Flow characteristics and performance evaluation of butterfly valves using numerical analysis

Size: px
Start display at page:

Download "Flow characteristics and performance evaluation of butterfly valves using numerical analysis"

Transcription

1 IOP Conference Series: Earth and Environmental Science Flow characteristics and performance evaluation of butterfly valves using numerical analysis To cite this article: S Y Jeon et al 2010 IOP Conf. Ser.: Earth Environ. Sci View the article online for updates and enhancements. Related content - Experimental study for flow characteristics and performance evaluation of butterfly valves C K Kim, J Y Yoon and M S Shin - Numerical simulation of flow field in waterpump sump and inlet suction pipe A C Bayeul-Lainé, G Bois and A Issa - Impellers of low specific speed centrifugal pump based on the draughting technology C Hongxun, L Weiwei, J Wen et al. This content was downloaded from IP address on 30/04/2018 at 17:15

2 Flow characteristics and performance evaluation of butterfly valves using numerical analysis 1. Introduction S Y Jeon 1, J Y Yoon 2 and M S Shin 1 1 Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong Seongdong-gu, Seoul, , Republic of Korea 2 Division of Mechanical and Management Engineering, Hanyang University, 1271 Sa-3- dong Sangnok-gu, Ansan, , Republic of Korea lo21c@hanyang.ac.kr Abstract. The industrial butterfly valves have been applied to various fields that transport fluid in volume, especially water supply and drainage pipeline for flow control. The butterfly valves in various shapes are manufactured, but a fitting performance comparison is not made up. For this reason, we carried out numerical analysis of some kind of butterfly valves for water supply and drainage pipeline using commercial CFD code FLUENT, and made a comparative study of these results. Also, the flow coefficient, the loss coefficient, and pressure distribution of valves according to valve opening rate were compared each other and the influence of these design variables on valve performance were checked over. Through flow around the valve disk, such as pressure distribution, flow pattern, velocity vectors, and form of vortex, we grasped flow characteristics. A butterfly valve is a type of flow control device, used to regulate a fluid flowing through a section of pipeline and so on. The butterfly valve is similar in operating way to a ball valve. A disc is positioned in the center of the pipe typically and has a rod through it connected to an actuator on the outside of the valve. The actuator turns the disc either parallel or perpendicular to the flow to control the flow. Regardless of valve position, the disc of a butterfly valve is always positioned within the flow, therefore a pressure drop is always presented in the flow. A butterfly valve is a type of valves called quarter-turn valves. Because fully opening the valve, the disc is rotated a quarter turn so that it allows the fluid to go through in an almost unrestricted passage. There are some kinds of butterfly valves, and each adapted for different pressures and different usage. In case of the high performance butterfly valve, features a slight offset in the disc, which increases the valve's sealing ability and decreases its wearing. For these butterfly valves, the flow coefficient and the loss coefficient are important characteristics to understand overall valve performance, therefore we need to check it over carefully. Some researchers have attempted to numerically predict flow in butterfly valve. Kim and Wu[1] studied the flow pattern, velocity distribution and flow coefficient of butterfly valve through two-dimensional numerical analysis. Huang and Kim[2] studied the velocity field and pressure distribution for three-dimensional incompressible flow in butterfly valve. They also reported about the optimum design of the disk of butterfly valve for stable flow regulation, smooth opening and shutting ability, and decrease of cavitation. The purpose of this work is to investigate flow characteristics for two types of butterfly valve, single disk type butterfly valve and double disk type butterfly valve. In this work, the computational calculation and analysis have made to investigate the flow in single disk type butterfly valve and double disk type butterfly valve for water supply and drainage pipeline by using the CFD code FLUENT. These computational results, the flow coefficient and the loss coefficient for various opening rate of each valve, were compared with experimental results. Flow characteristics around the valve disk, such as pressure distribution, flow pattern, velocity vectors, and form of vortex, were also investigated and discussed. 2. Valve characteristics The valve flow coefficient and the valve loss coefficient to evaluate general performance of a valve calculated through numerical method in this work are defined as follows. These valve characteristics are c 2010 Ltd 1

3 generally obtained by experimental method because of pressure drop between upstream and downstream of valve. 2.1 Valve Flow Coefficient The valve flow coefficient have respect to valve type, diameter of valve, opening rate of valve and operating fluids. This valve flow coefficient is an important characteristic to investigate a valve performance and determined by differential pressure between upstream and downstream. In case of the specified differential pressure ( P = 1 psi) with temperature 5 ~ 40 of water, the valve flow coefficient is defined as Equation (1)[9,10] G C v = Q (1) ΔP 2.2 Valve Loss Coefficient The fluid in a piping system passes through various valves, bends, elbows, inlets, exits, enlargements, and contractions in addition to the pipes. These components interrupt the flow of the fluid and cause additional losses because of the flow separation and mixing. A partially closed valve may cause the largest head loss in the system by the drop in the flow rate. Flow through valves is very complex, and a theoretical analysis is generally not plausible. Therefore these losses, called the valve loss coefficient is determined experimentally and expressed as another representation of relation between pressure difference, fluid density and fluid average velocity following Equations (2)[9,10]. 2 u Δ H = K [SI and British unit] 2g (2) 2 γu Δ P = K [SI unit] 2g 3. Experimental method The experimental apparatus to measure flow rate was constituted by IEC (1997)[2], which used a reservoir for recirculating water, throttling valves on upstream and downstream, thermometer, electromagnetic flow meter, 400mm diameter pipes for test section including test valves(single disk type or double disk type butterfly valve) and the pressure taps were located in 2D and 6D from each test valve as computational domain for numerical study in Fig. 1. And then the flow rate was measured experimentally at 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100% rated opening of butterfly valves for single disk type and double disk type under fixed differential pressure( Δ P = 1 psi) between upstream and downstream and these experimental data were compared to the numerical results for validation. 4. Numerical method The computational calculation and analysis using numerical method have made to investigate the flow in butterfly valve used in water supply and drainage pipeline. For single disk type and double disk type butterfly valves, the body of valve and the disk were modeled in three-dimensional. The computational domain was made up according to IEC as Fig. 1. The three-dimensional models of the butterfly valves were comprised of valve disk part and valve body part using pre-processor, GAMBIT of the commercial CFD code FLUENT. To improve the computational efficiency, the nodes of the grid were clustered in valve disk compare to inlet and outlet relatively. For each calculation cases, the unstructured grids were generated about 500,000 shown in Fig. 2 and adjusted in ±5,000. 2

