10 psec Time-Of-Flight Counter

Size: px
Start display at page:

Download "10 psec Time-Of-Flight Counter"

Transcription

1 10 psec Time-Of-Flight Counter T. Ohshima (Nagoya U.) oints for TOF counter Photo-detector easurements - Beam tests ew Approaches now-how Footnote: MCP-PMT 10 psec TOF counter R&D

2 η(λ) (λ) δ

3 1.Points for TOF counter/ Photo-detectors (Transite Time Spread) TTS Multi-anode linear-array PMT (L16 & L24) ybrid Avalanche Photo-Diode icro-channel-plate PMT 70-80; 120 ps 150 ps ps HAPD(HPK R7110U-07) L16(HPK R5900-L16) PMT(HPK H7195) 1 ns/div L24(HPK R6135-L24X) MCP(HPK 3809U-50-25X) Footnote: TTS

4 1.Points for TOF counter Fluctuations of 1. TTS 2. Decay-time (T d TTS) 3. Light-path (T γ TTS) 4. N γ Photo-statistics 1/ Nγ is varied only at Td, Tγ << TTS. quartz: n=1.47; θ=45 o (for GeV/c particles) time photon signals ps (MCP-PMT), ps (L16) 2. Cherenkov light 3. Normal incidence σ = (30x2 30) ps /1cm/( 12N γ ) = 9 ps/ N γ / 1 cm) detected photons/1 cm quartz For short path, no chromaticity effect. σ = ps/ 50 = 5-6 ps Footnote: TOF MCP-PMY/Cherenkov/path/# photons

5

6 2.Measurements MCP-TOF NIM A528 (2004) , by M. Akatsu et al, MCP-PMT timing property for single photons MCP(Micro-Channel Plate) Footnote: MCP-PMT

7 2.Measurements / MCP spectra HPK R3809U-50-25X Gain=10 6 σ=46ps BINP N4963 (pedestal = 100count) Gain=3x10 6 σ=34ps,hv:3.2kv (pedestal = 100count) Footnote: ADC & TDC spectra

8 2. R&D of MCP-PMT s (Gain vs TTS)

9 2. R&D of MCP-PMT s (TTS vs B)

10 2.Measurements / TOF by HPK10 TTS=46 ps, Nγ = 200/ 4 cm quartz, σ 0 = 46/ 200 = 3 ps σ expected = 9 ps including circuit fluctuation of 9 ps. σobserved = 10.6 ps With different TTS [ L16(TTS=80 ps) & MCP(TTS=46 ps) ] and similar Nγ s, σ observed = ps is attained,where the circuit fluctuations (7-9 ps) dominate the ambiguity. Footnote: HPK10 TOF

11 3.New Approaches / TOF-PMT w/o Radiator NIM submitted by Y.Enari et al, Cross-Talk of a Multi-Anode PMT and Attainment of a σ sim 10 ps TOF counter HPK10(TTS=46 ps) By hitting an MCP-PMT directly by charged beam, TOF resolution of σ = 13.6 ps was attained. Footnote: HPK10 psec

12 3. New Approaches / TOF-PMT w/o Radiator (continue) window thickness = 4 mm Nγ expected = 25 photons vs. Nγ detected = 50 photons 2 MCP (200µm t ) No path-fluctuation Transite-time from photocathode to MCP = 100 ps Inspection: σ0 = [ ] 1/2 = 10 ps = 46 ps/ 21 (photons) 21 photons vs. 25 / 50 photons Timing of photons from the 1 st MCP plate is 100 ps earlier than those from photo-cathode, but its gain would be lower so that effective # of photons would be less than 25. Yield of 25 photons is really from the MCP? Footnote: psec GaAs photo-cathode photon psec MCP-PMT TOF counter

13 3. New Approaches / TOF-PMT w/o Radiator (continue) In a case the most photons produced at the window, equipping thicker window, 10 mm, would improve TOF resolution better than 10 ps. 25x10/4=60 photons, 46 ps/ 60 =6 ps; σ = = 9 ps Circuit error MCP-PMT (TTS=46 ps) Footnote: MCP-PMT(HPK10) window 10 mm quartz psec MCP-PMT psec GaAsP photo-cathode HPK10(TTS= psec HPK6 TTS=30 psec window mm

14 3.New Approaches / 10 ps TOF-Counter σ=30ps/ 60(110) =3-4 ps with 7 ps circuit error MCP-PMT (TTS=30 ps) σ= 8 ps particle Quartz (10mm) Nγ=60(60+50) photons Footnote: 10 mm quartz Photon quartz PMT psec psec MCP-PMT HPK (TTS= psec HPK TTS= psec psec GaAsP photo-cathode

15 3.4 TOF counter 䚭(2nd BEAM-TEST: 5 ps TOF Beam-Test) Up to here, the attained resolution was limited mostly by the uncertainty of readout circuit.. Aims Study of TOF resolution using SPC (Becker & Hickl GmbH s) Time-Correlated Single Photon Counting Modules (SPC-134): - channel resolution = 813 fs - electrical time resolution = 4 ps RMS - repetition rates upto 200 MHz This SPC includes CFD, TAC, ADC, and MCA (Multi-Channel Analyzer). (2) Study of extra photons (from MCP itself?) ᅂ 䛴ฦよ 7-8 ps䚯䛙䜒䛒ฦよ 䜘Ử䜇䛬䛊䜑䚯SPC䟺ฦよ 䠆䡂䡅䟻䜘ᙔ㟻 䛝䛬䚮MCP-PMT䛴ฦよ 䜘study䚯

16 Using HPK6 (TTS=30 ps) with 3 mm-thick window instead HPK10. SET-UP LOGIC CIRCUIT The thickness of quartz radiator is varied. We don t need any other readout electronics for MCP s; only the common stop signal is prepared by scintillation counters. - cable: SMA, BNC - discri: 300 MHz - SPC-134: 0.86/count (CFD-TAC-ADC) - AMP: 50 k-1.5 GHz - ATTN: < 18 GHz - power splitter:

17 2 nd BEAM-TEST: 5 ps TOF Beam-Test (cont.) For SINGLE PHOTONS raw signals ADC, TDC and σ t (~30 ps) (CAMAC) GAIN, TTS and CE vs HV σ t for single photons(spc used) Pulser (single photon)

18 2 nd BEAM-TEST: 5 ps TOF Beam-Test (cont.) For 3 GeV/c PIONS Circuit resolution ( σ t = 4.1 ps ) TOF w/o radiator ( σ t = 7.7 ps ) TOF w radiator ( σ t = 6.2 ps ) Beam SPC No radiator & 10 mm crystal 6.2(ps) (ps) 2 = 4.7 (ps) 2

19 Although the number of the photo-electrons increases by using thicker quartz, the resolution gradually deteriorates. It is because the uncertainty of the light path due to the quartz thickness. σ t vs RADIATOR THICKNESS 䕋䚭Nγ vs RADIATOR THICKNESS ADC distribution of MCP-plate alone Almost 1 photo-electrons is seen on an average. The extra photo-electrons are not produced at MCP, it might be at the MCP window.

