough Trigonometry is used to solve many prolems, historially it was first applied to prolems that involve a right triangle. This an e extended to non-right triangles

More information

Point A location in geometry. A point has no dimensions without any length, width, or depth. This is represented by a dot and is usually labelled.

Point A location in geometry. A point has no dimensions without any length, width, or depth. This is represented by a dot and is usually labelled. Test Date: November 3, 2016 Format: Scored out of 100 points. 8 Multiple Choice (40) / 8 Short Response (60) Topics: Points, Angles, Linear Objects, and Planes Recognizing the steps and procedures for

More information

Triangle LMN and triangle OPN are similar triangles. Find the angle measurements for x, y, and z.

Triangle LMN and triangle OPN are similar triangles. Find the angle measurements for x, y, and z. 1 Use measurements of the two triangles elow to find x and y. Are the triangles similar or ongruent? Explain. 1a Triangle LMN and triangle OPN are similar triangles. Find the angle measurements for x,

More information

Projections. Let us start with projections in 2D, because there are easier to visualize.

Projections. Let us start with projections in 2D, because there are easier to visualize. Projetions Let us start ith projetions in D, beause there are easier to visualie. Projetion parallel to the -ais: Ever point in the -plane ith oordinates (, ) ill be transformed into the point ith oordinates

More information

Lecture Notes of Möbuis Transformation in Hyperbolic Plane

Lecture Notes of Möbuis Transformation in Hyperbolic Plane Applied Mathematis, 04, 5, 6-5 Published Online August 04 in SiRes http://wwwsirporg/journal/am http://dxdoiorg/0436/am04555 Leture Notes of Möbuis Transformation in Hyperboli Plane Rania B M Amer Department

More information

Math 2201 Unit 3: Acute Triangle Trigonometry. Ch. 3 Notes

Math 2201 Unit 3: Acute Triangle Trigonometry. Ch. 3 Notes Rea Learning Goals, p. 17 text. Math 01 Unit 3: ute Triangle Trigonometry h. 3 Notes 3.1 Exploring Sie-ngle Relationships in ute Triangles (0.5 lass) Rea Goal p. 130 text. Outomes: 1. Define an aute triangle.

More information

Honors Geometry CHAPTER 7. Study Guide Final Exam: Ch Name: Hour: Try to fill in as many as possible without looking at your book or notes.

Honors Geometry CHAPTER 7. Study Guide Final Exam: Ch Name: Hour: Try to fill in as many as possible without looking at your book or notes. Honors Geometry Study Guide Final Exam: h 7 12 Name: Hour: Try to fill in as many as possible without looking at your book or notes HPTER 7 1 Pythagorean Theorem: Pythagorean Triple: 2 n cute Triangle

More information

Review (Law of sines and cosine) cosines)

Review (Law of sines and cosine) cosines) Date:03/7,8/01 Review 6.1-6. Objetive: Apply the onept to use the law of the sines and osines to solve oblique triangles Apply the onept to find areas using the law of sines and osines Agenda: Bell ringer

More information

Introduction to Seismology Spring 2008

Introduction to Seismology Spring 2008 MIT OpenCourseWare http://ow.mit.edu 1.510 Introdution to Seismology Spring 008 For information about iting these materials or our Terms of Use, visit: http://ow.mit.edu/terms. 1.510 Leture Notes 3.3.007

More information

Vertex Unfoldings of Orthogonal Polyhedra: Positive, Negative, and Inconclusive Results

Vertex Unfoldings of Orthogonal Polyhedra: Positive, Negative, and Inconclusive Results CCCG 2018, Winnipeg, Canada, August 8 10, 2018 Vertex Unfoldings of Orthogonal Polyhedra: Positive, Negative, and Inonlusive Results Luis A. Garia Andres Gutierrrez Isaa Ruiz Andrew Winslow Abstrat We

More information

Circular inversions = hyperbolic isometries

Circular inversions = hyperbolic isometries Circular inversions = hyperbolic isometries Recall how all isometries of the Euclidean plane are products of at most three line reflections. In the (Beltrami-Poincaré model of the) hyperbolic plane, we

More information

Theorem (NIB), The "The Adjacent Supplementary Angles" Theorem (Converse of Postulate 14) :

Theorem (NIB), The The Adjacent Supplementary Angles Theorem (Converse of Postulate 14) : More on Neutral Geometry I (Including Section 3.3) ( "NI" means "NOT IN OOK" ) Theorem (NI), The "The djacent Supplementary ngles" Theorem (onverse of ostulate 14) : If two adjacent angles are supplementary,

More information

Basic Euclidean Geometry

Basic Euclidean Geometry hapter 1 asic Euclidean Geometry This chapter is not intended to be a complete survey of basic Euclidean Geometry, but rather a review for those who have previously taken a geometry course For a definitive

More information

a. If an insect is a butterfly, then it has four wings b. Four angles are formed if two lines intersect

a. If an insect is a butterfly, then it has four wings b. Four angles are formed if two lines intersect Geometry Unit 1 Part 1 Test Review Name: ate: Period: Part I efinitions, Postulates, Formulas, and Theorems Point Inductive Reasoning onditional Statement Postulate Line onjecture hypothesis Segment ddition

More information

1. The collection of the vowels in the word probability. 2. The collection of real numbers that satisfy the equation x 9 = 0.

