OPPA European Social Fund Prague & EU: We invest in your future.

Size: px
Start display at page:

Download "OPPA European Social Fund Prague & EU: We invest in your future."

Transcription

1 OPPA European Social Fund Prague & EU: We invest in your future.

2 Patch tracking based on comparing its piels 1 Tomáš Svoboda, svoboda@cmp.felk.cvut.cz Czech Technical University in Prague, Center for Machine Perception Last update: March 22, 2010 Talk Outline comparing patch piels normalized cross-correlation, ssd... KLT - gradient based optimization good features to track 1 Please note that the lecture will be accompanied be several sketches and derivations on the blackboard and few live-interactive demos in Matlab What is the problem? 2/37 : CTU campus, door of G building Tracking of dense sequences camera motion I J 3/37

3 Tracking of dense sequences object motion I J 4/37 Alignment of an image (patch) 5/37 Goal is to align a template image T () to an input image I(). column vector containing image coordinates [, y]. The I() could be also a small subwindow withing an image. How to measure the aligment? What is the best criterial function? 6/37 How to find the best match, in other words how to find etremum of the criterial function? Criterial function What are the desired properties (on a certain domain)? conve (remember the optimization course?) discriminative...

4 Normalized cross-correlation You may know it as correlation coefficients 7/37 r ij = c ij cii c jj where c i,j are elements of the covariance matri Having template T (, y) and image I(, y), r(, y) = k ( ) ( ) l T (k, l) T I( + k, y + l) I(, y) ( I( + k, y + l) I(, y) ( ) 2 k l T (k, l) T k l ) 2 Be careful about coordinate systems (sketch on blackboard) Normalized cross-correlation in picture 8/37 criterial function ncc well, definitely not conve but the discriminability looks promissing very efficient in computation, see [3]. Sum of squared differences 9/37 ssd(, y) = k (T (k, l) I( + k, y + l)) 2 l criterial function ssd

5 Sum of absolute differences sad(, y) = XX k l 10/37 T (k, l) I( + k, y + l) criterial function sad SAD for the door part 11/37 criterial function sad SAD for the door part truncated 12/37 criterial function sad_truncated Differences greater than 20 intensity levels are counted as

6 Normalized cross-correlation: how it works 13/37 live demo for various patches Normalized cross-correlation: tracking 14/37 What went wrong? Why did it failed? Suggestions for improvement? Iterations? Tracking as an optimization problem finding etrema of a criterial function... 15/37... sounds like an optimization problem Kanade Lucas Tomasi (KLT) tracker Iteratively minimizes sum of square differences. It is a Gauss-Newton gradient descent non-linear optimization algorithm.

7 Importance in Computer Vision Firstly published in 1981 as an image registration method [4]. 16/37 Improved many times, most importantly by Carlo Tomasi [5, 6] Free implementation(s) available2. Also part of the OpenCV library3. After more than two decades, a project4 at CMU dedicated to this single algorithm and results published in a premium journal [1]. Part of plethora computer vision algorithms. Our eplanation follows mainly the paper [1]. It is a good reading for those who are also interested in alternative solutions Original Lucas-Kanade algorithm I Goal is to align a template image T () to an input image I(). column vector containing image coordinates [, y]. The I() could be also a small subwindow withing an image. Set of allowable warps W(; p), where p is a vector of parameters. For translations [ ] + p1 W(; p) = y + p 2 W(; p) can be arbitrarily comple The best alignment, p, minimizes image dissimilarity [I(W(; p)) T ()] 2 17/37 Original Lucas-Kanade algorithm II 18/37 [I(W(; p)) T ()] 2 is a nonlinear optimization! The warp W(; p) may be linear but the piels value are, in general, non-linear. In fact, they are essentially unrelated to. It is assumed that some p is known and best increment p is sought. The the modified problem [I(W(; p + p)) T ()] 2 is solved with respect to p. When found then p gets updated p p + p

