Scintillators and photodetectors. 1. Generation of Optical Photons 2. Transport of Optical Photons 3. Detection of Optical Photons

Size: px
Start display at page:

Download "Scintillators and photodetectors. 1. Generation of Optical Photons 2. Transport of Optical Photons 3. Detection of Optical Photons"

Transcription

1 Scintillators and photodetectors 1. Generation of Optical Photons 2. Transport of Optical Photons 3. Detection of Optical Photons

2 1) Generation of Optical Photons A) Organic (molecular) scintillators Advantages: Fast No need for Xtals liquids, glasses, Naphtalene: π-electron system Disadvantages: inefficient Non-linear (quenching) not good for γ s

3 The electronic levels: Phosphorescence (slow) 1) Prompt fluorescence 2) Phosphorescence 3) Delayed fluorescence Complicated time structure

4 1) Generation of Optical Photons Non-linearity: Birk s law Interaction between two (or more) excited molecules Non-radiative decay = quenching Becomes more important with increasing ionization density non-linearity.

5 1) Generation of Optical Photons How to avoid re-absorption? Natural Stokes shift (not enough) Wavelength shifters via additional scintillators

6

7 1) Generation of Optical Photons b) Inorganic crystalline scintillators (NaI:Tl) Origin does not stem from molecular energy levels but from band-structure levels. Advantages: Good efficiency Good linearity Radiation tolerance Disadvantages: Relatively slow Crystal structure needed (small and expensive)

8

9

10

11 Summary: Organics (molecular): fast, large, cheap; inefficient, non-linear Inorganics (crystalline): Efficient, rad-hard; slow, small Noble liquids: Large, cheap, inefficient

12 Scintillators and photodetectors 1. Generation of Optical Photons 2. Transport of Optical Photons 3. Detection of Optical Photons

13 2) Transport of optical photons Often it is unavoidable or even desirable to have the photo-detector remote from the scintillator: Space limitations (particle detectors) Photodetector out of the magnetic field Couple a large scintillator surface (volume) to a single photo-detector Use optical wave guides: Total internal reflection at interface with material with lower index of reflection.

14 2) Transport of optical photons Adiabatic ; for better time resolution (path length is position independent) Liouville s Theorem: Phase space volume (area x angle) is preserved

15 2) Transport of optical photons

16

17 Scintillators and photodetectors 1. Generation of Optical Photons 2. Transport of Optical Photons 3. Detection of Optical Photons

18 Photodetectors: Goal: Conversion of the fluorescent light into an electrical signal that can subsequently be digitized. Requirements: High Quantum Efficiency: QE = N photoelectrons /N photons Minimum time spread (keep time resolution) Good lifetime Large dynamic range

19 (still) the workhorse: Photo Multiplier Tubes (PMT s)

20 PMT s can have different shapes and size a) Venetian blind (simple, efficient) b) Box and grid (simple, efficient) c) Linear focusing (good time resolution) d) Circular cage (compact) e) Mesh dynodes (good in B fields) f) Foil dynodes (position sensitive)

21 Photo-cathode and first dynode stage are the critical components.

22

23 Special structures: Micro-channel plates Characteristics:

24 Hybrid Photo diodes (HPD) Combination of: Photocathode (like in a PMT) Vacuum electron acceleration structure Silicon detectors (direct detection of electrons) Electron backscattering of silicon diodes

25 Avalanche Photodiodes Solid state detectors with internal amplification (c.f. proportional counter) Charge carriers are accelerated sufficiently to form additional electronhole pairs Creation of a particular multiplication zone: impact ionization An electron-hole pair is created on theleftbyincidentlight

26 Silicon PM s = Pixellated avalanche diodes; run in Geiger mode (very high gain) Small dimensions ~ 300 μm pixel size Insensitive to B-fields Low voltages High gains (strong signals) Relatively cheap.

27 DESY is very active in developing Calorimeters for ILC

28 Comparison of various photo-detectors

29 Summary Scintillators and photo-detectors 1. Generation of Optical Photons 2. Transport of Optical Photons 3. Detection of Optical Photons 1) Generation: Organic and inorganic scintillators; noble gasses and liquids 2) Transport: waveguides; wavelength shifters; optical fibers. 3) Detection: PMT; HPD; APD or SiPM. Each component and combination has its own advantage and disadvantage. Application specific (HEP, Photon Science, Medical Imaging, Industrial Imaging

SCINTILLATORS-SiPM COUPLING

SCINTILLATORS-SiPM COUPLING SCINTILLATORS-SiPM COUPLING G.FELICI LNF-INFN SCINTILLATOR ßàSIPM 1 st PROBLEM: EJ-200 peak emission spectrum do not match S18825 peak sensitivity AMPLITUDE 1.0 0.8 0.6 0.4 0.2 EJ-200 EMISSION SPECTRUM

More information

Luminous. Optoelectronic Device Simulator 4/15/05

Luminous. Optoelectronic Device Simulator 4/15/05 Optoelectronic Device Simulator 4/15/05 Contents Overview Key Benefits Applications Charge Coupled Devices (CCDs) Separate Absorption Multiplication (SAM) reach through avalanche photo detectors High speed

More information

Image Diode APPLICATIONS KEY ATTRIBUTES

Image Diode APPLICATIONS KEY ATTRIBUTES The is a proximity focussed diode vacuum photo-tube, otherwise known as a Generation 1 Proximity Image Intensifier. Image Diodes do not contain Microchannel Plate (MCP) electron multipliers. Instead, light

More information

GEANT4 is used for simulating: RICH testbeam data, HCAL testbeam data. GAUSS Project: LHCb Simulation using GEANT4 with GAUDI.