1. The collection of the vowels in the word probability. 2. The collection of real numbers that satisfy the equation x 9 = 0. C HPTER 1 SETS I. DEFINITION OF SET We begin our study of probability with the disussion of the basi onept of set. We assume that there is a ommon understanding of what is meant by the notion of a olletion

More information

Year 11 GCSE Revision - Re-visit work

Year 11 GCSE Revision - Re-visit work Week beginning 6 th 13 th 20 th HALF TERM 27th Topis for revision Fators, multiples and primes Indies Frations, Perentages, Deimals Rounding 6 th Marh Ratio Year 11 GCSE Revision - Re-visit work Understand

More information

Florida Association of Mu Alpha Theta January 2017 Geometry Team Solutions

Florida Association of Mu Alpha Theta January 2017 Geometry Team Solutions Geometry Team Solutions Florida ssociation of Mu lpha Theta January 017 Regional Team nswer Key Florida ssociation of Mu lpha Theta January 017 Geometry Team Solutions Question arts () () () () Question

More information

Geometry: Traditional Pathway

Geometry: Traditional Pathway GEOMETRY: CONGRUENCE G.CO Prove geometric theorems. Focus on validity of underlying reasoning while using variety of ways of writing proofs. G.CO.11 Prove theorems about parallelograms. Theorems include:

More information

1. Use the Trapezium Rule with five ordinates to find an approximate value for the integral

1. Use the Trapezium Rule with five ordinates to find an approximate value for the integral 1. Use the Trapezium Rule with five ordinates to find an approximate value for the integral Show your working and give your answer correct to three decimal places. 2 2.5 3 3.5 4 When When When When When

More information

To use and apply properties of isosceles and equilateral triangles

To use and apply properties of isosceles and equilateral triangles - Isosceles and Equilateral riangles ontent Standards G.O. Prove theorems about triangles... base angles of isosceles triangles are congruent... lso G.O., G.SR. Objective o use and apply properties of

More information

3. (9x + 9) x 45 5x. 5. (7x + 6)

3. (9x + 9) x 45 5x. 5. (7x + 6) 5 hapter eview 5.1 ngles of riangles (pp. 231 238) ynamic Solutions available at igideasath.com lassify the triangle by its sides and by measuring its angles. he triangle does not have any congruent sides,

More information

Geometry. figure (e.g. multilateral ABCDEF) into the figure A B C D E F is called homothety, or similarity transformation.

Geometry. figure (e.g. multilateral ABCDEF) into the figure A B C D E F is called homothety, or similarity transformation. ctober 18, 2015 Geometry. Similarity and homothety. Theorems and problems. efinition. Two figures are homothetic with respect to a point, if for each point of one figure there is a corresponding point

More information

correlated to the Utah 2007 Secondary Math Core Curriculum Geometry

correlated to the Utah 2007 Secondary Math Core Curriculum Geometry correlated to the Utah 2007 Secondary Math Core Curriculum Geometry McDougal Littell Geometry: Concepts and Skills 2005 correlated to the Utah 2007 Secondary Math Core Curriculum Geometry The main goal

More information

Notes on Inversive Geometry

Notes on Inversive Geometry Notes on Inversive Geometry Written by Ethan Bakshy for Math 402, 10AM section, last modified November 5, 2004. Based on Lecture Notes from F7, October 8, 2004 for Math 402 (Francis) Further information

More information

with respect to the normal in each medium, respectively. The question is: How are θ

with respect to the normal in each medium, respectively. The question is: How are θ Prof. Raghuveer Parthasarathy University of Oregon Physis 35 Winter 8 3 R EFRACTION When light travels from one medium to another, it may hange diretion. This phenomenon familiar whenever we see the bent

More information

Lecture 12 : Topological Spaces

Lecture 12 : Topological Spaces Leture 12 : Topologil Spes 1 Topologil Spes Topology generlizes notion of distne nd loseness et. Definition 1.1. A topology on set X is olletion T of susets of X hving the following properties. 1. nd X