20 3.New Approaches Photon TOF-Counter Tungsten photon-convertor (2 rad.=2x3.5 mm) MCP-PMT (TTS=30 ps) particle Quartz (1 cm=0.08 rad.) Footnote: photon convertor rad. conversion rate = 95% Secondary track Cherenkov charged particle psec photon flight distance 3 mm photon production vertex Decay vertex

21 4. Know-How real TTS Shorter the pulse shot-duration of light-pulser yields smaller TTS. Real TTS might be better. HPK6 TTS=30 ps 20 ps Footnote: TTS

22 4. Know-How Window materials " 1! 2 Quartz/ Borosilicate Footnote: quartz, borosilicate window chromaticity quartz

23 4. Know-How Photocathode materials Cherenkov 1 /λ 2 Not only QE but also λ-range depend on material. Footnote: Bi-alkali multi-alkali quartz

24 Summary 1. TOF resolution = 10 ps achieved! 2. K/pi separation at Belle (Belle is a relatively small spectrometer) ~ σ at 4 GeV/c 1. Photon-TOF Δr=3 mm π 0, Ks, B reconstraction (B π 0 π 0 and vertexing: high signal extraction 3. Issues to be solved: (1) MCP-PMT lifetime (2) enlargement of radiator (3) precise circuit

25

26

27

28

29

30

31

32 1.Points for TOF counter (continue) 8.8psec Divider Divider Footnote: TOF 7-9 psec att.&amp

33 2.Measurements L16-TOF NIM submitted by Y.Enari et al, Cross-Talk of a Multi-Anode PMT and Attainment of a σ sim 10 ps TOF counter TTS=80 ps, Nγ = / 4 cm quartz, 16 independent measures σ0= 80/ 9 (photons/channel) / 16 = 7 ps σ expected = 11 ps including circuit fluctuation of 9 ps. Two detectors Footnote: L16-PMT TOF 11 psec

34 Single channel Resolution σ = 30 ps Total Resolution σ observed = 12.1 ps Footnote: 30 psec 12.1 psec

35 Footnote: Systematic error j

36 Amp HPK C5594: bandwidth=50 khz-1.5 GHz gain=36db GHz) NF = 5 db Cable HUBER+SUHNER SMA MULTIFLEX MF 141 Impedance=50 ohm Operating frequency= 18 GHz Capacitance=95 pf/m Time delay= 4.7 ns/m Attenuation= a f(ghz)^1/2 + b f(ghz) (a= ), (b= ) No time to talk

37

Timing properties of MCP-PMT

Timing properties of MCP-PMT Photon Detector Workshop at Kobe, 27-29 June 27 Timing properties of MCP-PMT - Time resolution - Lifetime - Rate dependence K.Inami (Nagoya university, Japan) Introduction Photon device for TOP counter

More information

SiPMs for Čerenkov imaging

SiPMs for Čerenkov imaging SiPMs for Čerenkov imaging Peter Križan University of Ljubljana and J. Stefan Institute Trends in Photon Detectors in Particle Physics and Calorimetry, Trieste, June 2-4, 2008 Contents Photon detectors

More information

Status of the TORCH time-of-flight detector

Status of the TORCH time-of-flight detector Status of the TORCH time-of-flight detector Neville Harnew University of Oxford (On behalf of the TORCH collaboration : the Universities of Bath, Bristol and Oxford, CERN, and Photek) August 7-9, 2017

More information

TORCH: A large-area detector for precision time-of-flight measurements at LHCb

TORCH: A large-area detector for precision time-of-flight measurements at LHCb TORCH: A large-area detector for precision time-of-flight measurements at LHCb Neville Harnew University of Oxford ON BEHALF OF THE LHCb RICH/TORCH COLLABORATION Outline The LHCb upgrade TORCH concept

More information

A proximity focusing RICH with time-of-flight capabilities

A proximity focusing RICH with time-of-flight capabilities A proximity focusing RICH with time-of-flight capabilities Peter Križan University of Ljubljana and J. Stefan Institute For the Belle Aerogel RICH R&D group 10th Topical Seminar on Innovative Particle

More information

TORCH. A Cherenkov based Time of Flight detector. Maarten van Dijk On behalf of the TORCH collaboration

TORCH. A Cherenkov based Time of Flight detector. Maarten van Dijk On behalf of the TORCH collaboration TORCH A Cherenkov based Time of Flight detector Maarten van Dijk On behalf of the TORCH collaboration (CERN, University of Oxford, University of Bristol) 1 TORCH - motivation The Timing Of internally Reflected

More information

Performance of the GlueX Detector Systems

Performance of the GlueX Detector Systems Performance of the GlueX Detector Systems GlueX-doc-2775 Gluex Collaboration August 215 Abstract This document summarizes the status of calibration and performance of the GlueX detector as of summer 215.