GEANT4 is used for simulating: RICH testbeam data, HCAL testbeam data. GAUSS Project: LHCb Simulation using GEANT4 with GAUDI. Status of GEANT4 in LHCb S. Easo, RAL, 30-9-2002 The LHCbexperiment. GEANT4 is used for simulating: RICH testbeam data, HCAL testbeam data. GAUSS Project: LHCb Simulation using GEANT4 with GAUDI. Summary.

More information

Spectroscopic equipment. Multispectral Imaging

Spectroscopic equipment. Multispectral Imaging Spectroscopic equipment Multispectral Imaging Basic spectroscopic arrangement Source Sample Analyzer Detector Sun Lamps Lasers LEDs Synchrotron Plants Forests Tissue Cells Flames Chemical compounds etc.

More information

BIOIMAGING AND OPTICS PLATFORM EPFL SV PTBIOP DIGITAL IMAGING

BIOIMAGING AND OPTICS PLATFORM EPFL SV PTBIOP DIGITAL IMAGING DIGITAL IMAGING Internal Course 2015 January, 27 th DIGITAL IMAGING OUTLOOK 1600 1700 1800 1900 2000 Digital Camera (Kodak, 1975) HUMAN EYE Visual Pigments Protein + Retinal 13 cis/trans Photoreaction

More information

Cherenkov Radiation. Doctoral Thesis. Rok Dolenec. Supervisor: Prof. Dr. Samo Korpar

Cherenkov Radiation. Doctoral Thesis. Rok Dolenec. Supervisor: Prof. Dr. Samo Korpar Doctoral Thesis Time-of-Flight Time-of-Flight Positron Positron Emission Emission Tomography Tomography Using Using Cherenkov Cherenkov Radiation Radiation Rok Dolenec Supervisor: Prof. Dr. Samo Korpar

More information

UNIT II SPECIAL SEMICONDUCTOR DEVICES

UNIT II SPECIAL SEMICONDUCTOR DEVICES UNIT II SPECIAL SEMICONDUCTOR DEVICES 1 2 3 4 5 6 7 8 9 10 11 12 13 A photodiode is a semiconductor device that converts light into an electrical current. The current is generated when photons are absorbed

More information

6-1 LECTURE #6: OPTICAL PROPERTIES OF SOLIDS. Basic question: How do solids interact with light? The answers are linked to:

6-1 LECTURE #6: OPTICAL PROPERTIES OF SOLIDS. Basic question: How do solids interact with light? The answers are linked to: LECTURE #6: OPTICAL PROPERTIES OF SOLIDS Basic question: How do solids interact with light? The answers are linked to: Properties of light inside a solid Mechanisms behind light reflection, absorption

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging 1 Lucas Parra, CCNY BME I5000: Biomedical Imaging Lecture 4 Computed Tomography Lucas C. Parra, parra@ccny.cuny.edu some slides inspired by lecture notes of Andreas H. Hilscher at Columbia University.

More information

SiPMs for Čerenkov imaging

SiPMs for Čerenkov imaging SiPMs for Čerenkov imaging Peter Križan University of Ljubljana and J. Stefan Institute Trends in Photon Detectors in Particle Physics and Calorimetry, Trieste, June 2-4, 2008 Contents Photon detectors

More information

Deliverable D10.2. WP10 JRA04 INDESYS Innovative solutions for nuclear physics detectors

Deliverable D10.2. WP10 JRA04 INDESYS Innovative solutions for nuclear physics detectors MS116 Characterization of light production, propagation and collection for both organic and inorganic scintillators D10.2 R&D on new and existing scintillation materials: Report on the light production,

More information

A New Model for Optical Crosstalk in SinglePhoton Avalanche Diodes Arrays

A New Model for Optical Crosstalk in SinglePhoton Avalanche Diodes Arrays A New Model for Optical Crosstalk in SinglePhoton Avalanche Diodes Arrays I. Rech, A. Ingargiola, R. Spinelli, S. Marangoni, I. Labanca, M. Ghioni, S. Cova Dipartimento di Elettronica ed Informazione Politecnico

More information

BioImaging &Optics Platform. Digital Imaging. Dr. Arne Seitz

BioImaging &Optics Platform. Digital Imaging. Dr. Arne Seitz Digital Imaging Swiss Institute of Technology (EPFL) Faculty of Life Sciences Head of BIOIMAGING AND OPTICS BIOP arne.seitz@epfl.ch Digital imaging Outlook 1600 1700 1800 1900 2000 Digital Camera (Kodak,

More information

CHAPTER 11 NUCLEAR MEDICINE IMAGING DEVICES

CHAPTER 11 NUCLEAR MEDICINE IMAGING DEVICES CHAPTER 11 M.A. LODGE, E.C. FREY Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America 11.1. INTRODUCTION Imaging