More information

Accel. Geometry - Concepts Similar Figures, Right Triangles, Trigonometry

Accel. Geometry - Concepts Similar Figures, Right Triangles, Trigonometry Accel. Geometry - Concepts 16-19 Similar Figures, Right Triangles, Trigonometry Concept 16 Ratios and Proportions (Section 7.1) Ratio: Proportion: Cross-Products Property If a b = c, then. d Properties

More information

Edexcel Linear GCSE Higher Checklist

Edexcel Linear GCSE Higher Checklist Number Add, subtract, multiply and divide whole numbers integers and decimals Multiply and divide fractions Order integers and decimals Order rational numbers Use the concepts and vocabulary of factor

More information

Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes. Undefined Terms

Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes. Undefined Terms Unit 1 asics of Geometry Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes. Undefined Terms 1. Point has no dimension, geometrically looks

More information

Geometry Definitions and Theorems. Chapter 9. Definitions and Important Terms & Facts

Geometry Definitions and Theorems. Chapter 9. Definitions and Important Terms & Facts Geometry Definitions and Theorems Chapter 9 Definitions and Important Terms & Facts A circle is the set of points in a plane at a given distance from a given point in that plane. The given point is the

More information

Приложение 34 к приказу 949 от 29 сентября 2017 г. MOSCOW AVIATION INSTITUTE (NATIONAL RESEARCH UNIVERSITY)

Приложение 34 к приказу 949 от 29 сентября 2017 г. MOSCOW AVIATION INSTITUTE (NATIONAL RESEARCH UNIVERSITY) Приложение 34 к приказу 949 от 29 сентября 2017 г. MOSCOW AVIATION INSTITUTE (NATIONAL RESEARCH UNIVERSITY) The Program for Entrance Exam in Mathematics MAI 2018 The first section lists the basic mathematical

More information

2. Triangle ABC and triangle DEF are graphed on the set of axes below. 3. Quadrilateral ABCD is graphed on the set of axes below.

2. Triangle ABC and triangle DEF are graphed on the set of axes below. 3. Quadrilateral ABCD is graphed on the set of axes below. Review Session 1 Pratie Problems l. The verties of AJKL have oordinates J(5,1), K( 2, 3), and Under whih transformation is the image AJ'K t L t not ongruent to AJKL? l) a translation of two units to the

More information

-z c = c T - c T B B-1 A 1 - c T B B-1 b. x B B -1 A 0 B -1 b. (a) (b) Figure 1. Simplex Tableau in Matrix Form

-z c = c T - c T B B-1 A 1 - c T B B-1 b. x B B -1 A 0 B -1 b. (a) (b) Figure 1. Simplex Tableau in Matrix Form 3. he Revised Simple Method he LP min, s.t. A = b ( ),, an be represented by Figure (a) below. At any Simple step, with known and -, the Simple tableau an be represented by Figure (b) below. he minimum

More information

Instructional Unit CPM Geometry Unit Content Objective Performance Indicator Performance Task State Standards Code:

Instructional Unit CPM Geometry Unit Content Objective Performance Indicator Performance Task State Standards Code: 306 Instructional Unit Area 1. Areas of Squares and The students will be -Find the amount of carpet 2.4.11 E Rectangles able to determine the needed to cover various plane 2. Areas of Parallelograms and

More information

The Research- Driven Solution to Raise the Quality of High School Core Courses. Geometry. Course Outline

The Research- Driven Solution to Raise the Quality of High School Core Courses. Geometry. Course Outline The Research- Driven Solution to Raise the Quality of High School Core Courses Course Outline Course Outline Page 2 of 5 0 1 2 3 4 5 ACT Course Standards A. Prerequisites 1. Skills Acquired by Students

More information

Warm-Up Based on upper. Based on lower boundary of 1. m 1 m 2 m 3 m What do you notice about these angles?

Warm-Up Based on upper. Based on lower boundary of 1. m 1 m 2 m 3 m What do you notice about these angles? Warm-Up 1.8.1 Metalbro is a construction company involved with building a new skyscraper in ubai. The diagram below is a rough sketch of a crane that Metalbro workers are using to build the skyscraper.

More information

Lesson 13: Angle Sum of a Triangle

Lesson 13: Angle Sum of a Triangle Student Outcomes Students know the Angle Sum Theorem for triangles; the sum of the interior angles of a triangle is always 180. Students present informal arguments to draw conclusions about the angle sum

More information

Angle Relationships in Triangles Focus on Reasoning. Essential question: What are some theorems about angle measures in triangles? G-CO.3.