8 Original Lucas-Kanade algorithm III 19/37 [I(W(; p + p)) T ()] 2 linearized by performing first order Taylor epansion 5 [I(W(; p)) + I W p T ()]2 I = [ I, I y ] is the gradient image6 computed at W(; p). The term W is the Jacobian of the warp. 5 Detailed eplanation on the blackboard. 6 As a vector it should have been a column wise oriented. However, for sake of clarity of equations row vector is eceptionally considered here. Derive Original Lucas-Kanade algorithm IV [I(W(; p)) + I W p T ()]2 with respect to p 2 [ I W ] [ I(W(; p)) + I W ] p T () 20/37 setting equality to zero yields p = H [ 1 I W ] [T () I(W(; p))] where H is (Gauss-Newton) approimation of Hessian matri. H = [ I W ] [ I W ] Iterate: The Lucas-Kanade algorithm Summary 21/37 1. Warp I with W(; p) 2. Warp the gradient I with W(; p) 3. Evaluate the Jacobian W image I W 4. Compute the H = 5. Compute p = H 1 [ at (; p) and compute the steepest descent I W [ ] [ I W 6. Update the parameters p p + p until p ɛ I W ] ] [T () I(W(; p))]

9 Eample of convergence 22/37 Eample of convergence 23/37 Convergence : Initial state is within the basin of attraction Eample of divergence 24/37 Divergence : Initial state is outside the basin of attraction

10 Eample on-line demo 25/37 Let play and see... What are good features (windows) to track? How to select good templates T () for image registration, object tracking. 26/37 p = H 1 [ I W ] [T () I(W(; p))] where H is the matri H = [ I W ] [ I W ] The stability of the iteration is mainly influenced by the inverse of Hessian. We can study its eigenvalues. Consequently, the criterion of a good feature window is min(λ 1, λ 2 ) > λ min (teturedness). What are good features (windows) to track? [ + p1 Consider translation W(; p) = y + p [ ] 2 W 1 0 = 0 1 [ H = = [ = I W ( I I I y ] [ ] [ I I y ) 2 I I y ( ]. The Jacobian is then I W I y ] ) 2 ] [ I, I ] [ ] 27/37 The image windows with varying derivatives in both directions. Homeogeneous areas are clearly not suitable. Teture oriented mostly in one direction only would cause instability for this translation.

11 What are the good points for translations? The matri H= X I 2 I I y I I y 2 I y 28/37 Should have large eigenvalues. We have seen the matri already, where? Harris corner detector [2]! The matri is sometimes called Harris matri. Eperiments - no occlusions 29/37 Eperiments - occlusions 30/37

12 Eperiments - occlusions with dissimilarity 31/37 Eperiments - object motion 32/37 Eperiments door tracking 33/37

13 Eperiments door tracking smoothed 34/37 Comparison of ncc vs KLT tracking 35/37 References 36/37 [1] Simon Baker and Iain Matthews. Lucas-Kanade 20 years on: A unifying framework. International Journal of Computer Vision, 56(3): , 4. [2] C. Harris and M. Stephen. A combined corner and edge detection. In M. M. Matthews, editor, Proceedings of the 4th ALVEY vision conference, pages , University of Manchaster, England, September on-line copies available on the web. [3] J.P. Lewis. Fast template matching. In Vision Interfaces, pages , Etended version published on-line as "Fast Normalized Cross-Correlation" at [4] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique with an application to stereo vision. In Proceedings of the 7th International Conference on Artificial Intelligence, pages , August [5] Jianbo Shi and Carlo Tomasi. Good features to track. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages , [6] Carlo Tomasi and Takeo Kanade. Detection and tracking of point features. Technical Report CMU-CS , Carnegie Mellon University, April 1991.

14 End 37/37

15 OPPA European Social Fund Prague & EU: We invest in your future.

Kanade Lucas Tomasi Tracking (KLT tracker)

Kanade Lucas Tomasi Tracking (KLT tracker) Kanade Lucas Tomasi Tracking (KLT tracker) Tomáš Svoboda, svoboda@cmp.felk.cvut.cz Czech Technical University in Prague, Center for Machine Perception http://cmp.felk.cvut.cz Last update: November 26,

More information

Kanade Lucas Tomasi Tracking (KLT tracker)

Kanade Lucas Tomasi Tracking (KLT tracker) Kanade Lucas Tomasi Tracking (KLT tracker) Tomáš Svoboda, svoboda@cmp.felk.cvut.cz Czech Technical University in Prague, Center for Machine Perception http://cmp.felk.cvut.cz Last update: November 26,