More information

Preparation for the test-beam and status of the ToF detector construction

Preparation for the test-beam and status of the ToF detector construction Preparation for the test-beam and status of the ToF detector construction C.Betancourt, A.Korzenev*, P.Mermod HPTPC-ToF meeting May 3, 2018 1 ToF and trigger Channels of the ToF DAQ system are self-triggered

More information

Progress in FDIRC & TOF

Progress in FDIRC & TOF Progress in FDIRC & TOF J. Va vra, SLAC Content FDIRC prototype - Activities related to analysis of the last test beam run TOF detector - Summary of test results Next steps Appendix - PID electronics summary

More information

Cherenkov Radiation. Doctoral Thesis. Rok Dolenec. Supervisor: Prof. Dr. Samo Korpar

Cherenkov Radiation. Doctoral Thesis. Rok Dolenec. Supervisor: Prof. Dr. Samo Korpar Doctoral Thesis Time-of-Flight Time-of-Flight Positron Positron Emission Emission Tomography Tomography Using Using Cherenkov Cherenkov Radiation Radiation Rok Dolenec Supervisor: Prof. Dr. Samo Korpar

More information

PSEC-4: Review of Architecture, etc. Eric Oberla 27-oct-2012

PSEC-4: Review of Architecture, etc. Eric Oberla 27-oct-2012 PSEC-4: Review of Architecture, etc. Eric Oberla 27-oct-2012 PSEC-4 ASIC: design specs LAPPD Collaboration Designed to sample & digitize fast pulses (MCPs): Sampling rate capability > 10GSa/s Analog bandwidth

More information

Scintillators and photodetectors. 1. Generation of Optical Photons 2. Transport of Optical Photons 3. Detection of Optical Photons

Scintillators and photodetectors. 1. Generation of Optical Photons 2. Transport of Optical Photons 3. Detection of Optical Photons Scintillators and photodetectors 1. Generation of Optical Photons 2. Transport of Optical Photons 3. Detection of Optical Photons 1) Generation of Optical Photons A) Organic (molecular) scintillators Advantages:

More information

GEANT4 is used for simulating: RICH testbeam data, HCAL testbeam data. GAUSS Project: LHCb Simulation using GEANT4 with GAUDI.

GEANT4 is used for simulating: RICH testbeam data, HCAL testbeam data. GAUSS Project: LHCb Simulation using GEANT4 with GAUDI. Status of GEANT4 in LHCb S. Easo, RAL, 30-9-2002 The LHCbexperiment. GEANT4 is used for simulating: RICH testbeam data, HCAL testbeam data. GAUSS Project: LHCb Simulation using GEANT4 with GAUDI. Summary.

More information

Time and position resolution of high granularity, high counting rate MRPC for the inner zone of the CBM-TOF wall

Time and position resolution of high granularity, high counting rate MRPC for the inner zone of the CBM-TOF wall Time and position resolution of high granularity, high counting rate MRPC for the inner zone of the CBM-TOF wall M. Petris, D. Bartos, G. Caragheorgheopol, M. Petrovici, L. Radulescu, V. Simion IFIN-HH

More information

The LHCb upgrade. Outline: Present LHCb detector and trigger LHCb upgrade main drivers Overview of the sub-detector modifications Conclusions

The LHCb upgrade. Outline: Present LHCb detector and trigger LHCb upgrade main drivers Overview of the sub-detector modifications Conclusions The LHCb upgrade Burkhard Schmidt for the LHCb Collaboration Outline: Present LHCb detector and trigger LHCb upgrade main drivers Overview of the sub-detector modifications Conclusions OT IT coverage 1.9

More information

APPLICATIONS KEY FEATURES. High-speed intensified Camera Attachment

APPLICATIONS KEY FEATURES. High-speed intensified Camera Attachment HiCATT High-speed intensified Camera Attachment The HiCATT is an intensified camera attachment specifically designed for use in combination with high-speed cameras. It can be used to amplify low light

More information

arxiv:hep-ex/ v2 7 Aug 1995

arxiv:hep-ex/ v2 7 Aug 1995 The Čerenkov Correlated Timing Detector: Beam Test Results from Quartz and Acrylic Bars H. Kichimi, Y. Sugaya, H. Yamaguchi and Y. Yoshimura KEK, Tsukuba, Japan S. Kanda, S. Olsen, K. Ueno, G. Varner University

More information

Scintillator-strip Plane Electronics

Scintillator-strip Plane Electronics Scintillator-strip Plane Electronics Mani Tripathi Britt Holbrook (Engineer) Juan Lizarazo (Grad student) Peter Marleau (Grad student) Tiffany Landry (Junior Specialist) Cherie Williams (Undergrad student)

More information

arxiv: v1 [physics.ins-det] 13 Jan 2015

arxiv: v1 [physics.ins-det] 13 Jan 2015 The Assembly of the Belle II TOP Counter Boqun Wang, On behalf of the Belle II PID Group Department of Physics, University of Cincinnati, Cincinnati, OH, USA University of Cincinnati preprint UCHEP-14-01

More information

Single Photon Counting System

Single Photon Counting System PHOTONSCORE LINCam Single Photon Counting System User Manual Contact: www.photonscore.de email@photonscore.de Page 1! of!21 PHOTONSCORE Contents. 1 Getting started 3 1.1 In the box... 4 1.2 Before you

More information

Development of planar microchannel plate photomultiplier at Argonne National Laboratory

Development of planar microchannel plate photomultiplier at Argonne National Laboratory Development of planar microchannel plate photomultiplier at Argonne National Laboratory Junqi Xie on behalf of the detector R&D group Argonne National Laboratory, Argonne, IL Email: jxie@anl.gov The Technology

More information

Model P7887, PCI-based 4 GHz Multistop TDC, Multiscaler, TOF

Model P7887, PCI-based 4 GHz Multistop TDC, Multiscaler, TOF Model P7887, PCI-based 4 GHz Multistop TDC, Multiscaler, TOF FEATURES Fully digital design, no software corrections required 180 ps time-resolution FWHM, typical, line width @ 10 us, taking data for 60

More information

The Progress of TOF on BESIII

The Progress of TOF on BESIII The Progress of TOF on BESIII Yuekun Heng 1, Chong Wu 1, Zhijia Sun 1, Li Zhao 1,2, Cheng Li 2, Qi An 2, Shubin Liu 2, Jinjie Wu 2, Yuda Zhao 1,3, Fengmei Wang 1,4, Xiaojian Zhao 1, Feng Shi 1, Zhenghua

More information

Delayline Detectors. Imaging Detection of Electrons, Ions & Photons with Picosecond Time Resolution. e - I +

Delayline Detectors. Imaging Detection of Electrons, Ions & Photons with Picosecond Time Resolution. e - I + Delayline Detectors Imaging Detection of Electrons, Ions & Photons with Picosecond Time Resolution e - I + Delayline Readout of MCPs - The Technical Approach - Microchannel-Plate (MCP) detectors provide

More information

Extremely Fast Detector for 511 kev Gamma

Extremely Fast Detector for 511 kev Gamma Extremely Fast Detector for 511 kev Gamma V. Sharyy, D. Yvon, G. Tauzin, E.Delagnes, Ph. Abbon, J P. Bard, M. Kebbiri, M. Alokhina, C. Canot IRFU, CEA D. Breton, J. Maalmi LAL,IN2P3 Journée 2015 du Labex

