Unsupervised Deep Learning. James Hays slides from Carl Doersch and Richard Zhang

Size: px
Start display at page:

Download "Unsupervised Deep Learning. James Hays slides from Carl Doersch and Richard Zhang"

Transcription

1 Unsupervised Deep Learning James Hays slides from Carl Doersch and Richard Zhang

2 Recap from Previous Lecture We saw two strategies to get structured output while using deep learning With object detection, one strategy is brute force: detect everywhere at once

3 Recap from Previous Lecture We saw two strategies to get structured output while using deep learning With pose estimation / keypoint detection, the network produces an image-based intermediate representation Part Detection Part Association

4 Recap from Previous Lecture More generally, it can pay off to get creative. Even if Deep ConvNets aren t a natural fit for an image-related task, they might be able to learn a subtask or create a useful intermediate representation.

5 Today s Lecture Two methods for unsupervised deep learning Context Prediction. Doersch et al. ICCV 2015 Colorful Image Colorization. Zhang et al. ECCV 2016 Big picture: do we need big datasets like ImageNet to make deep learning worthwhile? Can we learn from something else?

6 Unsupervised Visual Representation Learning by Context Prediction Carl Doersch Joint work with Alexei A. Efros & Abhinav Gupta ICCV 2015

7 ImageNet + Deep Learning Beagle - Image Retrieval - Detection (RCNN) - Segmentation (FCN) - Depth Estimation -

8 ImageNet + Deep Learning Beagle Materials? Pose? Do we Do even we need semantic this task? labels? Geometry? Parts? Boundaries?

9 Context as Supervision [Collobert & Weston 2008; Mikolov et al. 2013] Deep Net

10 Context Prediction for Images????? A??? B

11 Semantics from a non-semantic task

12 Relative Position Task 8 possible locations Classifier CNN CNN Randomly Sample Patch Sample Second Patch

13 Classifier Patch Embedding Input Nearest Neighbors CNN CNN Note: connects across instances!

14 Architecture Softmax loss Fully connected Fully connected Fully connected Max Pooling Convolution Convolution Convolution LRN Max Pooling Convolution LRN Max Pooling Convolution Patch 1 Tied Weights Fully connected Max Pooling Convolution Convolution Convolution LRN Max Pooling Convolution LRN Max Pooling Convolution Patch 2

15 Avoiding Trivial Shortcuts Include a gap Jitter the patch locations

16 A Not-So Trivial Shortcut CNN Position in Image

17 Chromatic Aberration

18 Chromatic Aberration CNN

19 What is learned? Input Ours Random Initialization ImageNet AlexNet

20 Still don t capture everything Input Ours Random Initialization ImageNet AlexNet You don t always need to learn! Input Ours Random Initialization ImageNet AlexNet

21 Mined from Pascal VOC2011

22 Pre-Training for R-CNN Pre-train on relative-position task, w/o labels [Girshick et al. 2014]

23 % Average Precision 54.2 VOC 2007 Performance (pretraining for R-CNN) No Rescaling Krähenbühl et al VGG + Krähenbühl et al. [Krähenbühl, Doersch, Donahue & Darrell, Data-dependent Initializations of CNNs, 2015] ImageNet Labels Ours No Pretraining

24 Capturing Geometry?

25 So, do we need semantic labels?

26 Self-Supervision and the Future Ego-Motion Video Similar [Agrawal et al. 2015; Jayaraman et al. 2015] [Wang et al. 2015; Srivastava et al 2015; ] Context CNN [Doersch et al. 2014; Pathak et al. 2015; Isola et al. 2015]

27

28 Colorful Image Colorization Richard Zhang, Phillip Isola, Alexei (Alyosha) Efros richzhang.github.io/colorization

29 Ansel Adams, Yosemite Valley Bridge

30 Ansel Adams, Yosemite Valley Bridge Our Result

31 Grayscale image: L channel Color information: ab channels L ab

32 Semantics? Higher-level Grayscale image: L channel abstraction? Concatenate (L,ab) L ab Free supervisory signal

33 Inherent Ambiguity Grayscale

34 Inherent Ambiguity Our Output Ground Truth

35 Better Loss Function Regression with L2 loss inadequate Colors in ab space (continuous) Use multinomial classification Class rebalancing to encourage learning of rare colors

36 Better Loss Function Regression with L2 loss inadequate Colors in ab space (discrete) Use multinomial classification Class rebalancing to encourage learning of rare colors

37

38 Better Loss Function Regression with L2 loss inadequate log 10 probability Histogram over ab space Use multinomial classification Class rebalancing to encourage learning of rare colors

39 Better Loss Function Regression with L2 loss inadequate log 10 probability Histogram over ab space Use multinomial classification Class rebalancing to encourage learning of rare colors

40 Classification Parametric L2 Regression Nonparametric Hertzmann et al. In SIGGRAPH, Welsh et al. In TOG, Irony et al. In Eurographics, Liu et al. In TOG, Chia et al. In ACM Gupta et al. In ACM, Hand-engineered Features Deep Networks Deshpande et al. Cheng et al. In ICCV Dahl. Jan Iizuka et al. In SIGGRAPH, Charpiat et al. In ECCV Larsson et al. In ECCV [Concurrent]

41 Network Architecture lightness conv1 conv2 conv3 conv4 conv5 64 fc6 fc7 ab color L

42 Network Architecture lightness conv1 conv2 conv3 conv4 64 conv5 à trous [1]/dilated [2] conv6 à trous/dilated conv7 conv8 ab color L [1] Chen et al. In arxiv, [2] Yu and Koltun. In ICLR, 2016