More information

Tracking in image sequences

Tracking in image sequences CENTER FOR MACHINE PERCEPTION CZECH TECHNICAL UNIVERSITY Tracking in image sequences Lecture notes for the course Computer Vision Methods Tomáš Svoboda svobodat@fel.cvut.cz March 23, 2011 Lecture notes

More information

Visual Tracking (1) Pixel-intensity-based methods

Visual Tracking (1) Pixel-intensity-based methods Intelligent Control Systems Visual Tracking (1) Pixel-intensity-based methods Shingo Kagami Graduate School of Information Sciences, Tohoku University swk(at)ic.is.tohoku.ac.jp http://www.ic.is.tohoku.ac.jp/ja/swk/

More information

Visual Tracking (1) Feature Point Tracking and Block Matching

Visual Tracking (1) Feature Point Tracking and Block Matching Intelligent Control Systems Visual Tracking (1) Feature Point Tracking and Block Matching Shingo Kagami Graduate School of Information Sciences, Tohoku University swk(at)ic.is.tohoku.ac.jp http://www.ic.is.tohoku.ac.jp/ja/swk/

More information

Visual Tracking (1) Tracking of Feature Points and Planar Rigid Objects

Visual Tracking (1) Tracking of Feature Points and Planar Rigid Objects Intelligent Control Systems Visual Tracking (1) Tracking of Feature Points and Planar Rigid Objects Shingo Kagami Graduate School of Information Sciences, Tohoku University swk(at)ic.is.tohoku.ac.jp http://www.ic.is.tohoku.ac.jp/ja/swk/

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 7.1: 2D Motion Estimation in Images Jürgen Sturm Technische Universität München 3D to 2D Perspective Projections

More information

Computer Vision II Lecture 4

Computer Vision II Lecture 4 Course Outline Computer Vision II Lecture 4 Single-Object Tracking Background modeling Template based tracking Color based Tracking Color based tracking Contour based tracking Tracking by online classification

More information

Augmented Reality VU. Computer Vision 3D Registration (2) Prof. Vincent Lepetit

Augmented Reality VU. Computer Vision 3D Registration (2) Prof. Vincent Lepetit Augmented Reality VU Computer Vision 3D Registration (2) Prof. Vincent Lepetit Feature Point-Based 3D Tracking Feature Points for 3D Tracking Much less ambiguous than edges; Point-to-point reprojection

More information

Visual Tracking. Image Processing Laboratory Dipartimento di Matematica e Informatica Università degli studi di Catania.

Visual Tracking. Image Processing Laboratory Dipartimento di Matematica e Informatica Università degli studi di Catania. Image Processing Laboratory Dipartimento di Matematica e Informatica Università degli studi di Catania 1 What is visual tracking? estimation of the target location over time 2 applications Six main areas:

More information

Tracking Computer Vision Spring 2018, Lecture 24

Tracking Computer Vision Spring 2018, Lecture 24 Tracking http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 24 Course announcements Homework 6 has been posted and is due on April 20 th. - Any questions about the homework? - How

More information

Feature Tracking and Optical Flow

Feature Tracking and Optical Flow Feature Tracking and Optical Flow Prof. D. Stricker Doz. G. Bleser Many slides adapted from James Hays, Derek Hoeim, Lana Lazebnik, Silvio Saverse, who 1 in turn adapted slides from Steve Seitz, Rick Szeliski,

More information

Leow Wee Kheng CS4243 Computer Vision and Pattern Recognition. Motion Tracking. CS4243 Motion Tracking 1

Leow Wee Kheng CS4243 Computer Vision and Pattern Recognition. Motion Tracking. CS4243 Motion Tracking 1 Leow Wee Kheng CS4243 Computer Vision and Pattern Recognition Motion Tracking CS4243 Motion Tracking 1 Changes are everywhere! CS4243 Motion Tracking 2 Illumination change CS4243 Motion Tracking 3 Shape

More information

CS201: Computer Vision Introduction to Tracking

CS201: Computer Vision Introduction to Tracking CS201: Computer Vision Introduction to Tracking John Magee 18 November 2014 Slides courtesy of: Diane H. Theriault Question of the Day How can we represent and use motion in images? 1 What is Motion? Change