4 Fig. 1 Computational domain 4.1 Scheme and algorithm The numerical analysis has been carried out on the assumption that the flow in the butterfly valve was steady state incompressible flow and the operating fluid was water in standard atmospheric pressure and temperature. The second-order upwind scheme was used for descretization of governing equations and applied SIMPLEC algorithm for revision of the velocity and pressure, the standard κ-ε model for turbulent flow. These scheme and algorithm in this work have generally been applied to numerical study. 4.2 Initial condition and boundary condition No slip boundary condition to consider fluid viscosity and generalized log wall function to define turbulence intensity around wall were applied as solid boundary conditions. Inlet and outlet conditions were set as differential pressure between upstream and downstream. Using the flow rate from experimental results and conditions above, the valve flow coefficient and the valve loss coefficient were calculated numerically at 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100% rated opening of butterfly valve for single disk type and double disk type butterfly valves. Fig. 2 Schematics of the computational grid system 3

5 5. Results and discussion The results of numerical and experimental study are shown in Fig Figure 3 shows the valve flow coefficient and Fig. 4 shows the valve loss coefficient according to each opening rate of valve. 5.1 Comparison of valve flow coefficient The experimental results of the butterfly valve were used for the validation of numerical results, valve flow coefficient. Fig. 3 represents the valve flow coefficient relative to the maximum valve flow coefficient at each opening rare of butterfly valve( Cv(%) = Cv / C ) and the comparison between the numerical and experimental v max results for two types of butterfly valve: single disk type and double disk type butterfly valve. As shown in Fig.3, the difference between the numerical and experimental values is less than 6% in whole range of valve opening rate, this results represent that the numerical analysis predict actual flow in butterfly valve properly. Fig. 3 Valve flow coefficient, C v 5.2 Comparison of valve loss coefficient The valve loss coefficients in log scale value of two types of butterfly valve are presented in the vertical axis, and compared with experimental results in Fig. 4. For double disk type butterfly valve in Fig. 4(b), the difference between the computational and experimental values is less than for Single disk type butterfly valve slightly. It considered that this result was associated with the better water sealing ability of double disk type butterfly valve. Fig. 4 Valve loss coefficient, K 4

6 5.3 Pathline A pathline is defined as the actual path traveled by an individual fluid parcel over some time period and it is Lagrangian concept which express the path of an individual fluid particle as it move around in the flow field. Therefore pathlines are the useful way to understand the flow patterns. Fig. 5 shows the pathline around valve disk on valve opening rate 50% for each type of valve. As shown in Fig. 5, the developed flow at the rear of valve disk reattaches to the valve disk, and form some recirculating eddies. The pattern of recirculating eddies for double disk type butterfly valve is more complex than single disk type butterfly valve. It is supposed valve that this difference have resulted from the divided flow channel of the double disk type butterfly. Fig. 6 shows the pathline around valve disk on valve opening rate 100% for each type of valve and displays a smoother pathline for the double disk type butterfly valve than the single disk type butterfly valve slightly. This can be explained that the cross section of the double disk type butterfly valve, which stacks up the fluid particles, is smaller than the single disk type butterfly valve. Fig. 5 Pathline in butterfly valve (valve opening rate: 50%) 6. Conclusion Fig. 6 Pathline in butterfly valve (valve opening rate: 100%) A side of view of the valve performance, the valve flow coefficient and the valve loss coefficient according to the valve opening rate were calculated numerically and flow pattern around the disk of butterfly valve were presented. The experimental results were used to validate the numerical results and we concluded that there was not much in the valve performance between the single disk type butterfly valve and the double disk type butterfly valve. However, the double disk type butterfly valve showed more complex flow pattern, recirculating eddies, at the rear of valve disk compared with the single disk type butterfly valve. Through these comparisons, we obtained that grid type, analytical models, initial and boundary conditions applied to numerical analysis have made a description of the flow in butterfly valves to the purpose. 5

7 Acknowledgments This work was supported by Korea Water Resources Corporation and the second stage of the Brain Korea 21 Project. Nomenclature C v G K Δ H Δ P The valve flow coefficient Specific Gravity of Water Valve head loss [m] The valve loss coefficient Differential pressure[n/m 2 ] Q u g γ Volumetric flow rate[m 3 /hr] Mean velocity in pipe [m/s] Gravity acceleration[m/s 2 ] Specific weight[n/m 3 ] References [1] Kim R H and Wu N Y 1992 Numerical Simulation Butterfly Valve Fluid Flow Proc. of the FLUENT User s Group Meeting (Burlington, Vermont, 5-7 October 1993) pp [2] Huang C and Kim R H 1996 Three Dimensional Analysis of Partially Open Butterfly Valve Flows ASME J. of Fluids Eng [3] Skousen P L 2004 Valve Handbook (New York: McGraw-Hill, Inc.) [4] Eom K 1988 Performance of Butterfly Valves as Flow Controller ASME J. of Fluid Eng [5] Kimura T, Tanaka T, Fujimoto K and Ogawa K 1995 Hydrodynamic Characteristics of a Butterfly - Prediction of Pressure Loss Characteristics ISA Transactions vol 34 pp [6] Kang S K, Yoon J Y and Lee B H 2006 Numerical and Experimental Investigation on Backward Fitting Effect on Valve Flow Coefficient (Proc. IMech) Part E: J. of Process Mechanical Eng [7] Yi S I, Shin M K, Shin M S, Yoon J Y and Park G J 2008 Optimizing of the eccentric check butterfly valve considering the flow characteristics and structural safety (Proc. IMech) Part E: J. of Process Mechanical Eng [8] James A D and Mike S 2002 Predicting Globe Control Valve Performance Part I: CFD Modeling (ASME) J. of Fluid Eng [9] Guillermo P-S, Pablo G-A and Jaime A-V 2008 Three-dimensional modeling and Geometrical influence on the hydraulic performance of a control valve (ASME) J. of Fluid Eng. Vol. 130 Issue [10] IEC Industrial-process control valves: flow capacity - sizing equations for fluid flow installed conditions International Electrotechnical Commission (Geneva, Switzerland) [11] ANSI/ISA Flow Equations for Sizing Control Valves ISA-The Instrumentation, Systems, and Automation Society (North Carolina, USA) [12] IEC Industrial-process control valves: flow capacity - testing procedures Int.Electrotechnical Commission (Geneva, Switzerland) 6

STUDY OF FLOW PERFORMANCE OF A GLOBE VALVE AND DESIGN OPTIMISATION

STUDY OF FLOW PERFORMANCE OF A GLOBE VALVE AND DESIGN OPTIMISATION Journal of Engineering Science and Technology Vol. 12, No. 9 (2017) 2403-2409 School of Engineering, Taylor s University STUDY OF FLOW PERFORMANCE OF A GLOBE VALVE AND DESIGN OPTIMISATION SREEKALA S. K.