Angle Relationships in Triangles Focus on Reasoning. Essential question: What are some theorems about angle measures in triangles? G-CO.3. Name lass 4- Date ngle Relationships in Triangles Focus on Reasoning Essential question: What are some theorems about angle measures in triangles? G-O..0 Investigate the angle measures of a triangle. Use

More information

Basics of Geometry Unit 1 - Notes. Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes.

Basics of Geometry Unit 1 - Notes. Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes. asics of Geometry Unit 1 - Notes Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes. Undefined Terms 1. Point has no dimension, geometrically

More information

Spring 2012 Student Performance Analysis

Spring 2012 Student Performance Analysis Spring 2012 Student Performance Analysis Geometry Standards of Learning Presentation may be paused and resumed using the arrow keys or the mouse. 1 Translating a Short Verbal Argument into Symbolic Form

More information

UNIT 5 GEOMETRY TEMPLATE CREATED BY REGION 1 ESA UNIT 5

UNIT 5 GEOMETRY TEMPLATE CREATED BY REGION 1 ESA UNIT 5 UNIT 5 GEOMETRY TEMPLATE CREATED BY REGION 1 ESA UNIT 5 Geometry Unit 5 Overview: Circles With and Without Coordinates In this unit, students prove basic theorems about circles, with particular attention

More information

Colouring contact graphs of squares and rectilinear polygons de Berg, M.T.; Markovic, A.; Woeginger, G.

Colouring contact graphs of squares and rectilinear polygons de Berg, M.T.; Markovic, A.; Woeginger, G. Colouring ontat graphs of squares and retilinear polygons de Berg, M.T.; Markovi, A.; Woeginger, G. Published in: nd European Workshop on Computational Geometry (EuroCG 06), 0 Marh - April, Lugano, Switzerland

More information

Directed Rectangle-Visibility Graphs have. Abstract. Visibility representations of graphs map vertices to sets in Euclidean space and

Directed Rectangle-Visibility Graphs have. Abstract. Visibility representations of graphs map vertices to sets in Euclidean space and Direted Retangle-Visibility Graphs have Unbounded Dimension Kathleen Romanik DIMACS Center for Disrete Mathematis and Theoretial Computer Siene Rutgers, The State University of New Jersey P.O. Box 1179,

More information

Unit 10 Circles 10-1 Properties of Circles Circle - the set of all points equidistant from the center of a circle. Chord - A line segment with

Unit 10 Circles 10-1 Properties of Circles Circle - the set of all points equidistant from the center of a circle. Chord - A line segment with Unit 10 Circles 10-1 Properties of Circles Circle - the set of all points equidistant from the center of a circle. Chord - A line segment with endpoints on the circle. Diameter - A chord which passes through

More information

Assignment List. Chapter 1 Essentials of Geometry. Chapter 2 Reasoning and Proof. Chapter 3 Parallel and Perpendicular Lines

Assignment List. Chapter 1 Essentials of Geometry. Chapter 2 Reasoning and Proof. Chapter 3 Parallel and Perpendicular Lines Geometry Assignment List Chapter 1 Essentials of Geometry 1.1 Identify Points, Lines, and Planes 5 #1, 4-38 even, 44-58 even 27 1.2 Use Segments and Congruence 12 #4-36 even, 37-45 all 26 1.3 Use Midpoint

More information

Calculating bounds in area and volume questions Manipulating complex indices, including surds Solving simultaneous equations - one linear and one

Calculating bounds in area and volume questions Manipulating complex indices, including surds Solving simultaneous equations - one linear and one Calculating bounds in area and volume questions Manipulating complex indices, including surds Solving simultaneous equations - one linear and one quadratic Using equation of a circle and finding points

More information

WAYNESBORO AREA SCHOOL DISTRICT CURRICULUM ACCELERATED GEOMETRY (June 2014)

WAYNESBORO AREA SCHOOL DISTRICT CURRICULUM ACCELERATED GEOMETRY (June 2014) UNIT: Chapter 1 Essentials of Geometry UNIT : How do we describe and measure geometric figures? Identify Points, Lines, and Planes (1.1) How do you name geometric figures? Undefined Terms Point Line Plane

More information

Introduction to Geometry (Autumn Tertm 2012) Exercises 3. Section A. Figure 1

Introduction to Geometry (Autumn Tertm 2012) Exercises 3. Section A. Figure 1 Introduction to Geometry (utumn ertm 2012) Exercises 3 Section 1. Show that in Figure 1(i) below, = (Euclid III.35). p (i) (ii) Figure 1 (iii) 2. What is the angle-sum in a quadrilateral on the sphere,