More information

Image Coding with Active Appearance Models

Image Coding with Active Appearance Models Image Coding with Active Appearance Models Simon Baker, Iain Matthews, and Jeff Schneider CMU-RI-TR-03-13 The Robotics Institute Carnegie Mellon University Abstract Image coding is the task of representing

More information

Visual Tracking. Antonino Furnari. Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania

Visual Tracking. Antonino Furnari. Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania Visual Tracking Antonino Furnari Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania furnari@dmi.unict.it 11 giugno 2015 What is visual tracking? estimation

More information

Feature Tracking and Optical Flow

Feature Tracking and Optical Flow Feature Tracking and Optical Flow Prof. D. Stricker Doz. G. Bleser Many slides adapted from James Hays, Derek Hoeim, Lana Lazebnik, Silvio Saverse, who in turn adapted slides from Steve Seitz, Rick Szeliski,

More information

arxiv: v1 [cs.cv] 2 May 2016

arxiv: v1 [cs.cv] 2 May 2016 16-811 Math Fundamentals for Robotics Comparison of Optimization Methods in Optical Flow Estimation Final Report, Fall 2015 arxiv:1605.00572v1 [cs.cv] 2 May 2016 Contents Noranart Vesdapunt Master of Computer

More information

Face Tracking : An implementation of the Kanade-Lucas-Tomasi Tracking algorithm

Face Tracking : An implementation of the Kanade-Lucas-Tomasi Tracking algorithm Face Tracking : An implementation of the Kanade-Lucas-Tomasi Tracking algorithm Dirk W. Wagener, Ben Herbst Department of Applied Mathematics, University of Stellenbosch, Private Bag X1, Matieland 762,

More information

Lucas-Kanade Image Registration Using Camera Parameters

Lucas-Kanade Image Registration Using Camera Parameters Lucas-Kanade Image Registration Using Camera Parameters Sunghyun Cho a, Hojin Cho a, Yu-Wing Tai b, Young Su Moon c, Junguk Cho c, Shihwa Lee c, and Seungyong Lee a a POSTECH, Pohang, Korea b KAIST, Daejeon,

More information

The Lucas & Kanade Algorithm

The Lucas & Kanade Algorithm The Lucas & Kanade Algorithm Instructor - Simon Lucey 16-423 - Designing Computer Vision Apps Today Registration, Registration, Registration. Linearizing Registration. Lucas & Kanade Algorithm. 3 Biggest

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 14 130307 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Stereo Dense Motion Estimation Translational

More information

Computer Vision Lecture 20

Computer Vision Lecture 20 Computer Vision Lecture 2 Motion and Optical Flow Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de 28.1.216 Man slides adapted from K. Grauman, S. Seitz, R. Szeliski,

More information

Motion Estimation. There are three main types (or applications) of motion estimation:

Motion Estimation. There are three main types (or applications) of motion estimation: Members: D91922016 朱威達 R93922010 林聖凱 R93922044 謝俊瑋 Motion Estimation There are three main types (or applications) of motion estimation: Parametric motion (image alignment) The main idea of parametric motion

More information

Research Article Precise Image Registration with Structural Similarity Error Measurement Applied to Superresolution

Research Article Precise Image Registration with Structural Similarity Error Measurement Applied to Superresolution Hindawi Publishing Corporation EURASIP Journal on Advances in Signal Processing Volume 29, Article ID 35479, 7 pages doi:1.1155/29/35479 Research Article Precise Image Registration with Structural Similarity

More information

found to be robust to outliers in the response variable, but turned out not to be resistant to outliers in the explanatory variables, called leverage

found to be robust to outliers in the response variable, but turned out not to be resistant to outliers in the explanatory variables, called leverage 3rd International Conference on Multimedia echnology(icm 013) Robust Estimation of Parameters for Lucas-Kanade Algorithm Yih-Lon Lin 1 Abstract he object tracking problem is an important research topic

More information

Evaluating Error Functions for Robust Active Appearance Models

Evaluating Error Functions for Robust Active Appearance Models Evaluating Error Functions for Robust Active Appearance Models Barry-John Theobald School of Computing Sciences, University of East Anglia, Norwich, UK, NR4 7TJ bjt@cmp.uea.ac.uk Iain Matthews and Simon

More information

C18 Computer vision. C18 Computer Vision. This time... Introduction. Outline.