43 Ground Input Truth L2 Regression Class w/ Rebalancing

44 Failure Cases

45 Biases

46 Evaluation Visual Quality Representation Learning Quantitative Qualitative Per-pixel accuracy Perceptual realism Semantic interpretability Low-level stimuli Legacy grayscale photos Task generalization ImageNet classification Task & dataset generalization PASCAL classification, detection, segmentation Hidden unit activations

47 Evaluation Visual Quality Representation Learning Quantitative Qualitative Per-pixel accuracy Perceptual realism Semantic interpretability Low-level stimuli Legacy grayscale photos Task generalization ImageNet classification Task & dataset generalization PASCAL classification, detection, segmentation Hidden unit activations

48 Evaluation Visual Quality Representation Learning Quantitative Qualitative Per-pixel accuracy Perceptual realism Semantic interpretability Low-level stimuli Legacy grayscale photos Task generalization ImageNet classification Task & dataset generalization PASCAL classification, detection, segmentation Hidden unit activations

49 Perceptual Realism / Amazon Mechanical Turk Test

50

51 clap if fake clap if fake

52 Fake, 0% fooled

53

54 clap if fake clap if fake

55 Fake, 55% fooled

56

57 clap if fake clap if fake

58 Fake, 58% fooled

59 from Reddit /u/sherysantucci

60 Recolorized by Reddit ColorizeBot

61 Photo taken by Reddit /u/timteroo, Mural from street artist Eduardo Kobra

62 Recolorized by Reddit ColorizeBot

63 Perceptual Realism Test 50% AMT Labeled Real [%] Ground Truth Random Larsson et al Ours (L2) Ours (class) Ours (full) images tested per algorithm %

64 Input Ground Truth Output

65 Predicting Labels from Data Supervised training Data x ImageNet images Learned feature hierarchy Label y ImageNet labels

66 Predicting Data from Data Supervised training Unsupervised/ Self-supervised training x 0 x 1 ImageNet images x 0 Learned feature hierarchy Learned feature hierarchy Label y ImageNet labels x 1

67 Autoencoders Hinton & Salakhutdinov. Science Co-Occurrence Denoising Autoencoders Vincent et al. ICML Egomotion Audio Oral O-1B-01 Yesterday 2 3 PM Owens et al. CVPR 2016, ECCV 2016 Isola et al. ICLR Workshop Agrawal et al. ICCV 2015 Jayaraman et al. ICCV 2015 Context Video Doersch et al. ICCV 2015 Pathak et al. CVPR 2016 Wang et al. ICCV 2015

68 Cross-Channel Encoder conv1 conv2 conv3 conv4 conv5 conv6 lightness à trous [1]/dilated [2] conv7 conv8 ab color L Hidden Unit Activations Zhou et al. In ICLR, [1] Chen et al. In arxiv, [2] Yu and Koltun. In ICLR, 2016

69 Task Generalization: ILSVRC linear classification lightness conv1 conv2 conv3 conv4 conv Class Supervision Are semantic classes linearly separable in the learned feature space?

70 Task Generalization: ILSVRC linear classification

71 Task Generalization: ILSVRC linear classification

72 Hidden Unit (conv5) Activations sky trees water

73 Hidden Unit (conv5) Activations faces dog faces flowers

74 Dataset & Task Generalization on PASCAL VOC Does the feature representation transfer to other datasets and tasks? Classification Krähenbühl et al. In ICLR, Detection Fast R-CNN. Girshick. In ICCV, Segmentation FCNs. Long et al. In CVPR, 2015.

75 % from Gaussian to ImageNet labels ImageNet Labels Dataset & Task Generalization on PASCAL VOC 100% Autoencoder Krähenbühl et al. Agrawal et al. Pathak et al. Wang & Gupta Doersch et al. Donahue et al. Ours Gaussian Initialization 0% Classification Detection Segmentation

76 Does the method work on legacy black and white photos?

77 Thylacine, Dr. David Fleay, extinct in 1936.

78 Thylacine, Dr. David Fleay, extinct in 1936.

79 Amateur Family Photo, 1956.

80 Amateur Family Photo, 1956.

81 Henri Cartier-Bresson, Sunday on the Banks of the River Seine, 1938.

82 Henri Cartier-Bresson, Sunday on the Banks of the River Seine, 1938.

83 Dorothea Lange, Migrant Mother, 1936.

84 Dorothea Lange, Migrant Mother, 1936.

85 Additional Information Demo Reddit ColorizeBot Type colorizebot under any image post Code Website full paper, user examples, visualizations

86 For the full paper, additional examples and our model: richzhang.github.io/colorization

Generative Networks. James Hays Computer Vision

Generative Networks. James Hays Computer Vision Generative Networks James Hays Computer Vision Interesting Illusion: Ames Window https://www.youtube.com/watch?v=ahjqe8eukhc https://en.wikipedia.org/wiki/ames_trapezoid Recap Unsupervised Learning Style

More information

Self-Supervised Learning & Visual Discovery

Self-Supervised Learning & Visual Discovery CS 2770: Computer Vision Self-Supervised Learning & Visual Discovery Prof. Adriana Kovashka University of Pittsburgh April 10, 2017 Motivation So far we ve assumed access to plentiful labeled data How

More information

Colorful Image Colorization

Colorful Image Colorization Colorful Image Colorization Richard Zhang, Phillip Isola, Alexei A. Efros {rich.zhang,isola,efros}@eecs.berkeley.edu University of California, Berkeley Abstract. Given a grayscale photograph as input,