More information

Time of CDF (II)

Time of CDF (II) TOF detector lecture, 19. august 4 1 Time of Flight @ CDF (II) reconstruction/simulation group J. Beringer, A. Deisher, Ch. Doerr, M. Jones, E. Lipeles,, M. Shapiro, R. Snider, D. Usynin calibration group

More information

Plastic scintillator detector with the readout based on array of large-area SiPMs for the ND280/T2K upgrade and SHIP experiments

Plastic scintillator detector with the readout based on array of large-area SiPMs for the ND280/T2K upgrade and SHIP experiments Plastic scintillator detector with the readout based on array of large-area SiPMs for the ND280/T2K upgrade and SHIP experiments A.Korzeneva,*, C.Betancourtb, A.Blondela, A.Datwylerb, D.Gasconc, S.Gomezc,

More information

The design and performance of a prototype water Cherenkov optical time-projection chamber

The design and performance of a prototype water Cherenkov optical time-projection chamber The design and performance of a prototype water Cherenkov optical time-projection chamber Eric Oberla a,, Henry J. Frisch a a Enrico Fermi Institute, University of Chicago; 564 S. Ellis Ave., Chicago IL,

More information

Course Updates. Reminders: 1) Assignment #12 due today. 2) Polarization, dispersion. 3) Last HW (#13 posted) due Monday, May 3rd

Course Updates. Reminders: 1) Assignment #12 due today. 2) Polarization, dispersion. 3) Last HW (#13 posted) due Monday, May 3rd Course Updates http://www.phys.hawaii.edu/~varner/phys272-spr10/physics272.html Reminders: 1) Assignment #12 due today 2) Polarization, dispersion 3) Last HW (#13 posted) due Monday, May 3rd n 1 n 2 Total

More information

Measurement of fragmentation cross-section of 400 MeV/u 12 C beam on thin targets

Measurement of fragmentation cross-section of 400 MeV/u 12 C beam on thin targets Measurement of fragmentation cross-section of 400 MeV/u 12 C beam on thin targets Candidate: Abdul Haneefa Kummali Supervisor : Dr. Vincenzo Monaco PhD School - Department of Physics XXVII cycle 14-February-2014

More information

Forward Time-of-Flight Detector Efficiency for CLAS12

Forward Time-of-Flight Detector Efficiency for CLAS12 Forward Time-of-Flight Detector Efficiency for CLAS12 D.S. Carman, Jefferson Laboratory ftof eff.tex May 29, 2014 Abstract This document details an absolute hit efficiency study of the FTOF panel-1a and

More information

Production and Quality Assurance of Detector Modules for the LHCb Silicon Tracker

Production and Quality Assurance of Detector Modules for the LHCb Silicon Tracker Production and Quality Assurance of Detector Modules for the LHCb Silicon Tracker Olaf Steinkamp for Dmytro Volyanskyy Physik-Institut der Universität Zürich 10th ICATPP Conference on Astroparticle, Particle,

More information

Progress on G4 FDIRC Simulation. Doug Roberts University of Maryland

Progress on G4 FDIRC Simulation. Doug Roberts University of Maryland Progress on G4 FDIRC Simulation Doug Roberts University of Maryland Since SLAC Workshop Spent some time trying to streamline and speed-up the reconstruction technique Needed quicker turnaround on resolution

More information

TORCH - Cherenkov and Time-of-Flight PID Detector for the LHCb upgrade at CERN. Klaus Föhl, CERN

TORCH - Cherenkov and Time-of-Flight PID Detector for the LHCb upgrade at CERN. Klaus Föhl, CERN TORCH - Cherenkov and Time-of-Flight PID Detector for the LHCb upgrade at CERN Klaus Föhl, CERN on behalf of the TORCH Collaboration (University of Bristol, CERN, UCL, University of Oxford, with industrial

More information

First Operational Experience from the LHCb Silicon Tracker

First Operational Experience from the LHCb Silicon Tracker First Operational Experience from the LHCb Silicon Tracker 7 th International Hiroshima Symposium on Development and Application of Semiconductor Tracking Devices The LHCb Silicon Tracker Installation

More information

Laser readiness for all optical EUV FEL

Laser readiness for all optical EUV FEL Laser readiness for all optical EUV FEL Akira Endo EUVA (Extreme Ultraviolet Lithography System Development Association) EUVL Source Workshop 19 October, 2006 Barcelona, Spain Acknowledgments This work

More information

PMT Candidates for SSD Challenge for PMTs in air-shower detection highest linear dynamic range

PMT Candidates for SSD Challenge for PMTs in air-shower detection highest linear dynamic range PMT Candidates for SSD Challenge for PMTs in air-shower detection highest linear dynamic range Karl-Heinz Becker, Karl-Heinz Kampert, Alex Kääpä, Christian Pauly, Sven Querchfeld, Julian Rautenberg OBSERVATORY

More information

THE PANDA BARREL DIRC DETECTOR

THE PANDA BARREL DIRC DETECTOR RICH2016, Bled, Slovenia Sept. 5, 2016 THE PANDA BARREL DIRC DETECTOR Jochen Schwiening for the PANDA Cherenkov Group PANDA at FAIR Barrel DIRC Technical Design PID Performance Validation Outlook The PANDA

More information

Single-Volume Scatter Camera: simulation results

Single-Volume Scatter Camera: simulation results Single-Volume Scatter Camera: simulation results Belkis Cabrera-Palmer June 13 th, 2016 The team: Joshua Braverman, James Brennan, Erik Brubaker (PI), Steven Czyz, Gabriel Kaufman, Peter Marleau, John

More information

arxiv:physics/ v1 [physics.ins-det] 18 Dec 1998

arxiv:physics/ v1 [physics.ins-det] 18 Dec 1998 Studies of 1 µm-thick silicon strip detector with analog VLSI readout arxiv:physics/981234v1 [physics.ins-det] 18 Dec 1998 T. Hotta a,1, M. Fujiwara a, T. Kinashi b, Y. Kuno c, M. Kuss a,2, T. Matsumura

More information

Digital Filters in Radiation Detection and Spectroscopy

Digital Filters in Radiation Detection and Spectroscopy Digital Filters in Radiation Detection and Spectroscopy Digital Radiation Measurement and Spectroscopy NE/RHP 537 1 Classical and Digital Spectrometers Classical Spectrometer Detector Preamplifier Analog

More information

Compatible with Windows 8/7/XP, and Linux; Universal programming interfaces for easy custom programming.