More information

Effect of suction pipe leaning angle and water level on the internal flow of pump sump

Effect of suction pipe leaning angle and water level on the internal flow of pump sump IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Effect of suction pipe leaning angle and water level on the internal flow of pump sump To cite this article: Z-M Chen et al 216

More information

INVESTIGATION OF HYDRAULIC PERFORMANCE OF A FLAP TYPE CHECK VALVE USING CFD AND EXPERIMENTAL TECHNIQUE

INVESTIGATION OF HYDRAULIC PERFORMANCE OF A FLAP TYPE CHECK VALVE USING CFD AND EXPERIMENTAL TECHNIQUE International Journal of Mechanical Engineering and Technology (IJMET) Volume 10, Issue 1, January 2019, pp. 409 413, Article ID: IJMET_10_01_042 Available online at http://www.ia aeme.com/ijmet/issues.asp?jtype=ijmet&vtype=

More information

CFD MODELING FOR PNEUMATIC CONVEYING

CFD MODELING FOR PNEUMATIC CONVEYING CFD MODELING FOR PNEUMATIC CONVEYING Arvind Kumar 1, D.R. Kaushal 2, Navneet Kumar 3 1 Associate Professor YMCAUST, Faridabad 2 Associate Professor, IIT, Delhi 3 Research Scholar IIT, Delhi e-mail: arvindeem@yahoo.co.in

More information

Study on the Design Method of Impeller on Low Specific Speed Centrifugal Pump

Study on the Design Method of Impeller on Low Specific Speed Centrifugal Pump Send Orders for Reprints to reprints@benthamscience.ae 594 The Open Mechanical Engineering Journal, 2015, 9, 594-600 Open Access Study on the Design Method of Impeller on Low Specific Speed Centrifugal

More information

CFD Analysis of a Fully Developed Turbulent Flow in a Pipe with a Constriction and an Obstacle

CFD Analysis of a Fully Developed Turbulent Flow in a Pipe with a Constriction and an Obstacle CFD Analysis of a Fully Developed Turbulent Flow in a Pipe with a Constriction and an Obstacle C, Diyoke Mechanical Engineering Department Enugu State University of Science & Tech. Enugu, Nigeria U, Ngwaka

More information

Effects of bell mouth geometries on the flow rate of centrifugal blowers

Effects of bell mouth geometries on the flow rate of centrifugal blowers Journal of Mechanical Science and Technology 25 (9) (2011) 2267~2276 www.springerlink.com/content/1738-494x DOI 10.1007/s12206-011-0609-3 Effects of bell mouth geometries on the flow rate of centrifugal

More information

Optimization of Hydraulic Fluid Parameters in Automotive Torque Converters

Optimization of Hydraulic Fluid Parameters in Automotive Torque Converters Optimization of Hydraulic Fluid Parameters in Automotive Torque Converters S. Venkateswaran, and C. Mallika Parveen Abstract The fluid flow and the properties of the hydraulic fluid inside a torque converter

More information

ISSN(PRINT): ,(ONLINE): ,VOLUME-1,ISSUE-1,

ISSN(PRINT): ,(ONLINE): ,VOLUME-1,ISSUE-1, NUMERICAL ANALYSIS OF THE TUBE BANK PRESSURE DROP OF A SHELL AND TUBE HEAT EXCHANGER Kartik Ajugia, Kunal Bhavsar Lecturer, Mechanical Department, SJCET Mumbai University, Maharashtra Assistant Professor,

More information

NUMERICAL MODELING STUDY FOR FLOW PATTERN CHANGES INDUCED BY SINGLE GROYNE

NUMERICAL MODELING STUDY FOR FLOW PATTERN CHANGES INDUCED BY SINGLE GROYNE NUMERICAL MODELING STUDY FOR FLOW PATTERN CHANGES INDUCED BY SINGLE GROYNE Jungseok Ho 1, Hong Koo Yeo 2, Julie Coonrod 3, and Won-Sik Ahn 4 1 Research Assistant Professor, Dept. of Civil Engineering,

More information

Structural Design Strategy of Double-Eccentric Butterfly Valve using Topology Optimization Techniques

Structural Design Strategy of Double-Eccentric Butterfly Valve using Topology Optimization Techniques Structural Design Strategy of Double-Eccentric Butterfly Valve using Topology Optimization Techniques Jun-Oh Kim, Seol-Min Yang, Seok-Heum Baek, Sangmo Kang Abstract In this paper, the shape design process

More information

Design Verification of Hydraulic Performance. for a Centrifugal Pump using. Computational Fluid Dynamics (CFD)

Design Verification of Hydraulic Performance. for a Centrifugal Pump using. Computational Fluid Dynamics (CFD) Design Verification of Hydraulic Performance for a Centrifugal Pump using Computational Fluid Dynamics (CFD) Anil S. Akole (Asst. Manager) Center for Design & Research Pentair Water India Private Limited

More information

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS Dr W. Malalasekera Version 3.0 August 2013 1 COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE

More information

Use of CFD in Design and Development of R404A Reciprocating Compressor

Use of CFD in Design and Development of R404A Reciprocating Compressor Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2006 Use of CFD in Design and Development of R404A Reciprocating Compressor Yogesh V. Birari

More information

Design optimization method for Francis turbine

Design optimization method for Francis turbine IOP Conference Series: Earth and Environmental Science OPEN ACCESS Design optimization method for Francis turbine To cite this article: H Kawajiri et al 2014 IOP Conf. Ser.: Earth Environ. Sci. 22 012026

More information

CFD Simulation for Stratified Oil-Water Two-Phase Flow in a Horizontal Pipe

CFD Simulation for Stratified Oil-Water Two-Phase Flow in a Horizontal Pipe CFD Simulation for Stratified Oil-Water Two-Phase Flow in a Horizontal Pipe Adib Zulhilmi Mohd Alias, a, Jaswar Koto, a,b,* and Yasser Mohamed Ahmed, a a) Department of Aeronautics, Automotive and Ocean

More information

Backward facing step Homework. Department of Fluid Mechanics. For Personal Use. Budapest University of Technology and Economics. Budapest, 2010 autumn

Backward facing step Homework. Department of Fluid Mechanics. For Personal Use. Budapest University of Technology and Economics. Budapest, 2010 autumn Backward facing step Homework Department of Fluid Mechanics Budapest University of Technology and Economics Budapest, 2010 autumn Updated: October 26, 2010 CONTENTS i Contents 1 Introduction 1 2 The problem

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY. Analyzing wind flow around the square plate using ADINA Project. Ankur Bajoria

MASSACHUSETTS INSTITUTE OF TECHNOLOGY. Analyzing wind flow around the square plate using ADINA Project. Ankur Bajoria MASSACHUSETTS INSTITUTE OF TECHNOLOGY Analyzing wind flow around the square plate using ADINA 2.094 - Project Ankur Bajoria May 1, 2008 Acknowledgement I would like to thank ADINA R & D, Inc for the full