More information

Development of Ultrafast CXRS system in Heliotron J. Graduate School of Energy Science Kyoto University LU XIANGXUN 03/15/2016

Development of Ultrafast CXRS system in Heliotron J. Graduate School of Energy Science Kyoto University LU XIANGXUN 03/15/2016 1 Development of Ultrafast CXRS system in Heliotron J Graduate School of Energy Science Kyoto University LU XIANGXUN 03/15/2016 2 Outline 1. Introduction 2. Charge exchange Recombination Spectroscopy (CXRS)

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics Diffraction Huygen s principle requires that the waves spread out after they pass through slits This spreading out of light from its initial line of travel is called diffraction

More information

Timing properties of MCP-PMT

Timing properties of MCP-PMT Photon Detector Workshop at Kobe, 27-29 June 27 Timing properties of MCP-PMT - Time resolution - Lifetime - Rate dependence K.Inami (Nagoya university, Japan) Introduction Photon device for TOP counter

More information

The LHCb upgrade. Outline: Present LHCb detector and trigger LHCb upgrade main drivers Overview of the sub-detector modifications Conclusions

The LHCb upgrade. Outline: Present LHCb detector and trigger LHCb upgrade main drivers Overview of the sub-detector modifications Conclusions The LHCb upgrade Burkhard Schmidt for the LHCb Collaboration Outline: Present LHCb detector and trigger LHCb upgrade main drivers Overview of the sub-detector modifications Conclusions OT IT coverage 1.9

More information

Charged Particle Tracking at Cornell: Gas Detectors and Event Reconstruction

Charged Particle Tracking at Cornell: Gas Detectors and Event Reconstruction Charged Particle Tracking at Cornell: Gas Detectors and Event Reconstruction Dan Peterson, Cornell University The Cornell group has constructed, operated and maintained the charged particle tracking detectors

More information

MLX Ultra-High Sensitivity Color Camera System from NAC Image Technology. January 2005 from NAC Image Technology Page 1 of 13

MLX Ultra-High Sensitivity Color Camera System from NAC Image Technology. January 2005 from NAC Image Technology Page 1 of 13 Page 1 of 13 Overview The MLX Ultra High-Sensitivity Color Camera System from NAC Image Technology is a completely new camera system using the most advanced technology. The MLX uses an advanced CCD sensor

More information

Technical Basis for optical experimentation Part #4

Technical Basis for optical experimentation Part #4 AerE 545 class notes #11 Technical Basis for optical experimentation Part #4 Hui Hu Department of Aerospace Engineering, Iowa State University Ames, Iowa 50011, U.S.A Light sensing and recording Lenses

More information

Diffraction and Interference

Diffraction and Interference Experiment #32 Diffraction and Interference Goals: Perform a quantitative investigation of two-slit interference Explore use of a photodiode to measure light intensity References 1. I. G. Main, Vibrations

More information

Lecture 1a Overview of Radiometry

Lecture 1a Overview of Radiometry Lecture 1a Overview of Radiometry Curtis Mobley Vice President for Science Senior Scientist Sequoia Scientific, Inc. Bellevue, Washington 98005 USA curtis.mobley@sequoiasci.com IOCCG Course Villefranche-sur-Mer,

More information

A Further Study on Large Size LSO and LYSO Crystal Samples

A Further Study on Large Size LSO and LYSO Crystal Samples October 25, 2005 IEEE NSS, N12-6, Puerto-Rico 1 A Further Study on Large Size LSO and LYSO Crystal Samples Jianming Chen, Liyuan Zhang, Ren-yuan Zhu California Institute of Technology BGO, LSO & LYSO Samples

More information

Supplementary Materials for

Supplementary Materials for www.sciencemag.org/cgi/content/full/338/6107/640/dc1 Supplementary Materials for Quantum Entanglement of High Angular Momenta Robert Fickler,* Radek Lapkiewicz, William N. Plick, Mario Krenn, Christoph

More information

Thomas Cajgfinger, Eric Chabanat, Agnes Dominjon, Quang T. Doan, Cyrille Guerin, Julien Houles, Remi Barbier.

Thomas Cajgfinger, Eric Chabanat, Agnes Dominjon, Quang T. Doan, Cyrille Guerin, Julien Houles, Remi Barbier. Thomas Cajgfinger, Eric Chabanat, Agnes Dominjon, Quang T. Doan, Cyrille Guerin, Julien Houles, Remi Barbier. IPNL, Université de Lyon, Université Lyon 1, CNRS/IN2P3, 4 rue E. Fermi 69622 Villeurbanne

More information

Introduction to Optical Networks

Introduction to Optical Networks Introduction to Optical Networks P. Michael Henderson mike@michael-henderson.us 1 Agenda The physics of light Laser and photodetector operation Characteristics of optical fiber Optical amplifiers SONET

More information

LIFA KEY FEATURES APPLICATIONS. Fluorescence Lifetime Attachment LIFA 15001A02 16/03/2015

LIFA KEY FEATURES APPLICATIONS. Fluorescence Lifetime Attachment LIFA 15001A02 16/03/2015 LIFA Fluorescence Lifetime Attachment LIFA 151A2 16/3/215 The LIFA is a dedicated system for Fluorescence Lifetime Imaging Microscopy (FLIM). It allows the generation of lifetime images on any widefield