Compatible with Windows 8/7/XP, and Linux; Universal programming interfaces for easy custom programming. PI-MAX 4: 1024f The PI-MAX4:1024f from Princeton Instruments is the next generation, fully-integrated scientific intensified CCD camera (ICCD) system featuring a 1k x 1k full-frame CCD fiberoptically coupled

More information

Stefania Beolè (Università di Torino e INFN) for the ALICE Collaboration. TIPP Chicago, June 9-14

Stefania Beolè (Università di Torino e INFN) for the ALICE Collaboration. TIPP Chicago, June 9-14 ALICE SDD ITS performance with pp and Pb-Pb beams Stefania Beolè (Università di Torino e INFN) for the ALICE Collaboration - Chicago, June 9-14 Inner Tracking System (I) Six layers of silicon detectors

More information

Using Photons Drift Time to Reconstruct Nuclear Processes and PET Event Topologies. Andrey Elagin University of Chicago

Using Photons Drift Time to Reconstruct Nuclear Processes and PET Event Topologies. Andrey Elagin University of Chicago Using Photons Drift Time to Reconstruct Nuclear Processes and PET Event Topologies Andrey Elagin University of Chicago IRRMA-X, Chicago, July 11, 2017 Outline Ultra-fast timing frontier Optical tracking

More information

Expected Performances of the scintillator counters Time Of Flight system of the AMS-02 experiment

Expected Performances of the scintillator counters Time Of Flight system of the AMS-02 experiment Expected Performances of the scintillator counters Time Of Flight system of the AMS-02 experiment Cristina Sbarra for the AMS-TOF Bologna group (sbarra@bo.infn.it) INFN-Bologna (Italy) Cristina Sbarra

More information

Time-Resolved measurements by FEL spontaneous emission: A proposal for sub-picosecond pumps & probe structural and spectrometric investigations

Time-Resolved measurements by FEL spontaneous emission: A proposal for sub-picosecond pumps & probe structural and spectrometric investigations Time-Resolved measurements by FEL spontaneous emission: A proposal for sub-picosecond pumps & probe structural and spectrometric investigations V. Rossi Albertini, B. Paci & P. Perfetti Istituto di Struttura

More information

Applying Machine Learning for bb-decay Identification

Applying Machine Learning for bb-decay Identification Applying Machine Learning for bb-decay Identification Andrey Elagin University of Chicago Work in progress In collaboration with E.Toropov (Carnegie Mellon), I.Vukotic (Chicago), S.Fraker (MIT), L.Winslow

More information

High Rate Diamond Detectors for Heavy Ions. ultra thin detectors for REX-ISOLDE. tracking detectors for R3B

High Rate Diamond Detectors for Heavy Ions. ultra thin detectors for REX-ISOLDE. tracking detectors for R3B High Rate Diamond Detectors for Heavy Ions Roman Gernhäuser, TU-München ultra thin detectors for REX-ISOLDE tracking detectors for R3B prototype production further developments A Diamond Beam Monitor for

More information

The AMS-02 Anticoincidence Counter. Philip von Doetinchem I. Phys. Inst. B, RWTH Aachen for the AMS-02 Collaboration DPG, Freiburg March 2008

The AMS-02 Anticoincidence Counter. Philip von Doetinchem I. Phys. Inst. B, RWTH Aachen for the AMS-02 Collaboration DPG, Freiburg March 2008 I. Phys. Inst. B, RWTH Aachen for the AMS-02 Collaboration DPG, Freiburg March 2008 Cosmic Rays in the GeV Range world average SUSY DM KK DM good agreement of data and propagation models, but some unexplained

More information

PICOSEC charged particle timing to 24 ps with Micromegas

PICOSEC charged particle timing to 24 ps with Micromegas Picosec: 24 ps with Micromegas 1 IRFU/CEA-Saclay, 7 Nov 2017 PICOSEC charged particle timing to 24 ps with Micromegas F.J. Iguaz On behalf of PICOSEC collaboration Seminaire d Instrumentation, 7 th November

More information

THE PANDA BARREL DIRC DETECTOR

THE PANDA BARREL DIRC DETECTOR DIRC2017, Schloss Rauischholzhausen Aug 8, 2017 THE PANDA BARREL DIRC DETECTOR Jochen Schwiening for the PANDA Cherenkov Group PANDA at FAIR Barrel DIRC Technical Design PID Performance Validation Outlook

More information

The STAR Time-of-Flight System

The STAR Time-of-Flight System Proc. 24th Winter Workshop on Nuclear Dynamics (2008) 000 000 24th Winter Workshop on Nuclear Dynamics South Padre, Texas, USA April 5 12, 2008 The STAR Time-of-Flight System W.J. Llope for the STAR Collaboration

More information

A Further Study on Large Size LSO and LYSO Crystal Samples

A Further Study on Large Size LSO and LYSO Crystal Samples October 25, 2005 IEEE NSS, N12-6, Puerto-Rico 1 A Further Study on Large Size LSO and LYSO Crystal Samples Jianming Chen, Liyuan Zhang, Ren-yuan Zhu California Institute of Technology BGO, LSO & LYSO Samples

More information

Fast Neutron Resonance Radiography in a Pulsed Neutron Beam. V. Dangendorf,

Fast Neutron Resonance Radiography in a Pulsed Neutron Beam. V. Dangendorf, Fast Neutron Resonance Radiography in a Pulsed Neutron Beam V. Dangendorf,, G. Laczko,, C. Kersten Physikalisch-Technische Bundesanstalt /Braunschweig,, Germany A. Breskin,, R. Chechik,, D. Vartsky Weizmann

More information

Performance of the MRPC based Time Of Flight detector of ALICE at LHC

Performance of the MRPC based Time Of Flight detector of ALICE at LHC Performance of the MRPC based Time Of Flight detector of ALICE at LHC (for the ALICE Collaboration) Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Rome, Italy Dipartimento di Fisica

More information

HIGH-SPEED PHOTODETECTOR. Thorlabs item # SIR5-FC

HIGH-SPEED PHOTODETECTOR. Thorlabs item # SIR5-FC HIGH-SPEED PHOTODETECTOR Thorlabs item # SIR5-FC Serial # SIR5-FC PHOTODETECTOR TECHNICAL DATA Wavelength Range Detector Material Detector Diameter Bandwidth (-3 db point) Rise and Fall Time Afterpulse