More information

SSD: Single Shot MultiBox Detector. Author: Wei Liu et al. Presenter: Siyu Jiang

SSD: Single Shot MultiBox Detector. Author: Wei Liu et al. Presenter: Siyu Jiang SSD: Single Shot MultiBox Detector Author: Wei Liu et al. Presenter: Siyu Jiang Outline 1. Motivations 2. Contributions 3. Methodology 4. Experiments 5. Conclusions 6. Extensions Motivation Motivation

More information

Deep learning for object detection. Slides from Svetlana Lazebnik and many others

Deep learning for object detection. Slides from Svetlana Lazebnik and many others Deep learning for object detection Slides from Svetlana Lazebnik and many others Recent developments in object detection 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before deep

More information

Encoder-Decoder Networks for Semantic Segmentation. Sachin Mehta

Encoder-Decoder Networks for Semantic Segmentation. Sachin Mehta Encoder-Decoder Networks for Semantic Segmentation Sachin Mehta Outline > Overview of Semantic Segmentation > Encoder-Decoder Networks > Results What is Semantic Segmentation? Input: RGB Image Output:

More information

Spatial Localization and Detection. Lecture 8-1

Spatial Localization and Detection. Lecture 8-1 Lecture 8: Spatial Localization and Detection Lecture 8-1 Administrative - Project Proposals were due on Saturday Homework 2 due Friday 2/5 Homework 1 grades out this week Midterm will be in-class on Wednesday

More information

Lecture 5: Object Detection

Lecture 5: Object Detection Object Detection CSED703R: Deep Learning for Visual Recognition (2017F) Lecture 5: Object Detection Bohyung Han Computer Vision Lab. bhhan@postech.ac.kr 2 Traditional Object Detection Algorithms Region-based

More information

Self-Supervised Segmentation by Grouping Optical-Flow

Self-Supervised Segmentation by Grouping Optical-Flow Self-Supervised Segmentation by Grouping Optical-Flow Aravindh Mahendran James Thewlis Andrea Vedaldi Visual Geometry Group Dept of Engineering Science, University of Oxford {aravindh,jdt,vedaldi}@robots.ox.ac.uk

More information

arxiv: v2 [cs.cv] 21 Nov 2016

arxiv: v2 [cs.cv] 21 Nov 2016 Context Encoders: Feature Learning by Inpainting Deepak Pathak Philipp Krähenbühl Jeff Donahue Trevor Darrell Alexei A. Efros University of California, Berkeley {pathak,philkr,jdonahue,trevor,efros}@cs.berkeley.edu

More information

Human Pose Estimation with Deep Learning. Wei Yang

Human Pose Estimation with Deep Learning. Wei Yang Human Pose Estimation with Deep Learning Wei Yang Applications Understand Activities Family Robots American Heist (2014) - The Bank Robbery Scene 2 What do we need to know to recognize a crime scene? 3

More information

Martian lava field, NASA, Wikipedia

Martian lava field, NASA, Wikipedia Martian lava field, NASA, Wikipedia Old Man of the Mountain, Franconia, New Hampshire Pareidolia http://smrt.ccel.ca/203/2/6/pareidolia/ Reddit for more : ) https://www.reddit.com/r/pareidolia/top/ Pareidolia

More information

Lecture 7: Semantic Segmentation

Lecture 7: Semantic Segmentation Semantic Segmentation CSED703R: Deep Learning for Visual Recognition (207F) Segmenting images based on its semantic notion Lecture 7: Semantic Segmentation Bohyung Han Computer Vision Lab. bhhanpostech.ac.kr

More information

ECCV Presented by: Boris Ivanovic and Yolanda Wang CS 331B - November 16, 2016

ECCV Presented by: Boris Ivanovic and Yolanda Wang CS 331B - November 16, 2016 ECCV 2016 Presented by: Boris Ivanovic and Yolanda Wang CS 331B - November 16, 2016 Fundamental Question What is a good vector representation of an object? Something that can be easily predicted from 2D

More information

arxiv: v1 [cs.cv] 28 Mar 2016

arxiv: v1 [cs.cv] 28 Mar 2016 arxiv:1603.08511v1 [cs.cv] 28 Mar 2016 Colorful Image Colorization Richard Zhang, Phillip Isola, Alexei A. Efros {rich.zhang, isola, efros}@eecs.berkeley.edu University of California, Berkeley Abstract.

More information

Fully Convolutional Networks for Semantic Segmentation

Fully Convolutional Networks for Semantic Segmentation Fully Convolutional Networks for Semantic Segmentation Jonathan Long* Evan Shelhamer* Trevor Darrell UC Berkeley Chaim Ginzburg for Deep Learning seminar 1 Semantic Segmentation Define a pixel-wise labeling

More information

Rich feature hierarchies for accurate object detection and semantic segmentation

Rich feature hierarchies for accurate object detection and semantic segmentation Rich feature hierarchies for accurate object detection and semantic segmentation Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik Presented by Pandian Raju and Jialin Wu Last class SGD for Document

More information

Content-Based Image Recovery

Content-Based Image Recovery Content-Based Image Recovery Hong-Yu Zhou and Jianxin Wu National Key Laboratory for Novel Software Technology Nanjing University, China zhouhy@lamda.nju.edu.cn wujx2001@nju.edu.cn Abstract. We propose

More information

Object detection with CNNs

Object detection with CNNs Object detection with CNNs 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before CNNs After CNNs 0% 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 year Region proposals

More information

COMP 551 Applied Machine Learning Lecture 16: Deep Learning

COMP 551 Applied Machine Learning Lecture 16: Deep Learning COMP 551 Applied Machine Learning Lecture 16: Deep Learning Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551 Unless otherwise noted, all