More information

arxiv:physics/ v2 [physics.med-ph] 23 Nov 2005

arxiv:physics/ v2 [physics.med-ph] 23 Nov 2005 arxiv:physics/0511065v2 [physics.med-ph] 23 Nov 2005 Experimental study of a liquid Xenon PET prototype module M.-L. Gallin-Martel 1, P. Martin, F. Mayet, J. Ballon, G. Barbier, C. Barnoux, J. Berger,

More information

Obtainment of Prototypical images and Detector performance simulations. Guillaume Potdevin for the XFEL-HPAD-Consortium

Obtainment of Prototypical images and Detector performance simulations. Guillaume Potdevin for the XFEL-HPAD-Consortium Obtainment of Prototypical images and Detector performance simulations Overview of the analysis Outlook Prototypical images: Single object imaging & XPCS short presentation (reminder ) Presentation of

More information

Status of the TORCH time-of-flight detector

Status of the TORCH time-of-flight detector Status of the TORCH time-of-flight detector Neville Harnew University of Oxford (On behalf of the TORCH collaboration : the Universities of Bath, Bristol and Oxford, CERN, and Photek) August 7-9, 2017

More information

WAVELENGTH MANAGEMENT

WAVELENGTH MANAGEMENT BEAM DIAGNOS TICS SPECIAL PRODUCTS OEM DETECTORS THZ DETECTORS PHOTO DETECTORS HIGH POWER SOLUTIONS POWER DETECTORS ENERGY DETECTORS MONITORS Camera Accessories WAVELENGTH MANAGEMENT UV CONVERTERS UV Converters

More information

WAVELENGTH MANAGEMENT

WAVELENGTH MANAGEMENT Camera Accessories WAVELENGTH MANAGEMENT UV CONVERTERS UV Converters take advantage of a phenomenon called fluorescence to extend the performance range of the Beamage beam profiling camera to ultraviolet

More information

Renishaw invia Raman Microscope (April 2006)

Renishaw invia Raman Microscope (April 2006) Renishaw invia Raman Microscope (April 2006) I. Starting the System 1. The main system unit is ON all the time. 2. Switch on the Leica microscope and light source for reflective bright field (BF) imaging.

More information

10 psec Time-Of-Flight Counter

10 psec Time-Of-Flight Counter 10 psec Time-Of-Flight Counter T. Ohshima (Nagoya U.) oints for TOF counter Photo-detector easurements - Beam tests ew Approaches now-how Footnote: MCP-PMT 10 psec TOF counter R&D η(λ) (λ) δ 1.Points for

More information

8/3/2016. Outline. The EPID Strikes Back: Future EPID Technology and Applications. Active Matrix Flat-Panel Imagers (AMFPIs)

8/3/2016. Outline. The EPID Strikes Back: Future EPID Technology and Applications. Active Matrix Flat-Panel Imagers (AMFPIs) 8//6 The EPID Strikes Back: Future EPID Technology and Applications Larry E. Antonuk Department of Radiation Oncology University of Michigan, Ann Arbor Acknowledgements: Youcef El-Mohri, Qihua Zhao (U.

More information

Achieve more with light.

Achieve more with light. Achieve more with light. Comprehensive suite of leading photonic design tools. Component Design Multiphysics Component Design Lumerical s highly integrated suite of component design tools is purposebuilt

More information

Optical Photon Processes

Optical Photon Processes Optical Photon Processes GEANT4 is an effective and comprehensive tool capable of realistically modeling the optics of scintillation and Cerenkov detectors and their associated light guides. This is founded

More information

MCP and Photocathode Testing and Systems Integration At the Advanced Photon Source B. Adams, K. Attenkofer, M. Chollet, Z. Insepov, J. McPhate, O.

MCP and Photocathode Testing and Systems Integration At the Advanced Photon Source B. Adams, K. Attenkofer, M. Chollet, Z. Insepov, J. McPhate, O. MCP and Photocathode Testing and Systems Integration At the Advanced Photon Source B. Adams, K. Attenkofer, M. Chollet, Z. Insepov, J. McPhate, O. Siegmund, D. Walters, M. Wetstein, Z. Yusof for the LAPPD

More information

On the emission of photons during avalanches

On the emission of photons during avalanches On the emission of photons during avalanches A. Nepomuk Otte Max-Planck-Institut für Physik, München Humboldt Universität, Berlin light emission during Geiger breakdown (Sciacca, 2003) 1 Light Emission

More information

LIFA. SPECIFICATIONs. Fluorescence Lifetime Attachment LIFA14001A02 25/02/2014

LIFA. SPECIFICATIONs. Fluorescence Lifetime Attachment LIFA14001A02 25/02/2014 LIFA Fluorescence Lifetime Attachment The LIFA is a dedicated system for Fluorescence Lifetime Imaging Microscopy (FLIM). It allows the generation of lifetime images on any widefield fluorescence microscope

More information

Silicon Avalanche Photodiodes in Dynamic Light Scattering

Silicon Avalanche Photodiodes in Dynamic Light Scattering Silicon Avalanche Photodiodes in Dynamic Light Scattering August 2016 Introduction This application note describes the use of the ID100 single photon counting detector for the measurement of light scattered