More information

PI-MAX 4: 1024 EMB. Applications:

PI-MAX 4: 1024 EMB. Applications: The PI-MAX4: 1024 EMB from Princeton Instruments is the ultimate in ICCD technology. This innovative intensified EMCCD camera (emiccd) features back-illuminated 1024 x 1024 frame transfer EMCCD fiberoptically

More information

PI-MAX 4: 1024 x 256

PI-MAX 4: 1024 x 256 The PI-MAX4: 1024 x 256 from Princeton Instruments is the next generation, fully-integrated scientific intensified CCD camera (ICCD) system featuring a 1024 x 253 pixel spectroscopy CCD fiber-coupled to

More information

Studies of the KS and KL lifetimes and

Studies of the KS and KL lifetimes and Studies of the KS and KL lifetimes and BR(K ) with KLOE ± ± + Simona S. Bocchetta* on behalf of the KLOE Collaboration KAON09 Tsukuba June 9th 2009 * INFN and University of Roma Tre Outline DA NE and KLOE

More information

Charged Particle Reconstruction in HIC Detectors

Charged Particle Reconstruction in HIC Detectors Charged Particle Reconstruction in HIC Detectors Ralf-Arno Tripolt, Qiyan Li [http://de.wikipedia.org/wiki/marienburg_(mosel)] H-QM Lecture Week on Introduction to Heavy Ion Physics Kloster Marienburg/Mosel,

More information

CLAS12- RICH Project Mid- term Review AEROGEL. Marco Contalbrigo INFN Ferrara JLab, October 13 th 2015

CLAS12- RICH Project Mid- term Review AEROGEL. Marco Contalbrigo INFN Ferrara JLab, October 13 th 2015 CLAS12- RICH Project Mid- term Review AEROGEL Marco Contalbrigo INFN Ferrara JLab, October 13 th 2015 The Hybrid Op2cs Design Direct rings and best performance for high momentum particles plane mirror

More information

PI-MAX 4: 1024i-RF. Compatible with Windows 8/7/XP, and Linux; Universal programming interfaces for easy custom programming.

PI-MAX 4: 1024i-RF. Compatible with Windows 8/7/XP, and Linux; Universal programming interfaces for easy custom programming. The PI-MAX4: 1024i-RF from Princeton Instruments is the ultimate scientific, intensified CCD camera (ICCD) system, featuring a 1k x 1k interline CCD fiberoptically coupled to Gen III filmless intensifiers.

More information

Work in Tbilisi. David Mchedlishvili (SMART EDM_lab of TSU) GGSWBS , Tbilisi. Shota Rustaveli National Science Foundation

Work in Tbilisi. David Mchedlishvili (SMART EDM_lab of TSU) GGSWBS , Tbilisi. Shota Rustaveli National Science Foundation Mitglied der Helmholtz-Gemeinschaft David Mchedlishvili (SMART EDM_lab of TSU) Work in Tbilisi GGSWBS 18 23.08.2018, Tbilisi JEDI: Charged-Particle EDM Search Main principle: Inject polarized particles

More information

Fortran or C/C++ codes run as PAMs in STAF... circa ~SL96b STAR Geometry. Advanced Geometry Interface gstar (GEANT ) GEANT Output.

Fortran or C/C++ codes run as PAMs in STAF... circa ~SL96b STAR Geometry. Advanced Geometry Interface gstar (GEANT ) GEANT Output. STAR Detector Simulators Fortran or C/C++ codes run as PAMs in STAF... Text AGI Sources STAR Geometry unix shared library GEANT Control KUIP macro Geometry Parser Advanced Geometry Interface gstar (GEANT

More information

Fast Timing and TOF in PET Medical Imaging

Fast Timing and TOF in PET Medical Imaging Fast Timing and TOF in PET Medical Imaging William W. Moses Lawrence Berkeley National Laboratory October 15, 2008 Outline: Time-of-Flight PET History Present Status Future This work was supported in part

More information

Analogue, Digital and Semi-Digital Energy Reconstruction in the CALICE AHCAL

Analogue, Digital and Semi-Digital Energy Reconstruction in the CALICE AHCAL Analogue, Digital and Semi-Digital Energy Reconstruction in the AHCAL Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany E-mail: coralie.neubueser@desy.de Within the collaboration different calorimeter

More information

Detectors for Future Light Sources. Gerhard Grübel Deutsches Elektronen Synchrotron (DESY) Notke-Str. 85, Hamburg

Detectors for Future Light Sources. Gerhard Grübel Deutsches Elektronen Synchrotron (DESY) Notke-Str. 85, Hamburg Detectors for Future Light Sources Gerhard Grübel Deutsches Elektronen Synchrotron (DESY) Notke-Str. 85, 22607 Hamburg Overview Radiation from X-Ray Free Electron lasers (XFEL, LCLS) Ultrafast detectors

More information

Design of the TORCH detector A Cherenkov based Time-of-Flight system for particle identification. Maarten Willibrord Uriël van Dijk

Design of the TORCH detector A Cherenkov based Time-of-Flight system for particle identification. Maarten Willibrord Uriël van Dijk Design of the TORCH detector A Cherenkov based Time-of-Flight system for particle identification Maarten Willibrord Uriël van Dijk CERN-THESIS-2016-039 24/02/2016 A dissertation submitted to the University

More information

MCP Photodetector Development at Argonne. Lei Xia ANL - HEP

MCP Photodetector Development at Argonne. Lei Xia ANL - HEP MCP Photodetector Development at Argonne Lei Xia ANL - HEP Introduction large area photodetector development Development of ALD coated large area MCP Development of ceramic/glass packaging for large area

More information

MCP and Photocathode Testing and Systems Integration At the Advanced Photon Source B. Adams, K. Attenkofer, M. Chollet, Z. Insepov, J. McPhate, O.