C18 Computer vision. C18 Computer Vision. This time... Introduction. Outline. C18 Computer Vision. This time... 1. Introduction; imaging geometry; camera calibration. 2. Salient feature detection edges, line and corners. 3. Recovering 3D from two images I: epipolar geometry. C18

More information

Matching. Compare region of image to region of image. Today, simplest kind of matching. Intensities similar.

Matching. Compare region of image to region of image. Today, simplest kind of matching. Intensities similar. Matching Compare region of image to region of image. We talked about this for stereo. Important for motion. Epipolar constraint unknown. But motion small. Recognition Find object in image. Recognize object.

More information

The Template Update Problem

The Template Update Problem The Template Update Problem Iain Matthews, Takahiro Ishikawa, and Simon Baker The Robotics Institute Carnegie Mellon University Abstract Template tracking dates back to the 1981 Lucas-Kanade algorithm.

More information

Multiview 3D tracking with an Incrementally. Constructed 3D model

Multiview 3D tracking with an Incrementally. Constructed 3D model Multiview 3D tracking with an Incrementally Tomáš Svoboda with Karel Zimmermann and Petr Doubek svoboda@cmp.felk.cvut.cz Czech Technical University Prague, Center for Machine Perception http://cmp.felk.cvut.cz

More information

Computer Vision II Lecture 4

Computer Vision II Lecture 4 Computer Vision II Lecture 4 Color based Tracking 29.04.2014 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course Outline Single-Object Tracking Background modeling

More information

Optical flow and tracking

Optical flow and tracking EECS 442 Computer vision Optical flow and tracking Intro Optical flow and feature tracking Lucas-Kanade algorithm Motion segmentation Segments of this lectures are courtesy of Profs S. Lazebnik S. Seitz,

More information

Image processing and features

Image processing and features Image processing and features Gabriele Bleser gabriele.bleser@dfki.de Thanks to Harald Wuest, Folker Wientapper and Marc Pollefeys Introduction Previous lectures: geometry Pose estimation Epipolar geometry

More information

Occluded Facial Expression Tracking

Occluded Facial Expression Tracking Occluded Facial Expression Tracking Hugo Mercier 1, Julien Peyras 2, and Patrice Dalle 1 1 Institut de Recherche en Informatique de Toulouse 118, route de Narbonne, F-31062 Toulouse Cedex 9 2 Dipartimento

More information

FAST LEARNABLE OBJECT TRACKING AND DETECTION IN HIGH-RESOLUTION OMNIDIRECTIONAL IMAGES

FAST LEARNABLE OBJECT TRACKING AND DETECTION IN HIGH-RESOLUTION OMNIDIRECTIONAL IMAGES FAST LEARNABLE OBJECT TRACKING AND DETECTION IN HIGH-RESOLUTION OMNIDIRECTIONAL IMAGES David Hurych, Karel Zimmermann, Tomáš Svoboda Center for Machine Perception, Department of Cybernetics Faculty of

More information

Peripheral drift illusion

Peripheral drift illusion Peripheral drift illusion Does it work on other animals? Computer Vision Motion and Optical Flow Many slides adapted from J. Hays, S. Seitz, R. Szeliski, M. Pollefeys, K. Grauman and others Video A video

More information

COMPUTER VISION > OPTICAL FLOW UTRECHT UNIVERSITY RONALD POPPE

COMPUTER VISION > OPTICAL FLOW UTRECHT UNIVERSITY RONALD POPPE COMPUTER VISION 2017-2018 > OPTICAL FLOW UTRECHT UNIVERSITY RONALD POPPE OUTLINE Optical flow Lucas-Kanade Horn-Schunck Applications of optical flow Optical flow tracking Histograms of oriented flow Assignment

More information

NIH Public Access Author Manuscript Proc Int Conf Image Proc. Author manuscript; available in PMC 2013 May 03.