More information

Development of automated ultraviolet laser beam profiling system using fluorometric technique

Development of automated ultraviolet laser beam profiling system using fluorometric technique Development of automated ultraviolet laser beam profiling system using fluorometric technique BB Shrivastava*, NS Benerji, P Bhatnagar, HS Vora a and U Nundy Chemical and Excimer Laser Section a Laser

More information

Detector systems for light microscopy

Detector systems for light microscopy Detector systems for light microscopy The human eye the perfect detector? Resolution: 0.1-0.3mm @25cm object distance Spectral sensitivity ~400-700nm Has a dynamic range of 10 decades Two detectors: rods

More information

Photonic Technologies for LiDAR in Autonomous/ADAS. Jake Li (Market Specialist SiPM & Automotive) Hamamatsu Corporation

Photonic Technologies for LiDAR in Autonomous/ADAS. Jake Li (Market Specialist SiPM & Automotive) Hamamatsu Corporation Photonic Technologies for LiDAR in Autonomous/ADAS Jake Li (Market Specialist SiPM & Automotive) 03-2018 Hamamatsu Corporation Outline of Presentation 1. Introduction to Hamamatsu 2. Autonomous Levels

More information

Large Plastic Scintillation Detectors for the Nuclear Materials Identification System

Large Plastic Scintillation Detectors for the Nuclear Materials Identification System Large Plastic Scintillation Detectors for the Nuclear Materials Identification System J.S. Neal, J.T. Mihalczo, M. T. Hiatt, J. D. Edwards Oak Ridge National Laboratory P. O. Box 2008, Oak Ridge, Tennessee

More information

SPECIAL-PURPOSE DIODES. Dr. Paulraj M P, Associate Professor, Blok A, School of Mechatronic Engineering

SPECIAL-PURPOSE DIODES. Dr. Paulraj M P, Associate Professor, Blok A, School of Mechatronic Engineering SPECIAL-PURPOSE DIODES 1 CONTENTS 3-1 zener diodes 3-2 zener diodes applications 3-3 varactor diodes 3-4 optical diodes 3-5 other types of diodes 3-6 trouble shooting 2 OBJECTIVES Discuss the basic characteristics

More information

TORCH: A large-area detector for precision time-of-flight measurements at LHCb

TORCH: A large-area detector for precision time-of-flight measurements at LHCb TORCH: A large-area detector for precision time-of-flight measurements at LHCb Neville Harnew University of Oxford ON BEHALF OF THE LHCb RICH/TORCH COLLABORATION Outline The LHCb upgrade TORCH concept

More information

Geant4 Studies for the HPD-PET scintillators

Geant4 Studies for the HPD-PET scintillators F. Ciocia, a A. Braem, b E. Chesi, b, a1 C. Joram, b L. Lagamba, a E. Nappi, a J. Séguinot, b I. Vilardi a and P. Weilhammer b a Physics Dept. and INFN Section of Bari, Via Orabona 4, Bari, Italy b CERN

More information

Charged Particle Tracking at Cornell: Gas Detectors and Event Reconstruction

Charged Particle Tracking at Cornell: Gas Detectors and Event Reconstruction Charged Particle Tracking at Cornell: Gas Detectors and Event Reconstruction Dan Peterson, Cornell University The Cornell group has constructed, operated and maintained the charged particle tracking detectors

More information

MONOLITHIC NEAR INFRARED IMAGE SENSORS ENABLED BY QUANTUM DOT PHOTODETECTOR

MONOLITHIC NEAR INFRARED IMAGE SENSORS ENABLED BY QUANTUM DOT PHOTODETECTOR MONOLITHIC NEAR INFRARED IMAGE SENSORS ENABLED BY QUANTUM DOT PHOTODETECTOR PAWEŁ E. MALINOWSKI, E. GEORGITZIKIS, J. MAES, M. MAMUN, O. ENZING, F. FRAZZICA, J.VAN OLMEN, P. DE MOOR, P. HEREMANS, Z. HENS,

More information

Lecture 24. Lidar Simulation

Lecture 24. Lidar Simulation Lecture 24. Lidar Simulation q Introduction q Lidar Modeling via Lidar Simulation & Error Analysis q Functions of Lidar Simulation and Error Analysis q How to Build up Lidar Simulation? q Range-resolved

More information

Progress of the Thomson Scattering Experiment on HSX

Progress of the Thomson Scattering Experiment on HSX Progress of the Thomson Scattering Experiment on HSX K. Zhai, F.S.B. Anderson, D.T. Anderson HSX Plasma Laboratory, UW-Madison Bill Mason PSL, UW-Madison, The Thomson scattering system being constructed

More information

FOOT de/dx detector: simulation report

FOOT de/dx detector: simulation report FOOT de/dx detector: simulation report Matteo Bertazzoni, Maria Giuseppina Bisogni, Esther Ciarrocchi e Matteo Morrocchi February 16, 2017 1 Introduction The goals of the de/dx detector group are to determine

More information

LECTURE 37: Ray model of light and Snell's law

LECTURE 37: Ray model of light and Snell's law Lectures Page 1 Select LEARNING OBJECTIVES: LECTURE 37: Ray model of light and Snell's law Understand when the ray model of light is applicable. Be able to apply Snell's Law of Refraction to any system.