MCP and Photocathode Testing and Systems Integration At the Advanced Photon Source B. Adams, K. Attenkofer, M. Chollet, Z. Insepov, J. McPhate, O. MCP and Photocathode Testing and Systems Integration At the Advanced Photon Source B. Adams, K. Attenkofer, M. Chollet, Z. Insepov, J. McPhate, O. Siegmund, D. Walters, M. Wetstein, Z. Yusof for the LAPPD

More information

Straw Detectors for the Large Hadron Collider. Dirk Wiedner

Straw Detectors for the Large Hadron Collider. Dirk Wiedner Straw Detectors for the Large Hadron Collider 1 Tracking with Straws Bd π π? B-Mesons properties? Charge parity symmetry violation? 2 Tracking with Straws Bd proton LHC Start 2007 π proton 14 TeV π? B-Mesons

More information

Suppression of crosstalk in SiPMs for the next generation gamma-ray observatory, CTA

Suppression of crosstalk in SiPMs for the next generation gamma-ray observatory, CTA Suppression of crosstalk in SiPMs for the next generation gamma-ray observatory, CTA 16aS41-3 Hiro Tajima, Akira Okumura, Yuki Nakamura, Anatolii Zenin, Nagoya University (for the CTA-Japan Consortium)

More information

Direct photon measurements in ALICE. Alexis Mas for the ALICE collaboration

Direct photon measurements in ALICE. Alexis Mas for the ALICE collaboration Direct photon measurements in ALICE Alexis Mas for the ALICE collaboration 1 Outline I - Physics motivations for direct photon measurements II Direct photon measurements in ALICE i - Conversion method

More information

Deeply Virtual Compton Scattering at Jefferson Lab

Deeply Virtual Compton Scattering at Jefferson Lab Deeply Virtual Compton Scattering at Jefferson Lab June 16-17, 2016 Frederic Georges (PhD student) PhD Supervisor: Carlos Muñoz Camacho Institut de Physique Nucléaire d Orsay CNRS-IN2P3 Université Paris-Sud,

More information

Development of LYSO Detector Modules for an EDM Polarimeter at COSY. for the JEDI Collaboration

Development of LYSO Detector Modules for an EDM Polarimeter at COSY. for the JEDI Collaboration Mitglied der Helmholtz-Gemeinschaft Development of LYSO Detector Modules for an EDM Polarimeter at COSY for the JEDI Collaboration February 28, 2018 DPG Spring Meeting, PhD @ SMART EDM_Lab, TSU, Georgia

More information

CSPAD FAQ And starting point for discussion. Philip Hart, LCLS Users Workshop, Detector session, 2 Oct 2013

CSPAD FAQ And starting point for discussion. Philip Hart, LCLS Users Workshop, Detector session, 2 Oct 2013 CSPAD FAQ And starting point for discussion Philip Hart, LCLS Users Workshop, Detector session, 2 Oct 2013 Outline Planning CSpad-based experiments getting latest specs MC-based experimental design studies

More information

PI-MAX 4: 1024 x 256 SPECTROSCOPY GROUP

PI-MAX 4: 1024 x 256 SPECTROSCOPY GROUP Powered by LightField The PI-MAX4: 1024 x 256 from Princeton Instruments is the next generation, fully-integrated scientific intensified CCD camera (ICCD) system featuring a 1024 x 253 pixel spectroscopy

More information

Obtainment of Prototypical images and Detector performance simulations. Guillaume Potdevin for the XFEL-HPAD-Consortium

Obtainment of Prototypical images and Detector performance simulations. Guillaume Potdevin for the XFEL-HPAD-Consortium Obtainment of Prototypical images and Detector performance simulations Overview of the analysis Outlook Prototypical images: Single object imaging & XPCS short presentation (reminder ) Presentation of

More information

05/09/07 CHEP2007 Stefano Spataro. Simulation and Event Reconstruction inside the PandaRoot Framework. Stefano Spataro. for the collaboration

05/09/07 CHEP2007 Stefano Spataro. Simulation and Event Reconstruction inside the PandaRoot Framework. Stefano Spataro. for the collaboration for the collaboration Overview Introduction on Panda Structure of the framework Event generation Detector implementation Reconstruction The Panda experiment AntiProton Annihilations at Darmstadt Multi

More information

A Novel Strip Energy Splitting Algorithm for the Fine Granular Readout of a Scintillator Strip Electromagnetic Calorimeter

A Novel Strip Energy Splitting Algorithm for the Fine Granular Readout of a Scintillator Strip Electromagnetic Calorimeter 1 3 A Novel Strip Energy Splitting Algorithm for the Fine Granular Readout of a Scintillator Strip Electromagnetic Calorimeter 4 Katsushige Kotera a, Daniel Jeans b, Akiya Miyamoto c, and Tohru Takeshita

More information

HLT Hadronic L0 Confirmation Matching VeLo tracks to L0 HCAL objects

HLT Hadronic L0 Confirmation Matching VeLo tracks to L0 HCAL objects LHCb Note 26-4, TRIG LPHE Note 26-14 July 5, 26 HLT Hadronic L Confirmation Matching VeLo tracks to L HCAL objects N. Zwahlen 1 LPHE, EPFL Abstract This note describes the HltHadAlleyMatchCalo tool that

More information

Integrated CMOS sensor technologies for the CLIC tracker

Integrated CMOS sensor technologies for the CLIC tracker Integrated CMOS sensor technologies for the CLIC tracker Magdalena Munker (CERN, University of Bonn) On behalf of the collaboration International Conference on Technology and Instrumentation in Particle

More information

Study of t Resolution Function

Study of t Resolution Function Belle-note 383 Study of t Resolution Function Takeo Higuchi and Hiroyasu Tajima Department of Physics, University of Tokyo (January 6, 200) Abstract t resolution function is studied in detail. It is used

More information

A Novel Strip Energy Splitting Algorithm for the Fine Granular Readout of a Scintillator Strip Electromagnetic Calorimeter

A Novel Strip Energy Splitting Algorithm for the Fine Granular Readout of a Scintillator Strip Electromagnetic Calorimeter 1 3 A Novel Strip Energy Splitting Algorithm for the Fine Granular Readout of a Scintillator Strip Electromagnetic Calorimeter 4 Katsushige Kotera a, Daniel Jeans b, Akiya Miyamoto c, and Tohru Takeshita

More information

The LHCb Upgrade. LHCC open session 17 February Large Hadron Collider Physics (LHCP) Conference New York, 2-7 June 2014

The LHCb Upgrade. LHCC open session 17 February Large Hadron Collider Physics (LHCP) Conference New York, 2-7 June 2014 The LHCb Upgrade LHCC open session 17 February 2010 Large Hadron Collider Physics (LHCP) Conference New York, 2-7 June 2014 Andreas Schopper on behalf of Motivation LHCb is a high precision experiment