More information

Object Detection Based on Deep Learning

Object Detection Based on Deep Learning Object Detection Based on Deep Learning Yurii Pashchenko AI Ukraine 2016, Kharkiv, 2016 Image classification (mostly what you ve seen) http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf

More information

Computer Vision Lecture 16

Computer Vision Lecture 16 Announcements Computer Vision Lecture 16 Deep Learning Applications 11.01.2017 Seminar registration period starts on Friday We will offer a lab course in the summer semester Deep Robot Learning Topic:

More information

CS 1674: Intro to Computer Vision. Object Recognition. Prof. Adriana Kovashka University of Pittsburgh April 3, 5, 2018

CS 1674: Intro to Computer Vision. Object Recognition. Prof. Adriana Kovashka University of Pittsburgh April 3, 5, 2018 CS 1674: Intro to Computer Vision Object Recognition Prof. Adriana Kovashka University of Pittsburgh April 3, 5, 2018 Different Flavors of Object Recognition Semantic Segmentation Classification + Localization

More information

Deep Learning for Visual Manipulation and Synthesis

Deep Learning for Visual Manipulation and Synthesis Deep Learning for Visual Manipulation and Synthesis Jun-Yan Zhu 朱俊彦 UC Berkeley 2017/01/11 @ VALSE What is visual manipulation? Image Editing Program input photo User Input result Desired output: stay

More information

Computer Vision Lecture 16

Computer Vision Lecture 16 Computer Vision Lecture 16 Deep Learning Applications 11.01.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar registration period starts

More information

Structured Prediction using Convolutional Neural Networks

Structured Prediction using Convolutional Neural Networks Overview Structured Prediction using Convolutional Neural Networks Bohyung Han bhhan@postech.ac.kr Computer Vision Lab. Convolutional Neural Networks (CNNs) Structured predictions for low level computer

More information

Fine-tuning Pre-trained Large Scaled ImageNet model on smaller dataset for Detection task

Fine-tuning Pre-trained Large Scaled ImageNet model on smaller dataset for Detection task Fine-tuning Pre-trained Large Scaled ImageNet model on smaller dataset for Detection task Kyunghee Kim Stanford University 353 Serra Mall Stanford, CA 94305 kyunghee.kim@stanford.edu Abstract We use a

More information

Yiqi Yan. May 10, 2017

Yiqi Yan. May 10, 2017 Yiqi Yan May 10, 2017 P a r t I F u n d a m e n t a l B a c k g r o u n d s Convolution Single Filter Multiple Filters 3 Convolution: case study, 2 filters 4 Convolution: receptive field receptive field

More information

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun Presented by Tushar Bansal Objective 1. Get bounding box for all objects

More information

Semantic Segmentation

Semantic Segmentation Semantic Segmentation UCLA:https://goo.gl/images/I0VTi2 OUTLINE Semantic Segmentation Why? Paper to talk about: Fully Convolutional Networks for Semantic Segmentation. J. Long, E. Shelhamer, and T. Darrell,

More information

ColorNN Book: A Recurrent-Inspired Deep Learning Approach to Consistent Video Colorization

ColorNN Book: A Recurrent-Inspired Deep Learning Approach to Consistent Video Colorization ColorNN Book: A Recurrent-Inspired Deep Learning Approach to Consistent Video Colorization Divyahans Gupta Stanford University Stanford, California 94305 dgupta2@stanford.edu Sanjay Kannan Stanford University

More information

Computer Vision Lecture 16

Computer Vision Lecture 16 Computer Vision Lecture 16 Deep Learning for Object Categorization 14.01.2016 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar registration period

More information

R-FCN: Object Detection with Really - Friggin Convolutional Networks

R-FCN: Object Detection with Really - Friggin Convolutional Networks R-FCN: Object Detection with Really - Friggin Convolutional Networks Jifeng Dai Microsoft Research Li Yi Tsinghua Univ. Kaiming He FAIR Jian Sun Microsoft Research NIPS, 2016 Or Region-based Fully Convolutional

More information

arxiv: v3 [cs.cv] 16 Jan 2016

arxiv: v3 [cs.cv] 16 Jan 2016 Unsupervised Visual Representation Learning by Context Prediction Carl Doersch 1,2 Abhinav Gupta 1 Alexei A. Efros 2 1 School of Computer Science 2 Dept. of Electrical Engineering and Computer Science

More information

Flow-Based Video Recognition

Flow-Based Video Recognition Flow-Based Video Recognition Jifeng Dai Visual Computing Group, Microsoft Research Asia Joint work with Xizhou Zhu*, Yuwen Xiong*, Yujie Wang*, Lu Yuan and Yichen Wei (* interns) Talk pipeline Introduction

More information

Convolutional Neural Networks + Neural Style Transfer. Justin Johnson 2/1/2017

Convolutional Neural Networks + Neural Style Transfer. Justin Johnson 2/1/2017 Convolutional Neural Networks + Neural Style Transfer Justin Johnson 2/1/2017 Outline Convolutional Neural Networks Convolution Pooling Feature Visualization Neural Style Transfer Feature Inversion Texture

More information

Rich feature hierarchies for accurate object detection and semantic segmentation

Rich feature hierarchies for accurate object detection and semantic segmentation Rich feature hierarchies for accurate object detection and semantic segmentation BY; ROSS GIRSHICK, JEFF DONAHUE, TREVOR DARRELL AND JITENDRA MALIK PRESENTER; MUHAMMAD OSAMA Object detection vs. classification

More information

Learning Representations for Automatic Colorization

Learning Representations for Automatic Colorization Learning Representations for Automatic Colorization Gustav Larsson 1, Michael Maire 2, and Gregory Shakhnarovich 2 1 University of Chicago 2 Toyota Technological Institute at Chicago larsson@cs.uchicago.edu,