More information

MOMENTUM AND HEAT TRANSPORT INSIDE AND AROUND

MOMENTUM AND HEAT TRANSPORT INSIDE AND AROUND MOMENTUM AND HEAT TRANSPORT INSIDE AND AROUND A CYLINDRICAL CAVITY IN CROSS FLOW G. LYDON 1 & H. STAPOUNTZIS 2 1 Informatics Research Unit for Sustainable Engrg., Dept. of Civil Engrg., Univ. College Cork,

More information

Parametric design of a Francis turbine runner by means of a three-dimensional inverse design method

Parametric design of a Francis turbine runner by means of a three-dimensional inverse design method IOP Conference Series: Earth and Environmental Science Parametric design of a Francis turbine runner by means of a three-dimensional inverse design method To cite this article: K Daneshkah and M Zangeneh

More information

ABSTRACT I. INTRODUCTION. Research and Development Division, BEML Ltd, KGF, Karnataka, India

ABSTRACT I. INTRODUCTION. Research and Development Division, BEML Ltd, KGF, Karnataka, India 2017 IJSRSET Volume 3 Issue 6 Print ISSN: 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Computational Fluid Dynamics Simulation of Hydraulic Torque Converter for Performance

More information

COMPUTATIONAL FLUID DYNAMICS USED IN THE DESIGN OF WATERBLAST TOOLING

COMPUTATIONAL FLUID DYNAMICS USED IN THE DESIGN OF WATERBLAST TOOLING 2015 WJTA-IMCA Conference and Expo November 2-4 New Orleans, Louisiana Paper COMPUTATIONAL FLUID DYNAMICS USED IN THE DESIGN OF WATERBLAST TOOLING J. Schneider StoneAge, Inc. Durango, Colorado, U.S.A.

More information

Computational Simulation of the Wind-force on Metal Meshes

Computational Simulation of the Wind-force on Metal Meshes 16 th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia 2-7 December 2007 Computational Simulation of the Wind-force on Metal Meshes Ahmad Sharifian & David R. Buttsworth Faculty

More information

Numerical simulation of the flow field in pump intakes by means of Lattice Boltzmann methods

Numerical simulation of the flow field in pump intakes by means of Lattice Boltzmann methods IOP Conference Series: Materials Science and Engineering OPEN ACCESS Numerical simulation of the flow field in pump intakes by means of Lattice Boltzmann methods To cite this article: A Schneider et al

More information

Analysis of fluid-solid coupling vibration characteristics of probe based on ANSYS Workbench

Analysis of fluid-solid coupling vibration characteristics of probe based on ANSYS Workbench Analysis of fluid-solid coupling vibration characteristics of probe based on ANSYS Workbench He Wang 1, a, Changzheng Zhao 1, b and Hongzhi Chen 1, c 1 Shandong University of Science and Technology, Qingdao

More information

The Great Mystery of Theoretical Application to Fluid Flow in Rotating Flow Passage of Axial Flow Pump, Part I: Theoretical Analysis

The Great Mystery of Theoretical Application to Fluid Flow in Rotating Flow Passage of Axial Flow Pump, Part I: Theoretical Analysis Proceedings of the 2nd WSEAS Int. Conference on Applied and Theoretical Mechanics, Venice, Italy, November 20-22, 2006 228 The Great Mystery of Theoretical Application to Fluid Flow in Rotating Flow Passage

More information

Keywords: flows past a cylinder; detached-eddy-simulations; Spalart-Allmaras model; flow visualizations

Keywords: flows past a cylinder; detached-eddy-simulations; Spalart-Allmaras model; flow visualizations A TURBOLENT FLOW PAST A CYLINDER *Vít HONZEJK, **Karel FRAŇA *Technical University of Liberec Studentská 2, 461 17, Liberec, Czech Republic Phone:+ 420 485 353434 Email: vit.honzejk@seznam.cz **Technical

More information

A BEND GEOTHERMALTWO-PHASE PRESSURE LOSS 1. INTRODUCTION. Geothermal Institute, University of Auckland

A BEND GEOTHERMALTWO-PHASE PRESSURE LOSS 1. INTRODUCTION. Geothermal Institute, University of Auckland GEOTHERMALTWO-PHASE PRESSURE LOSS A BEND A. K.C. Geothermal Institute, University of Auckland Jakarta, Indonesia SUMMARY When a two-phase fluid flows through a bend, its flow pattern is disturbed. The

More information

Stratified Oil-Water Two-Phases Flow of Subsea Pipeline

Stratified Oil-Water Two-Phases Flow of Subsea Pipeline Stratified Oil-Water Two-Phases Flow of Subsea Pipeline Adib Zulhilmi Mohd Alias, a, Jaswar Koto, a,b,*, Yasser Mohamed Ahmed, a and Abd Khair Junaidi, b a) Department of Aeronautics, Automotive and Ocean

More information

NUMERICAL STUDY OF CAVITATING FLOW INSIDE A FLUSH VALVE

NUMERICAL STUDY OF CAVITATING FLOW INSIDE A FLUSH VALVE Conference on Modelling Fluid Flow (CMFF 09) The 14th International Conference on Fluid Flow Technologies Budapest, Hungary, September 9-12, 2009 NUMERICAL STUDY OF CAVITATING FLOW INSIDE A FLUSH VALVE

More information

Verification of Laminar and Validation of Turbulent Pipe Flows

Verification of Laminar and Validation of Turbulent Pipe Flows 1 Verification of Laminar and Validation of Turbulent Pipe Flows 1. Purpose ME:5160 Intermediate Mechanics of Fluids CFD LAB 1 (ANSYS 18.1; Last Updated: Aug. 1, 2017) By Timur Dogan, Michael Conger, Dong-Hwan

More information

Tutorial 1. Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

Tutorial 1. Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow Tutorial 1. Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow Introduction This tutorial illustrates the setup and solution of the two-dimensional turbulent fluid flow and heat

More information

AIR FLOW CHARACTERISTICS FOR THE GEOMETRY MODIFICATION OF BELLOWS PIPE ON INTAKE SYSTEM OF AUTOMOBILE

AIR FLOW CHARACTERISTICS FOR THE GEOMETRY MODIFICATION OF BELLOWS PIPE ON INTAKE SYSTEM OF AUTOMOBILE International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 5, May 2018, pp. 1064 1071, Article ID: IJMET_09_05_117 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=5

More information

Introduction to ANSYS CFX

Introduction to ANSYS CFX Workshop 03 Fluid flow around the NACA0012 Airfoil 16.0 Release Introduction to ANSYS CFX 2015 ANSYS, Inc. March 13, 2015 1 Release 16.0 Workshop Description: The flow simulated is an external aerodynamics