More information

LIFA KEY FEATURES APPLICATIONS. Fluorescence Lifetime Attachment LIFA 15001A02 16/03/2015

LIFA KEY FEATURES APPLICATIONS. Fluorescence Lifetime Attachment LIFA 15001A02 16/03/2015 LIFA Fluorescence Lifetime Attachment LIFA 151A2 16/3/215 The LIFA is a dedicated system for Fluorescence Lifetime Imaging Microscopy (FLIM). It allows the generation of lifetime images on any widefield

More information

CLAS12 DAQ & Trigger Status and Timeline. Sergey Boyarinov Oct 3, 2017

CLAS12 DAQ & Trigger Status and Timeline. Sergey Boyarinov Oct 3, 2017 CLAS12 DAQ & Trigger Status and Timeline Sergey Boyarinov Oct 3, 2017 Notation ECAL old EC (electromagnetic calorimeter) PCAL preshower calorimeter DC drift chamber HTCC high threshold cherenkov counter

More information

hsfc pro 12bit ultra speed intensified imaging

hsfc pro 12bit ultra speed intensified imaging hsfc pro 12bit ultra speed intensified imaging four MCP-image intensifier camera modules ultra fast shutter down to 3ns (optional 1.5ns) in single mode excellent sensitivity of the system allows single

More information

Event reconstruction in STAR

Event reconstruction in STAR Chapter 4 Event reconstruction in STAR 4.1 Data aquisition and trigger The STAR data aquisition system (DAQ) [54] receives the input from multiple detectors at different readout rates. The typical recorded

More information

The Belle Silicon Vertex Detector. T. Tsuboyama (KEK) 6 Dec Workshop New Hadrons with Various Flavors 6 7 Dec Nagoya Univ.

The Belle Silicon Vertex Detector. T. Tsuboyama (KEK) 6 Dec Workshop New Hadrons with Various Flavors 6 7 Dec Nagoya Univ. The Belle Silicon Vertex Detector T. Tsuboyama (KEK) 6 Dec. 2008 Workshop New Hadrons with Various Flavors 6 7 Dec. 2008 Nagoya Univ. Outline Belle Silicon vertex detector Upgrade plan R&D and beam tests

More information

CLAS12 Offline Software Tools. G.Gavalian (Jlab) CLAS Collaboration Meeting (June 15, 2016)

CLAS12 Offline Software Tools. G.Gavalian (Jlab) CLAS Collaboration Meeting (June 15, 2016) CLAS12 Offline Software Tools G.Gavalian (Jlab) Overview Data Formats: RAW data decoding from EVIO. Reconstruction output banks in EVIO. Reconstruction output convertor to ROOT (coming soon). Data preservation

More information

Track Reconstruction

Track Reconstruction 4 Track Reconstruction 4 Track Reconstruction The NA57 experimental setup has been designed to measure strange particles. In order to translate the information extracted from the detectors to the characteristics

More information

50GeV KEK IPNS. J-PARC Target R&D sub gr. KEK Electronics/Online gr. Contents. Read-out module Front-end

50GeV KEK IPNS. J-PARC Target R&D sub gr. KEK Electronics/Online gr. Contents. Read-out module Front-end 50GeV Contents Read-out module Front-end KEK IPNS J-PARC Target R&D sub gr. KEK Electronics/Online gr. / Current digitizer VME scalar Advanet ADVME2706 (64ch scanning )? Analog multiplexer Yokogawa WE7271(4ch

More information

Lecture 04. Fundamentals of Lidar Remote Sensing (2)

Lecture 04. Fundamentals of Lidar Remote Sensing (2) Lecture 04. Fundamentals of Lidar Remote Sensing (2) Lidar Equation Introduction Physical Picture of Lidar Equation Fundamental Lidar Equation Different Forms of Lidar Equation Illustration of Lidar Equation

More information

TOFp / pvpd / TOFr in Run-III W.J. Llope for the STAR TOF group STAR Collaboration Meeting, BNL, 2/26/2003

TOFp / pvpd / TOFr in Run-III W.J. Llope for the STAR TOF group STAR Collaboration Meeting, BNL, 2/26/2003 TOFp / pvpd / TOFr in Run-III W.J. Llope for the STAR TOF group STAR Collaboration Meeting, BNL, /6/3 outline: Run-III (d+au) hardware... chronology for days 9 -... hit patterns integrated # s of events

More information

Forward Time-of-Flight Geometry for CLAS12

Forward Time-of-Flight Geometry for CLAS12 Forward Time-of-Flight Geometry for CLAS12 D.S. Carman, Jefferson Laboratory ftof geom.tex April 13, 2016 Abstract This document details the nominal geometry for the CLAS12 Forward Time-of- Flight System

More information

P R I C E L I S T. Laser Diagnostic Tools

P R I C E L I S T. Laser Diagnostic Tools 1 P R I C E L I S T All listed prices are NET PRICES EXWORKS Goettingen in EUR. Price list effective from March 16, 2012. Prices and specifications are subject to change without prior notice. No responsibility

More information

Reflectance of the Teflon R for ultraviolet light

Reflectance of the Teflon R for ultraviolet light Reflectance of the Teflon R for ultraviolet light Cláudio Silva, José Pinto da Cunha Vitaly Chepel, Américo Pereira Vladimir Solovov, Paulo Mendes M. Isabel Lopes, Francisco Neves Reflectance of the Teflon

More information

Full Offline Reconstruction in Real Time with the LHCb Detector

Full Offline Reconstruction in Real Time with the LHCb Detector Full Offline Reconstruction in Real Time with the LHCb Detector Agnieszka Dziurda 1,a on behalf of the LHCb Collaboration 1 CERN, Geneva, Switzerland Abstract. This document describes the novel, unique

More information

8/3/2016. Outline. The EPID Strikes Back: Future EPID Technology and Applications. Active Matrix Flat-Panel Imagers (AMFPIs)

8/3/2016. Outline. The EPID Strikes Back: Future EPID Technology and Applications. Active Matrix Flat-Panel Imagers (AMFPIs) 8//6 The EPID Strikes Back: Future EPID Technology and Applications Larry E. Antonuk Department of Radiation Oncology University of Michigan, Ann Arbor Acknowledgements: Youcef El-Mohri, Qihua Zhao (U.

More information