More information

Gradient of the lower bound

Gradient of the lower bound Weakly Supervised with Latent PhD advisor: Dr. Ambedkar Dukkipati Department of Computer Science and Automation gaurav.pandey@csa.iisc.ernet.in Objective Given a training set that comprises image and image-level

More information

Multi-Task Self-Supervised Visual Learning

Multi-Task Self-Supervised Visual Learning Multi-Task Self-Supervised Visual Learning Sikai Zhong March 4, 2018 COMPUTER SCIENCE Table of contents 1. Introduction 2. Self-supervised Tasks 3. Architectures 4. Experiments 1 Introduction Self-supervised

More information

Deep Neural Networks:

Deep Neural Networks: Deep Neural Networks: Part II Convolutional Neural Network (CNN) Yuan-Kai Wang, 2016 Web site of this course: http://pattern-recognition.weebly.com source: CNN for ImageClassification, by S. Lazebnik,

More information

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech Convolutional Neural Networks Computer Vision Jia-Bin Huang, Virginia Tech Today s class Overview Convolutional Neural Network (CNN) Training CNN Understanding and Visualizing CNN Image Categorization:

More information

CAP 6412 Advanced Computer Vision

CAP 6412 Advanced Computer Vision CAP 6412 Advanced Computer Vision http://www.cs.ucf.edu/~bgong/cap6412.html Boqing Gong April 21st, 2016 Today Administrivia Free parameters in an approach, model, or algorithm? Egocentric videos by Aisha

More information

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution and Fully Connected CRFs

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution and Fully Connected CRFs DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution and Fully Connected CRFs Zhipeng Yan, Moyuan Huang, Hao Jiang 5/1/2017 1 Outline Background semantic segmentation Objective,

More information

3D Object Recognition and Scene Understanding from RGB-D Videos. Yu Xiang Postdoctoral Researcher University of Washington

3D Object Recognition and Scene Understanding from RGB-D Videos. Yu Xiang Postdoctoral Researcher University of Washington 3D Object Recognition and Scene Understanding from RGB-D Videos Yu Xiang Postdoctoral Researcher University of Washington 1 2 Act in the 3D World Sensing & Understanding Acting Intelligent System 3D World

More information

Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform. Xintao Wang Ke Yu Chao Dong Chen Change Loy

Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform. Xintao Wang Ke Yu Chao Dong Chen Change Loy Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform Xintao Wang Ke Yu Chao Dong Chen Change Loy Problem enlarge 4 times Low-resolution image High-resolution image Previous

More information

Exploiting noisy web data for largescale visual recognition

Exploiting noisy web data for largescale visual recognition Exploiting noisy web data for largescale visual recognition Lamberto Ballan University of Padova, Italy CVPRW WebVision - Jul 26, 2017 Datasets drive computer vision progress ImageNet Slide credit: O.

More information

Deconvolutions in Convolutional Neural Networks

Deconvolutions in Convolutional Neural Networks Overview Deconvolutions in Convolutional Neural Networks Bohyung Han bhhan@postech.ac.kr Computer Vision Lab. Convolutional Neural Networks (CNNs) Deconvolutions in CNNs Applications Network visualization

More information

Towards Weakly- and Semi- Supervised Object Localization and Semantic Segmentation

Towards Weakly- and Semi- Supervised Object Localization and Semantic Segmentation Towards Weakly- and Semi- Supervised Object Localization and Semantic Segmentation Lecturer: Yunchao Wei Image Formation and Processing (IFP) Group University of Illinois at Urbanahttps://weiyc.githu Champaign

More information

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION Yen-Cheng Liu 1, Wei-Chen Chiu 2, Sheng-De Wang 1, and Yu-Chiang Frank Wang 1 1 Graduate Institute of Electrical Engineering,

More information

Generative Models II. Phillip Isola, MIT, OpenAI DLSS 7/27/18

Generative Models II. Phillip Isola, MIT, OpenAI DLSS 7/27/18 Generative Models II Phillip Isola, MIT, OpenAI DLSS 7/27/18 What s a generative model? For this talk: models that output high-dimensional data (Or, anything involving a GAN, VAE, PixelCNN, etc) Useful

More information

Perceiving the 3D World from Images and Videos. Yu Xiang Postdoctoral Researcher University of Washington

Perceiving the 3D World from Images and Videos. Yu Xiang Postdoctoral Researcher University of Washington Perceiving the 3D World from Images and Videos Yu Xiang Postdoctoral Researcher University of Washington 1 2 Act in the 3D World Sensing & Understanding Acting Intelligent System 3D World 3 Understand

More information

REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION

REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION Kingsley Kuan 1, Gaurav Manek 1, Jie Lin 1, Yuan Fang 1, Vijay Chandrasekhar 1,2 Institute for Infocomm Research, A*STAR, Singapore 1 Nanyang Technological

More information

Deep Learning for Object detection & localization

Deep Learning for Object detection & localization Deep Learning for Object detection & localization RCNN, Fast RCNN, Faster RCNN, YOLO, GAP, CAM, MSROI Aaditya Prakash Sep 25, 2018 Image classification Image classification Whole of image is classified

More information

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION 2017 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 25 28, 2017, TOKYO, JAPAN DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION Yen-Cheng Liu 1,

More information

CEA LIST s participation to the Scalable Concept Image Annotation task of ImageCLEF 2015