More information

YEC Geometry Scope and Sequence Pacing Guide

YEC Geometry Scope and Sequence Pacing Guide YEC Scope and Sequence Pacing Guide Quarter 1st 2nd 3rd 4th Units 1 2 3 4 5 6 7 8 G.CO.1 G.CO.2 G.CO.6 G.CO.9 G.CO.3 G.CO.7 G.CO.10 G.CO.4 G.CO.8 G.CO.11 Congruence G.CO.5 G.CO.12 G.CO.13 Similarity, Right

More information

274 Curves on Surfaces, Lecture 5

274 Curves on Surfaces, Lecture 5 274 Curves on Surfaces, Lecture 5 Dylan Thurston Notes by Qiaochu Yuan Fall 2012 5 Ideal polygons Previously we discussed three models of the hyperbolic plane: the Poincaré disk, the upper half-plane,

More information

Geometry Spring 2017 Item Release

Geometry Spring 2017 Item Release Geometry Spring 2017 Item Release 1 Geometry Reporting Category: Congruence and Proof Question 2 16743 20512 Content Cluster: Use coordinates to prove simple geometric theorems algebraically and to verify

More information

Supporting planning for shape, space and measures in Key Stage 4: objectives and key indicators

Supporting planning for shape, space and measures in Key Stage 4: objectives and key indicators 1 of 7 Supporting planning for shape, space and measures in Key Stage 4: objectives and key indicators This document provides objectives to support planning for shape, space and measures in Key Stage 4.

More information

Solve 3-D problems using Pythagoras theorem and trigonometric ratios (A*) Solve more complex 2-D problems using Pythagoras theorem & trigonometry (A)

Solve 3-D problems using Pythagoras theorem and trigonometric ratios (A*) Solve more complex 2-D problems using Pythagoras theorem & trigonometry (A) Moving from A to A* Solve 3-D problems using Pythagoras theorem and trigonometric ratios (A*) A* Use the sine & cosine rules to solve more complex problems involving non right-angled triangles (A*) Find

More information

SOL Chapter Due Date

SOL Chapter Due Date Name: Block: Date: Geometry SOL Review SOL Chapter Due Date G.1 2.2-2.4 G.2 3.1-3.5 G.3 1.3, 4.8, 6.7, 9 G.4 N/A G.5 5.5 G.6 4.1-4.7 G.7 6.1-6.6 G.8 7.1-7.7 G.9 8.2-8.6 G.10 1.6, 8.1 G.11 10.1-10.6, 11.5,

More information

2.1 Angles, Lines and Parallels & 2.2 Congruent Triangles and Pasch s Axiom

2.1 Angles, Lines and Parallels & 2.2 Congruent Triangles and Pasch s Axiom 2 Euclidean Geometry In the previous section we gave a sketch overview of the early parts of Euclid s Elements. While the Elements set the standard for the modern axiomatic approach to mathematics, it

More information

Junior Year: Geometry/Trigonometry

Junior Year: Geometry/Trigonometry Junior Year: Geometry/Trigonometry Textbooks: Larson Geometry, Common Core Edition Houghton Mifflin Harcourt Publishing Company. ISBN:978-0-547-64708-1 Course Description: The purpose of this course is

More information

Mathematics GCSE 9 1 Higher Syllabus. Yes. Does the subject set according to ability? Skills Covered. Unit

Mathematics GCSE 9 1 Higher Syllabus. Yes. Does the subject set according to ability? Skills Covered. Unit Mathematics GCSE 9 1 Higher Syllabus Does the subject set according to ability? Unit Unit 1 Unit 2 Unit 3 Unit 4 Yes Skills Covered understand and apply place value correctly. estimate values including

More information

Geometry. Instructional Activities:

Geometry. Instructional Activities: GEOMETRY Instructional Activities: Geometry Assessment: A. Direct Instruction A. Quizzes B. Cooperative Learning B. Skill Reviews C. Technology Integration C. Test Prep Questions D. Study Guides D. Chapter

More information

Unit 6: Connecting Algebra and Geometry Through Coordinates

Unit 6: Connecting Algebra and Geometry Through Coordinates Unit 6: Connecting Algebra and Geometry Through Coordinates The focus of this unit is to have students analyze and prove geometric properties by applying algebraic concepts and skills on a coordinate plane.