More information

Laser readiness for all optical EUV FEL

Laser readiness for all optical EUV FEL Laser readiness for all optical EUV FEL Akira Endo EUVA (Extreme Ultraviolet Lithography System Development Association) EUVL Source Workshop 19 October, 2006 Barcelona, Spain Acknowledgments This work

More information

Single Photon Counting System

Single Photon Counting System PHOTONSCORE LINCam Single Photon Counting System User Manual Contact: www.photonscore.de email@photonscore.de Page 1! of!21 PHOTONSCORE Contents. 1 Getting started 3 1.1 In the box... 4 1.2 Before you

More information

Expected Performances of the scintillator counters Time Of Flight system of the AMS-02 experiment

Expected Performances of the scintillator counters Time Of Flight system of the AMS-02 experiment Expected Performances of the scintillator counters Time Of Flight system of the AMS-02 experiment Cristina Sbarra for the AMS-TOF Bologna group (sbarra@bo.infn.it) INFN-Bologna (Italy) Cristina Sbarra

More information

Course Updates. Reminders: 1) Assignment #12 due today. 2) Polarization, dispersion. 3) Last HW (#13 posted) due Monday, May 3rd

Course Updates. Reminders: 1) Assignment #12 due today. 2) Polarization, dispersion. 3) Last HW (#13 posted) due Monday, May 3rd Course Updates http://www.phys.hawaii.edu/~varner/phys272-spr10/physics272.html Reminders: 1) Assignment #12 due today 2) Polarization, dispersion 3) Last HW (#13 posted) due Monday, May 3rd n 1 n 2 Total

More information

E40M LEDs, Time Multiplexing. M. Horowitz, J. Plummer, R. Howe 1

E40M LEDs, Time Multiplexing. M. Horowitz, J. Plummer, R. Howe 1 E40M LEDs, Time Multiplexing M. Horowitz, J. Plummer, R. Howe 1 Reading Course Reader 2.6 LEDs Course Reader 5.8 - Multiplexing LEDs https://learn.adafruit.com/all-about-leds http://dangerousprototypes.com/docs/

More information

Panasonic Develops Long-range TOF Image Sensor

Panasonic Develops Long-range TOF Image Sensor Jun 19, 2018 Panasonic Develops Long-range TOF Image Sensor This new image sensor is capable of detecting objects 250 m ahead at night with poor visibility and achieves high resolution by adopting APD

More information

The AMS-02 Anticoincidence Counter. Philip von Doetinchem I. Phys. Inst. B, RWTH Aachen for the AMS-02 Collaboration DPG, Freiburg March 2008

The AMS-02 Anticoincidence Counter. Philip von Doetinchem I. Phys. Inst. B, RWTH Aachen for the AMS-02 Collaboration DPG, Freiburg March 2008 I. Phys. Inst. B, RWTH Aachen for the AMS-02 Collaboration DPG, Freiburg March 2008 Cosmic Rays in the GeV Range world average SUSY DM KK DM good agreement of data and propagation models, but some unexplained

More information

Section 3 DEVELOPMENT IN SUBPICOSECOND RESEARCH

Section 3 DEVELOPMENT IN SUBPICOSECOND RESEARCH Section 3 DEVELOPMENT IN SUBPICOSECOND RESEARCH 3.A A Simple Jitter-Free Picosecond Streak Camera The picosecond streak camera 4 3 p 4 4 is becoming a basic tool in the study of optical transients in the

More information

in Astronomy CCD cameras Charlie Santori Aug. 24, 2012

in Astronomy CCD cameras Charlie Santori Aug. 24, 2012 Introduction to signal and noise in Astronomy CCD cameras Charlie Santori Aug. 24, 2012 Outline 1. Introduction to CCDs 2. Signal and noise in CCDs 3. Comparison of a few CCD cameras Electronic detectors

More information

PI-MAX 4: 1024i-RF. Compatible with Windows 8/7/XP, and Linux; Universal programming interfaces for easy custom programming.

PI-MAX 4: 1024i-RF. Compatible with Windows 8/7/XP, and Linux; Universal programming interfaces for easy custom programming. The PI-MAX4: 1024i-RF from Princeton Instruments is the ultimate scientific, intensified CCD camera (ICCD) system, featuring a 1k x 1k interline CCD fiberoptically coupled to Gen III filmless intensifiers.

More information

Performance of the GlueX Detector Systems

Performance of the GlueX Detector Systems Performance of the GlueX Detector Systems GlueX-doc-2775 Gluex Collaboration August 215 Abstract This document summarizes the status of calibration and performance of the GlueX detector as of summer 215.

More information

Confocal Microscope Imaging of Single-Emitter Fluorescence and Hanbury Brown & Twiss Setup for Photon Antibunching. Edward Pei

Confocal Microscope Imaging of Single-Emitter Fluorescence and Hanbury Brown & Twiss Setup for Photon Antibunching. Edward Pei Confocal Microscope Imaging of Single-Emitter Fluorescence and Hanbury Brown & Twiss Setup for Photon Antibunching Edward Pei Abstract The purpose of these labs was to study single photon sources and measure

More information

Two slit interference - Prelab questions

Two slit interference - Prelab questions Two slit interference - Prelab questions 1. Show that the intensity distribution given in equation 3 leads to bright and dark fringes at y = mλd/a and y = (m + 1/2) λd/a respectively, where m is an integer.