More information

NUMERICAL SIMULATION OF LOCAL LOSS COEFFICIENTS OF VENTILATION DUCT FITTINGS

NUMERICAL SIMULATION OF LOCAL LOSS COEFFICIENTS OF VENTILATION DUCT FITTINGS Eleventh International IBPSA Conference Glasgow, Scotland July 7-30, 009 NUMERICAL SIMULATION OF LOCAL LOSS COEFFICIENTS OF VENTILATION DUCT FITTINGS Vladimir Zmrhal, Jan Schwarzer Department of Environmental

More information

Estimating Vertical Drag on Helicopter Fuselage during Hovering

Estimating Vertical Drag on Helicopter Fuselage during Hovering Estimating Vertical Drag on Helicopter Fuselage during Hovering A. A. Wahab * and M.Hafiz Ismail ** Aeronautical & Automotive Dept., Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310

More information

Two-phase numerical study of the flow field formed in water pump sump: influence of air entrainment

Two-phase numerical study of the flow field formed in water pump sump: influence of air entrainment IOP Conference Series: Earth and Environmental Science Two-phase numerical study of the flow field formed in water pump sump: influence of air entrainment To cite this article: A C Bayeul-Lainé et al 2012

More information

Three Dimensional Numerical Simulation of Turbulent Flow Over Spillways

Three Dimensional Numerical Simulation of Turbulent Flow Over Spillways Three Dimensional Numerical Simulation of Turbulent Flow Over Spillways Latif Bouhadji ASL-AQFlow Inc., Sidney, British Columbia, Canada Email: lbouhadji@aslenv.com ABSTRACT Turbulent flows over a spillway

More information

CFD modelling of thickened tailings Final project report

CFD modelling of thickened tailings Final project report 26.11.2018 RESEM Remote sensing supporting surveillance and operation of mines CFD modelling of thickened tailings Final project report Lic.Sc.(Tech.) Reeta Tolonen and Docent Esa Muurinen University of

More information

Calculate a solution using the pressure-based coupled solver.

Calculate a solution using the pressure-based coupled solver. Tutorial 19. Modeling Cavitation Introduction This tutorial examines the pressure-driven cavitating flow of water through a sharpedged orifice. This is a typical configuration in fuel injectors, and brings

More information

Numerical Study of Turbulent Flow over Backward-Facing Step with Different Turbulence Models

Numerical Study of Turbulent Flow over Backward-Facing Step with Different Turbulence Models Numerical Study of Turbulent Flow over Backward-Facing Step with Different Turbulence Models D. G. Jehad *,a, G. A. Hashim b, A. K. Zarzoor c and C. S. Nor Azwadi d Department of Thermo-Fluids, Faculty

More information

PARAMETRIC STUDY AND OPTIMIZATION OF CENTRIFUGAL PUMP IMPELLER BY VARYING THE DESIGN PARAMETER USING COMPUTATIONAL FLUID DYNAMICS: PART I

PARAMETRIC STUDY AND OPTIMIZATION OF CENTRIFUGAL PUMP IMPELLER BY VARYING THE DESIGN PARAMETER USING COMPUTATIONAL FLUID DYNAMICS: PART I Journal of Mechanical and Production Engineering (JMPE) ISSN 2278-3512 Vol.2, Issue 2, Sep 2012 87-97 TJPRC Pvt. Ltd., PARAMETRIC STUDY AND OPTIMIZATION OF CENTRIFUGAL PUMP IMPELLER BY VARYING THE DESIGN

More information

Hydrodynamic performance enhancement of a mixed-flow pump

Hydrodynamic performance enhancement of a mixed-flow pump IOP Conference Series: Earth and Environmental Science Hydrodynamic performance enhancement of a mixed-flow pump To cite this article: J H Kim and K Y Kim 202 IOP Conf. Ser.: Earth Environ. Sci. 5 02006

More information

Numerical and theoretical analysis of shock waves interaction and reflection

Numerical and theoretical analysis of shock waves interaction and reflection Fluid Structure Interaction and Moving Boundary Problems IV 299 Numerical and theoretical analysis of shock waves interaction and reflection K. Alhussan Space Research Institute, King Abdulaziz City for

More information

CFD design tool for industrial applications

CFD design tool for industrial applications Sixth LACCEI International Latin American and Caribbean Conference for Engineering and Technology (LACCEI 2008) Partnering to Success: Engineering, Education, Research and Development June 4 June 6 2008,

More information

Computational Fluid Dynamics Analysis of Butterfly Valve Performance Factors

Computational Fluid Dynamics Analysis of Butterfly Valve Performance Factors Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 2012 Computational Fluid Dynamics Analysis of Butterfly Valve Performance Factors Adam Del Toro Utah State

More information

Turbulencja w mikrokanale i jej wpływ na proces emulsyfikacji

Turbulencja w mikrokanale i jej wpływ na proces emulsyfikacji Polish Academy of Sciences Institute of Fundamental Technological Research Turbulencja w mikrokanale i jej wpływ na proces emulsyfikacji S. Błoński, P.Korczyk, T.A. Kowalewski PRESENTATION OUTLINE 0 Introduction

More information

Ashwin Shridhar et al. Int. Journal of Engineering Research and Applications ISSN : , Vol. 5, Issue 6, ( Part - 5) June 2015, pp.

Ashwin Shridhar et al. Int. Journal of Engineering Research and Applications ISSN : , Vol. 5, Issue 6, ( Part - 5) June 2015, pp. RESEARCH ARTICLE OPEN ACCESS Conjugate Heat transfer Analysis of helical fins with airfoil crosssection and its comparison with existing circular fin design for air cooled engines employing constant rectangular

More information

ACTIVE SEPARATION CONTROL WITH LONGITUDINAL VORTICES GENERATED BY THREE TYPES OF JET ORIFICE SHAPE

ACTIVE SEPARATION CONTROL WITH LONGITUDINAL VORTICES GENERATED BY THREE TYPES OF JET ORIFICE SHAPE 24 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES ACTIVE SEPARATION CONTROL WITH LONGITUDINAL VORTICES GENERATED BY THREE TYPES OF JET ORIFICE SHAPE Hiroaki Hasegawa*, Makoto Fukagawa**, Kazuo

More information

Simulation of Flow Development in a Pipe

Simulation of Flow Development in a Pipe Tutorial 4. Simulation of Flow Development in a Pipe Introduction The purpose of this tutorial is to illustrate the setup and solution of a 3D turbulent fluid flow in a pipe. The pipe networks are common

More information

Simulation of Turbulent Flow around an Airfoil

Simulation of Turbulent Flow around an Airfoil 1. Purpose Simulation of Turbulent Flow around an Airfoil ENGR:2510 Mechanics of Fluids and Transfer Processes CFD Lab 2 (ANSYS 17.1; Last Updated: Nov. 7, 2016) By Timur Dogan, Michael Conger, Andrew