NIH Public Access Author Manuscript Proc Int Conf Image Proc. Author manuscript; available in PMC 2013 May 03. NIH Public Access Author Manuscript Published in final edited form as: Proc Int Conf Image Proc. 2008 ; : 241 244. doi:10.1109/icip.2008.4711736. TRACKING THROUGH CHANGES IN SCALE Shawn Lankton 1, James

More information

Lecture 16: Computer Vision

Lecture 16: Computer Vision CS4442/9542b: Artificial Intelligence II Prof. Olga Veksler Lecture 16: Computer Vision Motion Slides are from Steve Seitz (UW), David Jacobs (UMD) Outline Motion Estimation Motion Field Optical Flow Field

More information

Lecture 16: Computer Vision

Lecture 16: Computer Vision CS442/542b: Artificial ntelligence Prof. Olga Veksler Lecture 16: Computer Vision Motion Slides are from Steve Seitz (UW), David Jacobs (UMD) Outline Motion Estimation Motion Field Optical Flow Field Methods

More information

Motion and Optical Flow. Slides from Ce Liu, Steve Seitz, Larry Zitnick, Ali Farhadi

Motion and Optical Flow. Slides from Ce Liu, Steve Seitz, Larry Zitnick, Ali Farhadi Motion and Optical Flow Slides from Ce Liu, Steve Seitz, Larry Zitnick, Ali Farhadi We live in a moving world Perceiving, understanding and predicting motion is an important part of our daily lives Motion

More information

Towards the completion of assignment 1

Towards the completion of assignment 1 Towards the completion of assignment 1 What to do for calibration What to do for point matching What to do for tracking What to do for GUI COMPSCI 773 Feature Point Detection Why study feature point detection?

More information

SE 263 R. Venkatesh Babu. Object Tracking. R. Venkatesh Babu

SE 263 R. Venkatesh Babu. Object Tracking. R. Venkatesh Babu Object Tracking R. Venkatesh Babu Primitive tracking Appearance based - Template Matching Assumptions: Object description derived from first frame No change in object appearance Movement only 2D translation

More information

Research Article Least Trimmed Squares Approach to Lucas-Kanade Algorithm in Object Tracking Problems

Research Article Least Trimmed Squares Approach to Lucas-Kanade Algorithm in Object Tracking Problems Mathematical Problems in Engineering Volume 013, Article ID 3484, 6 pages http://d.doi.org/10.1155/013/3484 Research Article Least Trimmed Squares Approach to Lucas-Kanade Algorithm in Object Tracking

More information

Feature Detection and Matching

Feature Detection and Matching and Matching CS4243 Computer Vision and Pattern Recognition Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore Leow Wee Kheng (CS4243) Camera Models 1 /

More information

CS 4495 Computer Vision Motion and Optic Flow

CS 4495 Computer Vision Motion and Optic Flow CS 4495 Computer Vision Aaron Bobick School of Interactive Computing Administrivia PS4 is out, due Sunday Oct 27 th. All relevant lectures posted Details about Problem Set: You may *not* use built in Harris

More information

intro, applications MRF, labeling... how it can be computed at all? Applications in segmentation: GraphCut, GrabCut, demos

intro, applications MRF, labeling... how it can be computed at all? Applications in segmentation: GraphCut, GrabCut, demos Image as Markov Random Field and Applications 1 Tomáš Svoboda, svoboda@cmp.felk.cvut.cz Czech Technical University in Prague, Center for Machine Perception http://cmp.felk.cvut.cz Talk Outline Last update:

More information

Optical flow. Cordelia Schmid

Optical flow. Cordelia Schmid Optical flow Cordelia Schmid Motion field The motion field is the projection of the 3D scene motion into the image Optical flow Definition: optical flow is the apparent motion of brightness patterns in

More information

Learning Efficient Linear Predictors for Motion Estimation

Learning Efficient Linear Predictors for Motion Estimation Learning Efficient Linear Predictors for Motion Estimation Jiří Matas 1,2, Karel Zimmermann 1, Tomáš Svoboda 1, Adrian Hilton 2 1 : Center for Machine Perception 2 :Centre for Vision, Speech and Signal

More information

Key properties of local features

Key properties of local features Key properties of local features Locality, robust against occlusions Must be highly distinctive, a good feature should allow for correct object identification with low probability of mismatch Easy to etract

More information

Computer Vision Lecture 20

Computer Vision Lecture 20 Computer Perceptual Vision and Sensory WS 16/17 Augmented Computing Computer Perceptual Vision and Sensory WS 16/17 Augmented Computing Computer Perceptual Vision and Sensory WS 16/17 Augmented Computing