CEA LIST s participation to the Scalable Concept Image Annotation task of ImageCLEF 2015 CEA LIST s participation to the Scalable Concept Image Annotation task of ImageCLEF 2015 Etienne Gadeski, Hervé Le Borgne, and Adrian Popescu CEA, LIST, Laboratory of Vision and Content Engineering, France

More information

arxiv: v2 [cs.cv] 28 Sep 2015

arxiv: v2 [cs.cv] 28 Sep 2015 Unsupervised Visual Representation Learning by Context Prediction Carl Doersch 1,2 Abhinav Gupta 1 Alexei A. Efros 2 1 School of Computer Science 2 Dept. of Electrical Engineering and Computer Science

More information

SELF SUPERVISED DEEP REPRESENTATION LEARNING FOR FINE-GRAINED BODY PART RECOGNITION

SELF SUPERVISED DEEP REPRESENTATION LEARNING FOR FINE-GRAINED BODY PART RECOGNITION SELF SUPERVISED DEEP REPRESENTATION LEARNING FOR FINE-GRAINED BODY PART RECOGNITION Pengyue Zhang Fusheng Wang Yefeng Zheng Medical Imaging Technologies, Siemens Medical Solutions USA Inc., Princeton,

More information

Machine Learning. MGS Lecture 3: Deep Learning

Machine Learning. MGS Lecture 3: Deep Learning Dr Michel F. Valstar http://cs.nott.ac.uk/~mfv/ Machine Learning MGS Lecture 3: Deep Learning Dr Michel F. Valstar http://cs.nott.ac.uk/~mfv/ WHAT IS DEEP LEARNING? Shallow network: Only one hidden layer

More information

Supplementary material for Analyzing Filters Toward Efficient ConvNet

Supplementary material for Analyzing Filters Toward Efficient ConvNet Supplementary material for Analyzing Filters Toward Efficient Net Takumi Kobayashi National Institute of Advanced Industrial Science and Technology, Japan takumi.kobayashi@aist.go.jp A. Orthonormal Steerable

More information

CS6501: Deep Learning for Visual Recognition. Object Detection I: RCNN, Fast-RCNN, Faster-RCNN

CS6501: Deep Learning for Visual Recognition. Object Detection I: RCNN, Fast-RCNN, Faster-RCNN CS6501: Deep Learning for Visual Recognition Object Detection I: RCNN, Fast-RCNN, Faster-RCNN Today s Class Object Detection The RCNN Object Detector (2014) The Fast RCNN Object Detector (2015) The Faster

More information

arxiv: v3 [cs.cv] 13 Aug 2017

arxiv: v3 [cs.cv] 13 Aug 2017 arxiv:1603.06668v3 [cs.cv] 13 Aug 2017 Learning Representations for Automatic Colorization Gustav Larsson 1, Michael Maire 2, and Gregory Shakhnarovich 2 1 University of Chicago 2 Toyota Technological

More information

Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus

Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus Presented by: Rex Ying and Charles Qi Input: A Single RGB Image Estimate

More information

3D Shape Analysis with Multi-view Convolutional Networks. Evangelos Kalogerakis

3D Shape Analysis with Multi-view Convolutional Networks. Evangelos Kalogerakis 3D Shape Analysis with Multi-view Convolutional Networks Evangelos Kalogerakis 3D model repositories [3D Warehouse - video] 3D geometry acquisition [KinectFusion - video] 3D shapes come in various flavors

More information

Hide-and-Seek: Forcing a network to be Meticulous for Weakly-supervised Object and Action Localization

Hide-and-Seek: Forcing a network to be Meticulous for Weakly-supervised Object and Action Localization Hide-and-Seek: Forcing a network to be Meticulous for Weakly-supervised Object and Action Localization Krishna Kumar Singh and Yong Jae Lee University of California, Davis ---- Paper Presentation Yixian

More information

Learning Transferable Features with Deep Adaptation Networks

Learning Transferable Features with Deep Adaptation Networks Learning Transferable Features with Deep Adaptation Networks Mingsheng Long, Yue Cao, Jianmin Wang, Michael I. Jordan Presented by Changyou Chen October 30, 2015 1 Changyou Chen Learning Transferable Features

More information

arxiv: v1 [cs.cv] 31 Mar 2016

arxiv: v1 [cs.cv] 31 Mar 2016 Object Boundary Guided Semantic Segmentation Qin Huang, Chunyang Xia, Wenchao Zheng, Yuhang Song, Hao Xu and C.-C. Jay Kuo arxiv:1603.09742v1 [cs.cv] 31 Mar 2016 University of Southern California Abstract.

More information

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Shaoqing Ren Kaiming He Ross Girshick Jian Sun Present by: Yixin Yang Mingdong Wang 1 Object Detection 2 1 Applications Basic

More information

What was Monet seeing while painting? Translating artworks to photo-realistic images M. Tomei, L. Baraldi, M. Cornia, R. Cucchiara

What was Monet seeing while painting? Translating artworks to photo-realistic images M. Tomei, L. Baraldi, M. Cornia, R. Cucchiara What was Monet seeing while painting? Translating artworks to photo-realistic images M. Tomei, L. Baraldi, M. Cornia, R. Cucchiara COMPUTER VISION IN THE ARTISTIC DOMAIN The effectiveness of Computer Vision

More information

Bidirectional GAN. Adversarially Learned Inference (ICLR 2017) Adversarial Feature Learning (ICLR 2017)

Bidirectional GAN. Adversarially Learned Inference (ICLR 2017) Adversarial Feature Learning (ICLR 2017) Bidirectional GAN Adversarially Learned Inference (ICLR 2017) V. Dumoulin 1, I. Belghazi 1, B. Poole 2, O. Mastropietro 1, A. Lamb 1, M. Arjovsky 3 and A. Courville 1 1 Universite de Montreal & 2 Stanford