More information

MAE 3130: Fluid Mechanics Lecture 5: Fluid Kinematics Spring Dr. Jason Roney Mechanical and Aerospace Engineering

MAE 3130: Fluid Mechanics Lecture 5: Fluid Kinematics Spring Dr. Jason Roney Mechanical and Aerospace Engineering MAE 3130: Fluid Mechanics Lecture 5: Fluid Kinematics Spring 2003 Dr. Jason Roney Mechanical and Aerospace Engineering Outline Introduction Velocity Field Acceleration Field Control Volume and System Representation

More information

THE INFLUENCE OF ROTATING DOMAIN SIZE IN A ROTATING FRAME OF REFERENCE APPROACH FOR SIMULATION OF ROTATING IMPELLER IN A MIXING VESSEL

THE INFLUENCE OF ROTATING DOMAIN SIZE IN A ROTATING FRAME OF REFERENCE APPROACH FOR SIMULATION OF ROTATING IMPELLER IN A MIXING VESSEL Journal of Engineering Science and Technology Vol. 2, No. 2 (2007) 126-138 School of Engineering, Taylor s University College THE INFLUENCE OF ROTATING DOMAIN SIZE IN A ROTATING FRAME OF REFERENCE APPROACH

More information

Verification and Validation in CFD and Heat Transfer: ANSYS Practice and the New ASME Standard

Verification and Validation in CFD and Heat Transfer: ANSYS Practice and the New ASME Standard Verification and Validation in CFD and Heat Transfer: ANSYS Practice and the New ASME Standard Dimitri P. Tselepidakis & Lewis Collins ASME 2012 Verification and Validation Symposium May 3 rd, 2012 1 Outline

More information

Computational Fluid Dynamics Investigation of Butterfly Valve Performance Factors

Computational Fluid Dynamics Investigation of Butterfly Valve Performance Factors E243 Computational Fluid Dynamics Investigation of Butterfly Valve Performance Factors ADAM DEL TORO, 1 MICHAEL C. JOHNSON, 2 AND ROBERT E. SPALL 2 1 Questar Gas Co., Salt Lake City, Utah 2 Utah State

More information

Modeling Evaporating Liquid Spray

Modeling Evaporating Liquid Spray Tutorial 17. Modeling Evaporating Liquid Spray Introduction In this tutorial, the air-blast atomizer model in ANSYS FLUENT is used to predict the behavior of an evaporating methanol spray. Initially, the

More information

Potsdam Propeller Test Case (PPTC)

Potsdam Propeller Test Case (PPTC) Second International Symposium on Marine Propulsors smp 11, Hamburg, Germany, June 2011 Workshop: Propeller performance Potsdam Propeller Test Case (PPTC) Olof Klerebrant Klasson 1, Tobias Huuva 2 1 Core

More information

and to the following students who assisted in the creation of the Fluid Dynamics tutorials:

and to the following students who assisted in the creation of the Fluid Dynamics tutorials: Fluid Dynamics CAx Tutorial: Channel Flow Basic Tutorial # 4 Deryl O. Snyder C. Greg Jensen Brigham Young University Provo, UT 84602 Special thanks to: PACE, Fluent, UGS Solutions, Altair Engineering;

More information

Flow and Heat Transfer in a Mixing Elbow

Flow and Heat Transfer in a Mixing Elbow Flow and Heat Transfer in a Mixing Elbow Objectives The main objectives of the project are to learn (i) how to set up and perform flow simulations with heat transfer and mixing, (ii) post-processing and

More information

SIMULATION OF PROPELLER-SHIP HULL INTERACTION USING AN INTEGRATED VLM/RANSE SOLVER MODELING.

SIMULATION OF PROPELLER-SHIP HULL INTERACTION USING AN INTEGRATED VLM/RANSE SOLVER MODELING. SIMULATION OF PROPELLER-SHIP HULL INTERACTION USING AN INTEGRATED VLM/RANSE SOLVER MODELING. M.N.Senthil Prakash, Department of Ocean Engineering, IIT Madras, India V. Anantha Subramanian Department of

More information

ISO 5389 INTERNATIONAL STANDARD. Turbocompressors Performance test code. Turbocompresseurs Code d'essais des performances. Second edition

ISO 5389 INTERNATIONAL STANDARD. Turbocompressors Performance test code. Turbocompresseurs Code d'essais des performances. Second edition INTERNATIONAL STANDARD ISO 5389 Second edition 2005-12-15 Turbocompressors Performance test code Turbocompresseurs Code d'essais des performances Reference number ISO 2005 PDF disclaimer This PDF file

More information

Simulation of Turbulent Flow in an Asymmetric Diffuser

Simulation of Turbulent Flow in an Asymmetric Diffuser Simulation of Turbulent Flow in an Asymmetric Diffuser 1. Purpose 58:160 Intermediate Mechanics of Fluids CFD LAB 3 By Tao Xing and Fred Stern IIHR-Hydroscience & Engineering The University of Iowa C.

More information

ANSYS AIM Tutorial Turbulent Flow Over a Backward Facing Step

ANSYS AIM Tutorial Turbulent Flow Over a Backward Facing Step ANSYS AIM Tutorial Turbulent Flow Over a Backward Facing Step Author(s): Sebastian Vecchi, ANSYS Created using ANSYS AIM 18.1 Problem Specification Pre-Analysis & Start Up Governing Equation Start-Up Geometry

More information

Digital Design for Centrifugal Fans

Digital Design for Centrifugal Fans Digital Design for Centrifugal Fans John Abbitt, Sam Lowry Department of Mechanical & Aerospace Engineering, University of Florida / Simerics, Inc. Abstract An objective in the curriculum in the Department

More information

EXPERIMENTAL INVESTIGATION OF A CENTRIFUGAL BLOWER BY USING CFD

EXPERIMENTAL INVESTIGATION OF A CENTRIFUGAL BLOWER BY USING CFD Int. J. Mech. Eng. & Rob. Res. 2014 Karthik V and Rajeshkannah T, 2014 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 3, No. 3, July 2014 2014 IJMERR. All Rights Reserved EXPERIMENTAL INVESTIGATION

More information

Express Introductory Training in ANSYS Fluent Workshop 02 Using the Discrete Phase Model (DPM)

Express Introductory Training in ANSYS Fluent Workshop 02 Using the Discrete Phase Model (DPM) Express Introductory Training in ANSYS Fluent Workshop 02 Using the Discrete Phase Model (DPM) Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry

More information

Toward Predicting Performance of an Axial Flow Waterjet Including the Effects of Cavitation and Thrust Breakdown

Toward Predicting Performance of an Axial Flow Waterjet Including the Effects of Cavitation and Thrust Breakdown First International Symposium on Marine Propulsors smp 09, Trondheim, Norway, June 2009 Toward Predicting Performance of an Axial Flow Waterjet Including the Effects of Cavitation and Thrust Breakdown