More information

Algorithms for External Memory Lecture 6 Graph Algorithms - Weighted List Ranking

Algorithms for External Memory Lecture 6 Graph Algorithms - Weighted List Ranking Algorithms for External Memory Leture 6 Graph Algorithms - Weighted List Ranking Leturer: Nodari Sithinava Sribe: Andi Hellmund, Simon Ohsenreither 1 Introdution & Motivation After talking about I/O-effiient

More information

TEACHER CERTIFICATION STUDY GUIDE KNOWLEDGE OF MATHEMATICS THROUGH SOLVING...1

TEACHER CERTIFICATION STUDY GUIDE KNOWLEDGE OF MATHEMATICS THROUGH SOLVING...1 TABLE OF CONTENTS COMPETENCY/SKILLS PG # COMPETENCY 1 KNOWLEDGE OF MATHEMATICS THROUGH PROBLEM SOLVING...1 Skill 1.1 Skill 1.2 Skill 1.3 Skill 1.4 Identify appropriate mathematical problems from real-world

More information

Chapter 7. Some triangle centers. 7.1 The Euler line Inferior and superior triangles

Chapter 7. Some triangle centers. 7.1 The Euler line Inferior and superior triangles hapter 7 Some triangle centers 7.1 The Euler line 7.1.1 nferior and superior triangles G F E G D The inferior triangle of is the triangle DEF whose vertices are the midpoints of the sides,,. The two triangles

More information

Mathematics (www.tiwariacademy.com)

Mathematics (www.tiwariacademy.com) () Miscellaneous Exercise on Chapter 10 Question 1: Find the values of k for which the line is (a) Parallel to the x-axis, (b) Parallel to the y-axis, (c) Passing through the origin. Answer 1: The given

More information

(13) Page #1 8, 12, 13, 15, 16, Even, 29 32, 39 44

(13) Page #1 8, 12, 13, 15, 16, Even, 29 32, 39 44 Geometry/Trigonometry Unit 7: Right Triangle Notes Name: Date: Period: # (1) Page 430 #1 15 (2) Page 430 431 #16 23, 25 27, 29 and 31 (3) Page 437 438 #1 8, 9 19 odd (4) Page 437 439 #10 20 Even, 23, and

More information

1. What is the sum of the measures of the angles in a triangle? Write the proof (Hint: it involves creating a parallel line.)

1. What is the sum of the measures of the angles in a triangle? Write the proof (Hint: it involves creating a parallel line.) riangle asics irst: Some basics you should already know. eometry 4.0 1. What is the sum of the measures of the angles in a triangle? Write the proof (Hint: it involves creating a parallel line.) 2. In

More information

Formal Geometry Unit 9 Quadrilaterals

Formal Geometry Unit 9 Quadrilaterals Name: Period: Formal Geometry Unit 9 Quadrilaterals Date Section Topic Objectives 2/17 9.5 Symmetry I can identify line and rotational symmetries in twodimensional figures. I can identify line and rotational

More information

arxiv: v2 [math.mg] 24 Jul 2013

arxiv: v2 [math.mg] 24 Jul 2013 Solution of Sondow s problem: a synthetic proof of the tangency property of the parbelos Emmanuel Tsukerman arxiv:1210.5580v2 [math.mg] 24 Jul 2013 Abstract In a recent paper titled The parbelos, a parabolic

More information

Mathematical derivations of some important formula in 2D-Geometry by HCR

Mathematical derivations of some important formula in 2D-Geometry by HCR From the SelectedWorks of Harish Chandra Rajpoot H.C. Rajpoot Summer March 31, 2018 Mathematical derivations of some important formula in 2D-Geometry by HCR Harish Chandra Rajpoot, HCR Available at: https://works.bepress.com/harishchandrarajpoot_hcrajpoot/61/

More information

Steiner's Porism: An Activity Using the TI-92 Paul Beem Indiana University South Bend, IN

Steiner's Porism: An Activity Using the TI-92 Paul Beem Indiana University South Bend, IN Steiner's Porism: An Activity Using the TI-9 Paul Beem Indiana University South Bend, IN pbeem@iusb.edu Suppose you are given two circles, one inside the other. Suppose you start drawing circles whose

More information

Ohio s Learning Standards-Extended. Mathematics. Congruence Standards Complexity a Complexity b Complexity c

Ohio s Learning Standards-Extended. Mathematics. Congruence Standards Complexity a Complexity b Complexity c Ohio s Learning Standards-Extended Mathematics Congruence Standards Complexity a Complexity b Complexity c Most Complex Least Complex Experiment with transformations in the plane G.CO.1 Know precise definitions

More information

This image cannot currently be displayed. Course Catalog. Geometry Glynlyon, Inc.

This image cannot currently be displayed. Course Catalog. Geometry Glynlyon, Inc. This image cannot currently be displayed. Course Catalog Geometry 2016 Glynlyon, Inc. Table of Contents COURSE OVERVIEW... 1 UNIT 1: INTRODUCTION... 1 UNIT 2: LOGIC... 1 UNIT 3: ANGLES AND PARALLELS...

More information

Solving inequalities Expanding brackets and simplifying the result Graphing quadratic functions in simple cases Interpreting real-life graphs, e.g.