More information

Scene Parsing with Global Context Embedding

Scene Parsing with Global Context Embedding Scene Parsing with Global Context Embedding Wei-Chih Hung 1, Yi-Hsuan Tsai 1,2, Xiaohui Shen 3, Zhe Lin 3, Kalyan Sunkavalli 3, Xin Lu 3, Ming-Hsuan Yang 1 1 University of California, Merced 2 NEC Laboratories

More information

Rich feature hierarchies for accurate object detection and semant

Rich feature hierarchies for accurate object detection and semant Rich feature hierarchies for accurate object detection and semantic segmentation Speaker: Yucong Shen 4/5/2018 Develop of Object Detection 1 DPM (Deformable parts models) 2 R-CNN 3 Fast R-CNN 4 Faster

More information

Transfer Learning. Style Transfer in Deep Learning

Transfer Learning. Style Transfer in Deep Learning Transfer Learning & Style Transfer in Deep Learning 4-DEC-2016 Gal Barzilai, Ram Machlev Deep Learning Seminar School of Electrical Engineering Tel Aviv University Part 1: Transfer Learning in Deep Learning

More information

Direct Multi-Scale Dual-Stream Network for Pedestrian Detection Sang-Il Jung and Ki-Sang Hong Image Information Processing Lab.

Direct Multi-Scale Dual-Stream Network for Pedestrian Detection Sang-Il Jung and Ki-Sang Hong Image Information Processing Lab. [ICIP 2017] Direct Multi-Scale Dual-Stream Network for Pedestrian Detection Sang-Il Jung and Ki-Sang Hong Image Information Processing Lab., POSTECH Pedestrian Detection Goal To draw bounding boxes that

More information

TRANSPARENT OBJECT DETECTION USING REGIONS WITH CONVOLUTIONAL NEURAL NETWORK

TRANSPARENT OBJECT DETECTION USING REGIONS WITH CONVOLUTIONAL NEURAL NETWORK TRANSPARENT OBJECT DETECTION USING REGIONS WITH CONVOLUTIONAL NEURAL NETWORK 1 Po-Jen Lai ( 賴柏任 ), 2 Chiou-Shann Fuh ( 傅楸善 ) 1 Dept. of Electrical Engineering, National Taiwan University, Taiwan 2 Dept.

More information

AttentionNet for Accurate Localization and Detection of Objects. (To appear in ICCV 2015)

AttentionNet for Accurate Localization and Detection of Objects. (To appear in ICCV 2015) AttentionNet for Accurate Localization and Detection of Objects. (To appear in ICCV 2015) Donggeun Yoo, Sunggyun Park, Joon-Young Lee, Anthony Paek, In So Kweon. State-of-the-art frameworks for object

More information

Learning from 3D Data

Learning from 3D Data Learning from 3D Data Thomas Funkhouser Princeton University* * On sabbatical at Stanford and Google Disclaimer: I am talking about the work of these people Shuran Song Andy Zeng Fisher Yu Yinda Zhang

More information

Cascade Region Regression for Robust Object Detection

Cascade Region Regression for Robust Object Detection Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Cascade Region Regression for Robust Object Detection Jiankang Deng, Shaoli Huang, Jing Yang, Hui Shuai, Zhengbo Yu, Zongguang Lu, Qiang Ma, Yali

More information

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Si Chen The George Washington University sichen@gwmail.gwu.edu Meera Hahn Emory University mhahn7@emory.edu Mentor: Afshin

More information

CS 1674: Intro to Computer Vision. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh November 16, 2016

CS 1674: Intro to Computer Vision. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh November 16, 2016 CS 1674: Intro to Computer Vision Neural Networks Prof. Adriana Kovashka University of Pittsburgh November 16, 2016 Announcements Please watch the videos I sent you, if you haven t yet (that s your reading)

More information

Day 3 Lecture 1. Unsupervised Learning

Day 3 Lecture 1. Unsupervised Learning Day 3 Lecture 1 Unsupervised Learning Semi-supervised and transfer learning Myth: you can t do deep learning unless you have a million labelled examples for your problem. Reality You can learn useful representations

More information

Project 3 Q&A. Jonathan Krause

Project 3 Q&A. Jonathan Krause Project 3 Q&A Jonathan Krause 1 Outline R-CNN Review Error metrics Code Overview Project 3 Report Project 3 Presentations 2 Outline R-CNN Review Error metrics Code Overview Project 3 Report Project 3 Presentations

More information

Deep learning for dense per-pixel prediction. Chunhua Shen The University of Adelaide, Australia

Deep learning for dense per-pixel prediction. Chunhua Shen The University of Adelaide, Australia Deep learning for dense per-pixel prediction Chunhua Shen The University of Adelaide, Australia Image understanding Classification error Convolution Neural Networks 0.3 0.2 0.1 Image Classification [Krizhevsky

More information

Object detection using Region Proposals (RCNN) Ernest Cheung COMP Presentation

Object detection using Region Proposals (RCNN) Ernest Cheung COMP Presentation Object detection using Region Proposals (RCNN) Ernest Cheung COMP790-125 Presentation 1 2 Problem to solve Object detection Input: Image Output: Bounding box of the object 3 Object detection using CNN

More information

A Deep Learning Approach to Vehicle Speed Estimation

A Deep Learning Approach to Vehicle Speed Estimation A Deep Learning Approach to Vehicle Speed Estimation Benjamin Penchas bpenchas@stanford.edu Tobin Bell tbell@stanford.edu Marco Monteiro marcorm@stanford.edu ABSTRACT Given car dashboard video footage,