More information

Axisymmetric Viscous Flow Modeling for Meridional Flow Calculation in Aerodynamic Design of Half-Ducted Blade Rows

Axisymmetric Viscous Flow Modeling for Meridional Flow Calculation in Aerodynamic Design of Half-Ducted Blade Rows Memoirs of the Faculty of Engineering, Kyushu University, Vol.67, No.4, December 2007 Axisymmetric Viscous Flow Modeling for Meridional Flow alculation in Aerodynamic Design of Half-Ducted Blade Rows by

More information

Simulation and Validation of Turbulent Pipe Flows

Simulation and Validation of Turbulent Pipe Flows Simulation and Validation of Turbulent Pipe Flows ENGR:2510 Mechanics of Fluids and Transport Processes CFD LAB 1 (ANSYS 17.1; Last Updated: Oct. 10, 2016) By Timur Dogan, Michael Conger, Dong-Hwan Kim,

More information

Numerical Simulation of Flow Field in Water-Pump Sump and Inlet Suction Pipe

Numerical Simulation of Flow Field in Water-Pump Sump and Inlet Suction Pipe Numerical Simulation of Flow Field in Water-Pump Sump and Inlet Suction Pipe Annie-Claude Bayeul-Lainé 1, Gérard Bois 1 and Abir Issa 2 1 LML, UMR CNRS 8107, Arts et Metiers PARISTECH, 8, boulevard Louis

More information

Application of Parallel Compution on Numerical Simulation for the Fluid Flow Field of Fan

Application of Parallel Compution on Numerical Simulation for the Fluid Flow Field of Fan 2010 3rd International Conference on Computer and Electrical Engineering (ICCEE 2010) IPCSIT vol. 53 (2012) (2012) IACSIT Press, Singapore DOI: 10.7763/IPCSIT.2012.V53.No.2.73 Application of Parallel Compution

More information

Increasing of accuracy of multipath ultrasonic flow meters by intelligent correction

Increasing of accuracy of multipath ultrasonic flow meters by intelligent correction Measurement Automation Monitoring, Dec 2016, no 12, vol 62, ISSN 2450-2855 411 Iryna GRYSHANOVA, Ivan KOROBKO, Pavlo POGREBNIY NATIONAL TECHNICAL UNIVERSITY OF UKRAINE «IGOR SIKORSKY KYIV POLITECHNIK INSTITUTE»,

More information

CFD Analysis of 2-D Unsteady Flow Past a Square Cylinder at an Angle of Incidence

CFD Analysis of 2-D Unsteady Flow Past a Square Cylinder at an Angle of Incidence CFD Analysis of 2-D Unsteady Flow Past a Square Cylinder at an Angle of Incidence Kavya H.P, Banjara Kotresha 2, Kishan Naik 3 Dept. of Studies in Mechanical Engineering, University BDT College of Engineering,

More information

CFD ANALYSIS OF OGEE SPILLWAY HYDRUALICS

CFD ANALYSIS OF OGEE SPILLWAY HYDRUALICS CFD ANALYSIS OF OGEE SPILLWAY HYDRUALICS Dolon Banerjee 1 and Dr. Bharat Jhamnani 2 1 M.Tech Student, Department of Civil Engineering, Delhi Technological University 2 Professor, Department of Civil Engineering,

More information

Introduction to C omputational F luid Dynamics. D. Murrin

Introduction to C omputational F luid Dynamics. D. Murrin Introduction to C omputational F luid Dynamics D. Murrin Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat transfer, mass transfer, chemical reactions, and related phenomena

More information

USE OF COMPUTATIONAL FLUID DYNAMICS (CFD) TO MODEL FLOW AT PUMP INTAKES

USE OF COMPUTATIONAL FLUID DYNAMICS (CFD) TO MODEL FLOW AT PUMP INTAKES USE OF COMPUTATIONAL FLUID DYNAMICS (CFD) TO MODEL FLOW AT PUMP INTAKES by Jennifer Anne Roberge A Thesis Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements

More information

CFD Modelling of Erosion in Slurry Tee-Junction

CFD Modelling of Erosion in Slurry Tee-Junction CFD Modelling of Erosion in Slurry Tee-Junction Edward Yap Jeremy Leggoe Department of Chemical Engineering The University of Western Australia David Whyte CEED Client: Alumina Centre of Excellence, Alcoa

More information

Validation of a Multi-physics Simulation Approach for Insertion Electromagnetic Flowmeter Design Application

Validation of a Multi-physics Simulation Approach for Insertion Electromagnetic Flowmeter Design Application Validation of a Multi-physics Simulation Approach for Insertion Electromagnetic Flowmeter Design Application Setup Numerical Turbulence ing by March 15, 2015 Markets Insertion electromagnetic flowmeters

More information

Numerical Simulation of Flow Field Formed in Water-Pump Sump

Numerical Simulation of Flow Field Formed in Water-Pump Sump Numerical Simulation of Flow Field Formed in Water-Pump Sump Annie-Claude Bayeul-Lainé 1, Gérard Bois 2 and Abir Issa 3 1 LML, UMR CNRS 8107, Arts et Metiers PARISTECH, 8, boulevard Louis XIV 59046 LILLE

More information

Numerical Simulation Study on Aerodynamic Characteristics of the High Speed Train under Crosswind

Numerical Simulation Study on Aerodynamic Characteristics of the High Speed Train under Crosswind 2017 2nd International Conference on Industrial Aerodynamics (ICIA 2017) ISBN: 978-1-60595-481-3 Numerical Simulation Study on Aerodynamic Characteristics of the High Speed Train under Crosswind Fan Zhao,

More information

Flow in an Intake Manifold

Flow in an Intake Manifold Tutorial 2. Flow in an Intake Manifold Introduction The purpose of this tutorial is to model turbulent flow in a simple intake manifold geometry. An intake manifold is a system of passages which carry

More information

Numerical and experimental investigations into liquid sloshing in a rectangular tank

Numerical and experimental investigations into liquid sloshing in a rectangular tank The 2012 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM 12) Seoul, Korea, August 26-30, 2012 Numerical and experimental investigations into liquid sloshing in a rectangular

More information

Estimation of Flow Field & Drag for Aerofoil Wing

Estimation of Flow Field & Drag for Aerofoil Wing Estimation of Flow Field & Drag for Aerofoil Wing Mahantesh. HM 1, Prof. Anand. SN 2 P.G. Student, Dept. of Mechanical Engineering, East Point College of Engineering, Bangalore, Karnataka, India 1 Associate

More information

FLOWING FLUIDS AND PRESSURE VARIATION

FLOWING FLUIDS AND PRESSURE VARIATION Chapter 4 Pressure differences are (often) the forces that move fluids FLOWING FLUIDS AND PRESSURE VARIATION Fluid Mechanics, Spring Term 2011 e.g., pressure is low at the center of a hurricane. For your