Solving inequalities Expanding brackets and simplifying the result Graphing quadratic functions in simple cases Interpreting real-life graphs, e.g. Grade C Descriptors Estimation and division by a number less than 1 Calculating compound interest - no rounding necessary Using a calculator in complex situations Multiplication and division by a number

More information

Lesson 1: Complementary and Supplementary Angles

Lesson 1: Complementary and Supplementary Angles lasswork Opening As we begin our study of unknown angles, let us review key definitions. Term Definition Two angles and, with a common side, are angles if is in the interior of. When two lines intersect,

More information

BMGM-2 BMGM-3 BMGM-1 BMGM-7 BMGM-6 BMGM-5 BMGM-8 BMGM-9 BMGM-10 BMGM-11 DXGM-7 DXGM-23 BMGM-12 BMGM-13 BMGM-14 BMGM-15 BMGM-16 DXGM-9

BMGM-2 BMGM-3 BMGM-1 BMGM-7 BMGM-6 BMGM-5 BMGM-8 BMGM-9 BMGM-10 BMGM-11 DXGM-7 DXGM-23 BMGM-12 BMGM-13 BMGM-14 BMGM-15 BMGM-16 DXGM-9 Objective Code Advance BMGM-2 BMGM-3 BMGM-1 BMGM-7 BMGM-6 BMGM-5 BMGM-8 BMGM-9 BMGM-10 BMGM-11 DXGM-7 DXGM-8 BMGM-12 BMGM-13 BMGM-14 BMGM-15 BMGM-16 DXGM-9 DXGM-10 DXGM-11 DXGM-15 DXGM-17 DXGM-16 DXGM-18

More information

1.8 Coordinate Geometry. Copyright Cengage Learning. All rights reserved.

1.8 Coordinate Geometry. Copyright Cengage Learning. All rights reserved. 1.8 Coordinate Geometry Copyright Cengage Learning. All rights reserved. Objectives The Coordinate Plane The Distance and Midpoint Formulas Graphs of Equations in Two Variables Intercepts Circles Symmetry

More information

Acknowledgement: Scott, Foresman. Geometry. SIMILAR TRIANGLES. 1. Definition: A ratio represents the comparison of two quantities.

Acknowledgement: Scott, Foresman. Geometry. SIMILAR TRIANGLES. 1. Definition: A ratio represents the comparison of two quantities. 1 cknowledgement: Scott, Foresman. Geometry. SIMILR TRINGLS 1. efinition: ratio represents the comparison of two quantities. In figure, ratio of blue squares to white squares is 3 : 5 2. efinition: proportion

More information

Curriculum Catalog

Curriculum Catalog 2017-2018 Curriculum Catalog 2017 Glynlyon, Inc. Table of Contents GEOMETRY COURSE OVERVIEW...1 UNIT 1: INTRODUCTION... 1 UNIT 2: LOGIC... 1 UNIT 3: ANGLES AND PARALLELS... 2 UNIT 4: CONGRUENT TRIANGLES

More information

GEOMETRY Graded Course of Study

GEOMETRY Graded Course of Study GEOMETRY Graded Course of Study Conceptual Category: Domain: Congruence Experiment with transformations in the plane. Understand congruence in terms of rigid motions. Prove geometric theorems both formally

More information

YEAR 11 GCSE MATHS REVISION CHECKLIST FOUNDATION TIER TOPICS ARE CATEGORISED VIA MATHS STRANDS NUMBER TOPICS

YEAR 11 GCSE MATHS REVISION CHECKLIST FOUNDATION TIER TOPICS ARE CATEGORISED VIA MATHS STRANDS NUMBER TOPICS YEAR 11 GCSE MATHS REVISION CHECKLIST FOUNDATION TIER TOPICS ARE CATEGORISED VIA MATHS STRANDS NUMBER TOPICS 1 Number Grade 1 to 4 1.1 Calculations Use priority of operations with positive and negative

More information

: Find the values of the six trigonometric functions for θ. Special Right Triangles:

: Find the values of the six trigonometric functions for θ. Special Right Triangles: ALGEBRA 2 CHAPTER 13 NOTES Section 13-1 Right Triangle Trig Understand and use trigonometric relationships of acute angles in triangles. 12.F.TF.3 CC.9- Determine side lengths of right triangles by using

More information

A trigonometric ratio is a,

A trigonometric ratio is a, ALGEBRA II Chapter 13 Notes The word trigonometry is derived from the ancient Greek language and means measurement of triangles. Section 13.1 Right-Triangle Trigonometry Objectives: 1. Find the trigonometric