More information

Physical and Technical Background

Physical and Technical Background Physical and Technical Background Last Class: 1. Historical Background 2. Introduction of Particle Image Velocimetry 3. Principle of PIV 4. Major Technologies and Milestones 5. Applications Today s Contents:

More information

phoenix Upgrade Packages for SLM Model 4800/48000/8000/8100 Spectrofluorometers

phoenix Upgrade Packages for SLM Model 4800/48000/8000/8100 Spectrofluorometers Upgrade Packages for SLM Model 4800/48000/8000/8100 Spectrofluorometers Phoenix: The Upgrade Packages for SLM Model 4800/48000/8000/8100 Spectrofluorometers The Phoenix Upgrade Packages are designed to

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

Interpolating Silicon Photomultipliers

Interpolating Silicon Photomultipliers Interpolating Silicon Photomultipliers Peter Fischer, Heidelberg University, Germany (Presenter) Claudio Piemonte, FBK, Italy We present the novel Interpolating Silicon PhotoMultiplier (ISiPM) topology

More information

10.5 Polarization of Light

10.5 Polarization of Light 10.5 Polarization of Light Electromagnetic waves have electric and magnetic fields that are perpendicular to each other and to the direction of propagation. These fields can take many different directions

More information

The Progress of TOF on BESIII

The Progress of TOF on BESIII The Progress of TOF on BESIII Yuekun Heng 1, Chong Wu 1, Zhijia Sun 1, Li Zhao 1,2, Cheng Li 2, Qi An 2, Shubin Liu 2, Jinjie Wu 2, Yuda Zhao 1,3, Fengmei Wang 1,4, Xiaojian Zhao 1, Feng Shi 1, Zhenghua

More information

Development of planar microchannel plate photomultiplier at Argonne National Laboratory

Development of planar microchannel plate photomultiplier at Argonne National Laboratory Development of planar microchannel plate photomultiplier at Argonne National Laboratory Junqi Xie on behalf of the detector R&D group Argonne National Laboratory, Argonne, IL Email: jxie@anl.gov The Technology

More information

Realizzazione di un sistema LiDAR basato su fotomoltiplicatori in silicio

Realizzazione di un sistema LiDAR basato su fotomoltiplicatori in silicio Primo Workshop Nazionale su: La Componentistica Nazionale per lo Spazio: Stato dell arte, Sviluppi e Prospettive Realizzazione di un sistema LiDAR basato su fotomoltiplicatori in silicio Roma, 18 2 gennaio

More information

Geant4 Studies of the scintillator crystals for the axial HPD-PET concept

Geant4 Studies of the scintillator crystals for the axial HPD-PET concept > FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB- (DOUBLE-CLICK HERE) < Geant4 Studies of the scintillator crystals for the axial HPD-PET concept F. Ciocia a, A. Braem

More information

1.1 The HeNe and Fourier Lab CCD Camera

1.1 The HeNe and Fourier Lab CCD Camera Chapter 1 CCD Camera Operation 1.1 The HeNe and Fourier Lab CCD Camera For several experiments in this course you will use the CCD cameras to capture images or movies. Make sure to copy all files to your

More information

rendering equation computer graphics rendering equation 2009 fabio pellacini 1

rendering equation computer graphics rendering equation 2009 fabio pellacini 1 rendering equation computer graphics rendering equation 2009 fabio pellacini 1 physically-based rendering synthesis algorithms that compute images by simulation the physical behavior of light computer

More information

Measuring Reflective Properties of PTFE for Applications in Liquid Xenon Detectors

Measuring Reflective Properties of PTFE for Applications in Liquid Xenon Detectors Measuring Reflective Properties of PTFE for Applications in Liquid Xenon Detectors Catherine Lussenhop Columbia University, Department of Physics August 6, 2010 Abstract The XENON100 experiment uses 161kg

More information

Using Photons Drift Time to Reconstruct Nuclear Processes and PET Event Topologies. Andrey Elagin University of Chicago

Using Photons Drift Time to Reconstruct Nuclear Processes and PET Event Topologies. Andrey Elagin University of Chicago Using Photons Drift Time to Reconstruct Nuclear Processes and PET Event Topologies Andrey Elagin University of Chicago IRRMA-X, Chicago, July 11, 2017 Outline Ultra-fast timing frontier Optical tracking

More information

Transmission Media. Criteria for selection of media. Criteria for selection of media 2/17/2016. Chapter 3: Transmission Media.