More information

Numerical Simulation of Flow around a Spur Dike with Free Surface Flow in Fixed Flat Bed. Mukesh Raj Kafle

Numerical Simulation of Flow around a Spur Dike with Free Surface Flow in Fixed Flat Bed. Mukesh Raj Kafle TUTA/IOE/PCU Journal of the Institute of Engineering, Vol. 9, No. 1, pp. 107 114 TUTA/IOE/PCU All rights reserved. Printed in Nepal Fax: 977-1-5525830 Numerical Simulation of Flow around a Spur Dike with

More information

Extension and Validation of the CFX Cavitation Model for Sheet and Tip Vortex Cavitation on Hydrofoils

Extension and Validation of the CFX Cavitation Model for Sheet and Tip Vortex Cavitation on Hydrofoils Extension and Validation of the CFX Cavitation Model for Sheet and Tip Vortex Cavitation on Hydrofoils C. Lifante, T. Frank, M. Kuntz ANSYS Germany, 83624 Otterfing Conxita.Lifante@ansys.com 2006 ANSYS,

More information

CFD Topological Optimization of a Car Water-Pump Inlet using TOSCA Fluid and STAR- CCM+

CFD Topological Optimization of a Car Water-Pump Inlet using TOSCA Fluid and STAR- CCM+ CFD Topological Optimization of a Car Water-Pump Inlet using TOSCA Fluid and STAR- CCM+ Dr. Anselm Hopf Dr. Andrew Hitchings Les Routledge Ford Motor Company CONTENTS Introduction/Motivation Optimization

More information

Air Assisted Atomization in Spiral Type Nozzles

Air Assisted Atomization in Spiral Type Nozzles ILASS Americas, 25 th Annual Conference on Liquid Atomization and Spray Systems, Pittsburgh, PA, May 2013 Air Assisted Atomization in Spiral Type Nozzles W. Kalata *, K. J. Brown, and R. J. Schick Spray

More information

Andrew Carter. Vortex shedding off a back facing step in laminar flow.

Andrew Carter. Vortex shedding off a back facing step in laminar flow. Flow Visualization MCEN 5151, Spring 2011 Andrew Carter Team Project 2 4/6/11 Vortex shedding off a back facing step in laminar flow. Figure 1, Vortex shedding from a back facing step in a laminar fluid

More information

NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING

NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING Review of the Air Force Academy No.3 (35)/2017 NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING Cvetelina VELKOVA Department of Technical Mechanics, Naval Academy Nikola Vaptsarov,Varna, Bulgaria (cvetelina.velkova1985@gmail.com)

More information

Simulation of Flow Field and Calculation of Moment on Valve Plate for

Simulation of Flow Field and Calculation of Moment on Valve Plate for Simulation of Flow Field and Calculation of Moment on Valve Plate for Butterfly Valve 1 Xiaohong Jin, 1 Yang Shen, 1 Qinfen Miao 1, College of Machinery and Automation, Wuhan University of Science and

More information

Numerical analysis of fluid flow inside air intake system

Numerical analysis of fluid flow inside air intake system Numerical analysis of fluid flow inside air intake system Numerical analysis of fluid flow inside air intake system Regis Ataides Martin Kessler Marcelo Kruger Geraldo Severi Jr. Cesareo de La Rosa Siqueira

More information

Flow Simulation How to Handle a Vortex Across a Pressure Boundary

Flow Simulation How to Handle a Vortex Across a Pressure Boundary Flow Simulation How to Handle a Vortex Across a Pressure Boundary Overview This document describes why Flow Simulation will give a warning while solving stating that there is a vortex occurring across

More information

Hydrocyclones and CFD

Hydrocyclones and CFD Design of Hydrocyclone Separation Equipment Using CFD Coupled with Optimization Tools David Schowalter 1, Rafiqul Khan 1, Therese Polito 2, and Tim Olson 3. (1) Fluent Inc., 10 Cavendish Court, Lebanon,

More information

DEVELOPMENT OF HIGH SPECIFIC SPEED FRANCIS TURBINE FOR LOW HEAD HPP

DEVELOPMENT OF HIGH SPECIFIC SPEED FRANCIS TURBINE FOR LOW HEAD HPP Engineering MECHANICS, Vol. 20, 2013, No. 2, p. 139 148 139 DEVELOPMENT OF HIGH SPECIFIC SPEED FRANCIS TURBINE FOR LOW HEAD HPP JiříObrovský*, Hana Krausová*, Jiří Špidla*, Josef Zouhar* Nowadays we can

More information

CFD Modeling of a Radiator Axial Fan for Air Flow Distribution

CFD Modeling of a Radiator Axial Fan for Air Flow Distribution CFD Modeling of a Radiator Axial Fan for Air Flow Distribution S. Jain, and Y. Deshpande Abstract The fluid mechanics principle is used extensively in designing axial flow fans and their associated equipment.

More information

THE APPLICATION OF AN ATMOSPHERIC BOUNDARY LAYER TO EVALUATE TRUCK AERODYNAMICS IN CFD

THE APPLICATION OF AN ATMOSPHERIC BOUNDARY LAYER TO EVALUATE TRUCK AERODYNAMICS IN CFD THE APPLICATION OF AN ATMOSPHERIC BOUNDARY LAYER TO EVALUATE TRUCK AERODYNAMICS IN CFD A SOLUTION FOR A REAL-WORLD ENGINEERING PROBLEM Ir. Niek van Dijk DAF Trucks N.V. CONTENTS Scope & Background Theory:

More information

Simulations of the vortex in the Dellenback abrupt expansion, resembling a hydro turbine draft tube operating at part-load

Simulations of the vortex in the Dellenback abrupt expansion, resembling a hydro turbine draft tube operating at part-load Simulations of the vortex in the Dellenback abrupt expansion, resembling a hydro turbine draft tube operating at part-load H Nilsson Chalmers University of Technology, SE-412 96 Gothenburg, Sweden E-mail:

More information

SPC 307 Aerodynamics. Lecture 1. February 10, 2018

SPC 307 Aerodynamics. Lecture 1. February 10, 2018 SPC 307 Aerodynamics Lecture 1 February 10, 2018 Sep. 18, 2016 1 Course Materials drahmednagib.com 2 COURSE OUTLINE Introduction to Aerodynamics Review on the Fundamentals of Fluid Mechanics Euler and

More information

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil Verification and Validation of Turbulent Flow around a Clark-Y Airfoil 1. Purpose 58:160 Intermediate Mechanics of Fluids CFD LAB 2 By Tao Xing and Fred Stern IIHR-Hydroscience & Engineering The University

More information