More information

Int. Geometry Unit 7 Test Review 1

Int. Geometry Unit 7 Test Review 1 Int. Geometry Unit 7 est eview uestions -0: omplete each statement with sometimes, always, or never.. he diagonals of a trapezoid are congruent.. rhombus is equiangular.. rectangle is a square.. he opposite

More information

History of Mathematics

History of Mathematics History of Mathematics Paul Yiu Department of Mathematics Florida tlantic University Spring 2014 1: Pythagoras Theorem in Euclid s Elements Euclid s Elements n ancient Greek mathematical classic compiled

More information

TOPIC LIST GCSE MATHEMATICS HIGHER TIER (Bold HIGHER TIER ONLY) Number Topic Red Amber Green

TOPIC LIST GCSE MATHEMATICS HIGHER TIER (Bold HIGHER TIER ONLY) Number Topic Red Amber Green TOPIC LIST GCSE MATHEMATICS HIGHER TIER (Bold HIGHER TIER ONLY) Number Order whole, decimal, fraction and negative numbers Use the symbols =,, Add, subtract, multiply, divide whole numbers using written

More information

Lesson 13.1 The Premises of Geometry

Lesson 13.1 The Premises of Geometry Lesson 13.1 he remises of Geometry Name eriod ate 1. rovide the missing property of equality or arithmetic as a reason for each step to solve the equation. olve for x: 5(x 4) 15 2x 17 olution: 5(x 4) 15

More information

Year 8 Mathematics Curriculum Map

Year 8 Mathematics Curriculum Map Year 8 Mathematics Curriculum Map Topic Algebra 1 & 2 Number 1 Title (Levels of Exercise) Objectives Sequences *To generate sequences using term-to-term and position-to-term rule. (5-6) Quadratic Sequences

More information

Course: Geometry Level: Regular Date: 11/2016. Unit 1: Foundations for Geometry 13 Days 7 Days. Unit 2: Geometric Reasoning 15 Days 8 Days

Course: Geometry Level: Regular Date: 11/2016. Unit 1: Foundations for Geometry 13 Days 7 Days. Unit 2: Geometric Reasoning 15 Days 8 Days Geometry Curriculum Chambersburg Area School District Course Map Timeline 2016 Units *Note: unit numbers are for reference only and do not indicate the order in which concepts need to be taught Suggested

More information

Carnegie Learning High School Math Series: Geometry Indiana Standards Worktext Correlations

Carnegie Learning High School Math Series: Geometry Indiana Standards Worktext Correlations Carnegie Learning High School Math Series: Logic and Proofs G.LP.1 Understand and describe the structure of and relationships within an axiomatic system (undefined terms, definitions, axioms and postulates,

More information

Angles of Triangles. Essential Question How are the angle measures of a triangle related?

Angles of Triangles. Essential Question How are the angle measures of a triangle related? 2. ngles of Triangles Essential Question How are the angle measures of a triangle related? Writing a onjecture ONSTRUTING VILE RGUMENTS To be proficient in math, you need to reason inductively about data

More information

Mathematics High School Geometry An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts

Mathematics High School Geometry An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts Mathematics High School Geometry An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts interpreting a schematic drawing, estimating the amount of

More information

Geometry Vocabulary Math Fundamentals Reference Sheet Page 1

Geometry Vocabulary Math Fundamentals Reference Sheet Page 1 Math Fundamentals Reference Sheet Page 1 Acute Angle An angle whose measure is between 0 and 90 Acute Triangle A that has all acute Adjacent Alternate Interior Angle Two coplanar with a common vertex and

More information

FRANKLIN-SIMPSON HIGH SCHOOL

FRANKLIN-SIMPSON HIGH SCHOOL FRANKLIN-SIMPSON HIGH SCHOOL Course Name: Geometry Unit Name: Going in Circles Quality Core Objectives: B.1. C.1. D.1. Mathematical Processes Logic and Proof Points, Lines, Planes, and Space Unit 13 Going

More information

Achievement Level Descriptors Geometry

Achievement Level Descriptors Geometry Achievement Level Descriptors Geometry ALD Stard Level 2 Level 3 Level 4 Level 5 Policy MAFS Students at this level demonstrate a below satisfactory level of success with the challenging Students at this

More information

CHAPTER 2 REVIEW COORDINATE GEOMETRY MATH Warm-Up: See Solved Homework questions. 2.2 Cartesian coordinate system

CHAPTER 2 REVIEW COORDINATE GEOMETRY MATH Warm-Up: See Solved Homework questions. 2.2 Cartesian coordinate system CHAPTER 2 REVIEW COORDINATE GEOMETRY MATH6 2.1 Warm-Up: See Solved Homework questions 2.2 Cartesian coordinate system Coordinate axes: Two perpendicular lines that intersect at the origin O on each line.

More information