Transmission Media. Criteria for selection of media. Criteria for selection of media 2/17/2016. Chapter 3: Transmission Media. Chapter 3: Transmission Media Marks- 20 Transmission Media Transmission media carries the information from sender to receiver. Different types of cables or waves to transmit data. Data is transmitted through

More information

X-Ray fluorescence and Raman spectroscopy

X-Ray fluorescence and Raman spectroscopy X-Ray fluorescence and Raman spectroscopy Advanced physics laboratory (nd part) 4CFU Catalini Letizia, De Angelis Giulia Vittoria, Piselli Verdiana Abstract In this paper we report about two different

More information

Upgrading the ATLAS Tile Calorimeter electronics

Upgrading the ATLAS Tile Calorimeter electronics ITIM Upgrading the ATLAS Tile Calorimeter electronics Gabriel Popeneciu, on behalf of the ATLAS Tile Calorimeter System INCDTIM Cluj Napoca, Romania Gabriel Popeneciu PANIC 2014, Hamburg 26th August 2014

More information

Aspects of RF Simulation and Analysis Software Methods. David Carpenter. Remcom. B = t. D t. Remcom (Europe)

Aspects of RF Simulation and Analysis Software Methods. David Carpenter. Remcom. B = t. D t. Remcom (Europe) Remcom (Europe) Central Boulevard Blythe Valley Park Solihull West Midlands England, B90 8AG www.remcom.com +44 870 351 7640 +44 870 351 7641 (fax) Aspects of RF Simulation and Analysis Software Methods

More information

MAT 17C - DISCUSSION #4, Counting Proteins

MAT 17C - DISCUSSION #4, Counting Proteins MAT 17C - DISCUSSION #4, Counting Proteins Visualization of molecules inside a living cell is one of the most important tools of molecular biology in the 21 st century. In fact, it was the subject of the

More information

Scintillators for SwissFEL

Scintillators for SwissFEL P AUL SCHERRER INSTITUT Scintillators for SwissFEL Usage of Scintillators at the SwissFEL Injector Test Facility Rasmus Ischebeck, for the PSI Diagnostics Group Scintillators for SwissFEL Profile monitors

More information

Supplementary Figure 1 Optimum transmissive mask design for shaping an incident light to a desired

Supplementary Figure 1 Optimum transmissive mask design for shaping an incident light to a desired Supplementary Figure 1 Optimum transmissive mask design for shaping an incident light to a desired tangential form. (a) The light from the sources and scatterers in the half space (1) passes through the

More information

Polarization of waves on ropes

Polarization of waves on ropes Polarization of waves on ropes Youtube clip one: the gentleman excites first a wave of vertical polarization, and next of horizontal polarization. Youtube clip two: vertical, horizontal, and even circular

More information

12/7/2012. Biomolecular structure. Diffraction, X-ray crystallography, light- and electron microscopy. CD spectroscopy, mass spectrometry

12/7/2012. Biomolecular structure. Diffraction, X-ray crystallography, light- and electron microscopy. CD spectroscopy, mass spectrometry phase difference at a given distance constructive/destructive interference Biomolecular structure. Diffraction, X-ray crystallography, light- and electron microscopy. CD spectroscopy, mass spectrometry

More information

Single Photon Counting Module COUNT blue -Series

Single Photon Counting Module COUNT blue -Series Single Photon Counting Module COUNT blue -Series Description Laser Components COUNT blue series of Single Photon Counting Modules has been developed to offer a unique combination of high quantum efficiency,

More information

MEDICAL IMAGING 2nd Part Computed Tomography

MEDICAL IMAGING 2nd Part Computed Tomography MEDICAL IMAGING 2nd Part Computed Tomography Introduction 2 In the last 30 years X-ray Computed Tomography development produced a great change in the role of diagnostic imaging in medicine. In convetional

More information

MET 4410 Remote Sensing: Radar and Satellite Meteorology MET 5412 Remote Sensing in Meteorology. Lecture 9: Reflection and Refraction (Petty Ch4)

MET 4410 Remote Sensing: Radar and Satellite Meteorology MET 5412 Remote Sensing in Meteorology. Lecture 9: Reflection and Refraction (Petty Ch4) MET 4410 Remote Sensing: Radar and Satellite Meteorology MET 5412 Remote Sensing in Meteorology Lecture 9: Reflection and Refraction (Petty Ch4) When to use the laws of reflection and refraction? EM waves

More information

Compatible with Windows 8/7/XP, and Linux; Universal programming interfaces for easy custom programming.

Compatible with Windows 8/7/XP, and Linux; Universal programming interfaces for easy custom programming. PI-MAX 4: 1024f The PI-MAX4:1024f from Princeton Instruments is the next generation, fully-integrated scientific intensified CCD camera (ICCD) system featuring a 1k x 1k full-frame CCD fiberoptically coupled

More information

Polarization of Light

Polarization of Light From http://micro.magnet.fsu.edu/optics/lightandcolor/polarization.html by Mortimer Abramowitz, Shannon Neaves and Michael Davidson and http://technology.niagarac.on.ca/courses/tech238g/lasers.html by

More information

SESSION 5: INVESTIGATING LIGHT. Key Concepts. X-planation. Physical Sciences Grade In this session we:

SESSION 5: INVESTIGATING LIGHT. Key Concepts. X-planation. Physical Sciences Grade In this session we: SESSION 5: INVESTIGATING LIGHT Key Concepts In this session we: Explain what light is, where light comes from and why it is important Identify what happens when light strikes the surface of different objects

More information

RSoft Product Applications

RSoft Product Applications RSoft Product Applications Complete design solutions for photonic components, circuits and systems synopsys.com/optical-solutions/rsoft RSoft Photonic Design Software Applications Synopsys RSoft products

More information

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from Lecture 5-3 Interference and Diffraction of EM Waves During our previous lectures we have been talking about electromagnetic (EM) waves. As we know, harmonic waves of any type represent periodic process

More information