More information

Cross-Domain Self-supervised Multi-task Feature Learning using Synthetic Imagery

Cross-Domain Self-supervised Multi-task Feature Learning using Synthetic Imagery Cross-Domain Self-supervised Multi-task Feature Learning using Synthetic Imagery Zhongzheng Ren and Yong Jae Lee University of California, Davis Abstract In human learning, it is common to use multiple

More information

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU,

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU, Machine Learning 10-701, Fall 2015 Deep Learning Eric Xing (and Pengtao Xie) Lecture 8, October 6, 2015 Eric Xing @ CMU, 2015 1 A perennial challenge in computer vision: feature engineering SIFT Spin image

More information

Deep Learning for Computer Vision II

Deep Learning for Computer Vision II IIIT Hyderabad Deep Learning for Computer Vision II C. V. Jawahar Paradigm Shift Feature Extraction (SIFT, HoG, ) Part Models / Encoding Classifier Sparrow Feature Learning Classifier Sparrow L 1 L 2 L

More information

AdaDepth: Unsupervised Content Congruent Adaptation for Depth Estimation

AdaDepth: Unsupervised Content Congruent Adaptation for Depth Estimation AdaDepth: Unsupervised Content Congruent Adaptation for Depth Estimation Introduction Supplementary material In the supplementary material, we present additional qualitative results of the proposed AdaDepth

More information

CS 2750: Machine Learning. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh April 13, 2016

CS 2750: Machine Learning. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh April 13, 2016 CS 2750: Machine Learning Neural Networks Prof. Adriana Kovashka University of Pittsburgh April 13, 2016 Plan for today Neural network definition and examples Training neural networks (backprop) Convolutional

More information

Dense Image Labeling Using Deep Convolutional Neural Networks

Dense Image Labeling Using Deep Convolutional Neural Networks Dense Image Labeling Using Deep Convolutional Neural Networks Md Amirul Islam, Neil Bruce, Yang Wang Department of Computer Science University of Manitoba Winnipeg, MB {amirul, bruce, ywang}@cs.umanitoba.ca

More information

Bilinear Models for Fine-Grained Visual Recognition

Bilinear Models for Fine-Grained Visual Recognition Bilinear Models for Fine-Grained Visual Recognition Subhransu Maji College of Information and Computer Sciences University of Massachusetts, Amherst Fine-grained visual recognition Example: distinguish

More information

Part Localization by Exploiting Deep Convolutional Networks

Part Localization by Exploiting Deep Convolutional Networks Part Localization by Exploiting Deep Convolutional Networks Marcel Simon, Erik Rodner, and Joachim Denzler Computer Vision Group, Friedrich Schiller University of Jena, Germany www.inf-cv.uni-jena.de Abstract.

More information

Mask R-CNN. presented by Jiageng Zhang, Jingyao Zhan, Yunhan Ma

Mask R-CNN. presented by Jiageng Zhang, Jingyao Zhan, Yunhan Ma Mask R-CNN presented by Jiageng Zhang, Jingyao Zhan, Yunhan Ma Mask R-CNN Background Related Work Architecture Experiment Mask R-CNN Background Related Work Architecture Experiment Background From left

More information

3D Shape Segmentation with Projective Convolutional Networks

3D Shape Segmentation with Projective Convolutional Networks 3D Shape Segmentation with Projective Convolutional Networks Evangelos Kalogerakis 1 Melinos Averkiou 2 Subhransu Maji 1 Siddhartha Chaudhuri 3 1 University of Massachusetts Amherst 2 University of Cyprus

More information

Application of Convolutional Neural Network for Image Classification on Pascal VOC Challenge 2012 dataset

Application of Convolutional Neural Network for Image Classification on Pascal VOC Challenge 2012 dataset Application of Convolutional Neural Network for Image Classification on Pascal VOC Challenge 2012 dataset Suyash Shetty Manipal Institute of Technology suyash.shashikant@learner.manipal.edu Abstract In

More information

JOINT DETECTION AND SEGMENTATION WITH DEEP HIERARCHICAL NETWORKS. Zhao Chen Machine Learning Intern, NVIDIA

JOINT DETECTION AND SEGMENTATION WITH DEEP HIERARCHICAL NETWORKS. Zhao Chen Machine Learning Intern, NVIDIA JOINT DETECTION AND SEGMENTATION WITH DEEP HIERARCHICAL NETWORKS Zhao Chen Machine Learning Intern, NVIDIA ABOUT ME 5th year PhD student in physics @ Stanford by day, deep learning computer vision scientist

More information

Learning to generate 3D shapes

Learning to generate 3D shapes Learning to generate 3D shapes Subhransu Maji College of Information and Computer Sciences University of Massachusetts, Amherst http://people.cs.umass.edu/smaji August 10, 2018 @ Caltech Creating 3D shapes

More information

Learning visual odometry with a convolutional network

Learning visual odometry with a convolutional network Learning visual odometry with a convolutional network Kishore Konda 1, Roland Memisevic 2 1 Goethe University Frankfurt 2 University of Montreal konda.kishorereddy@gmail.com, roland.memisevic@gmail.com

More information

Constrained Convolutional Neural Networks for Weakly Supervised Segmentation. Deepak Pathak, Philipp Krähenbühl and Trevor Darrell

Constrained Convolutional Neural Networks for Weakly Supervised Segmentation. Deepak Pathak, Philipp Krähenbühl and Trevor Darrell Constrained Convolutional Neural Networks for Weakly Supervised Segmentation Deepak Pathak, Philipp Krähenbühl and Trevor Darrell 1 Multi-class Image Segmentation Assign a class label to each pixel in

More information