More information

Notes 9: Optical Flow

Notes 9: Optical Flow Course 049064: Variational Methods in Image Processing Notes 9: Optical Flow Guy Gilboa 1 Basic Model 1.1 Background Optical flow is a fundamental problem in computer vision. The general goal is to find

More information

Computer Vision Lecture 20

Computer Vision Lecture 20 Computer Perceptual Vision and Sensory WS 16/76 Augmented Computing Many slides adapted from K. Grauman, S. Seitz, R. Szeliski, M. Pollefeys, S. Lazebnik Computer Vision Lecture 20 Motion and Optical Flow

More information

Computational Optical Imaging - Optique Numerique. -- Single and Multiple View Geometry, Stereo matching --

Computational Optical Imaging - Optique Numerique. -- Single and Multiple View Geometry, Stereo matching -- Computational Optical Imaging - Optique Numerique -- Single and Multiple View Geometry, Stereo matching -- Autumn 2015 Ivo Ihrke with slides by Thorsten Thormaehlen Reminder: Feature Detection and Matching

More information

Robot Mapping. Least Squares Approach to SLAM. Cyrill Stachniss

Robot Mapping. Least Squares Approach to SLAM. Cyrill Stachniss Robot Mapping Least Squares Approach to SLAM Cyrill Stachniss 1 Three Main SLAM Paradigms Kalman filter Particle filter Graphbased least squares approach to SLAM 2 Least Squares in General Approach for

More information

Graphbased. Kalman filter. Particle filter. Three Main SLAM Paradigms. Robot Mapping. Least Squares Approach to SLAM. Least Squares in General

Graphbased. Kalman filter. Particle filter. Three Main SLAM Paradigms. Robot Mapping. Least Squares Approach to SLAM. Least Squares in General Robot Mapping Three Main SLAM Paradigms Least Squares Approach to SLAM Kalman filter Particle filter Graphbased Cyrill Stachniss least squares approach to SLAM 1 2 Least Squares in General! Approach for

More information

Midterm Wed. Local features: detection and description. Today. Last time. Local features: main components. Goal: interest operator repeatability

Midterm Wed. Local features: detection and description. Today. Last time. Local features: main components. Goal: interest operator repeatability Midterm Wed. Local features: detection and description Monday March 7 Prof. UT Austin Covers material up until 3/1 Solutions to practice eam handed out today Bring a 8.5 11 sheet of notes if you want Review

More information

CS 395T Lecture 12: Feature Matching and Bundle Adjustment. Qixing Huang October 10 st 2018

CS 395T Lecture 12: Feature Matching and Bundle Adjustment. Qixing Huang October 10 st 2018 CS 395T Lecture 12: Feature Matching and Bundle Adjustment Qixing Huang October 10 st 2018 Lecture Overview Dense Feature Correspondences Bundle Adjustment in Structure-from-Motion Image Matching Algorithm

More information

Feature Detection. Raul Queiroz Feitosa. 3/30/2017 Feature Detection 1

Feature Detection. Raul Queiroz Feitosa. 3/30/2017 Feature Detection 1 Feature Detection Raul Queiroz Feitosa 3/30/2017 Feature Detection 1 Objetive This chapter discusses the correspondence problem and presents approaches to solve it. 3/30/2017 Feature Detection 2 Outline

More information

Particle Tracking. For Bulk Material Handling Systems Using DEM Models. By: Jordan Pease

Particle Tracking. For Bulk Material Handling Systems Using DEM Models. By: Jordan Pease Particle Tracking For Bulk Material Handling Systems Using DEM Models By: Jordan Pease Introduction Motivation for project Particle Tracking Application to DEM models Experimental Results Future Work References

More information

Aircraft Tracking Based on KLT Feature Tracker and Image Modeling

Aircraft Tracking Based on KLT Feature Tracker and Image Modeling Aircraft Tracking Based on KLT Feature Tracker and Image Modeling Khawar Ali, Shoab A. Khan, and Usman Akram Computer Engineering Department, College of Electrical & Mechanical Engineering, National University

More information

Deep Learning: Image Registration. Steven Chen and Ty Nguyen

Deep Learning: Image Registration. Steven Chen and Ty Nguyen Deep Learning: Image Registration Steven Chen and Ty Nguyen Lecture Outline 1. Brief Introduction to Deep Learning 2. Case Study 1: Unsupervised Deep Homography 3. Case Study 2: Deep LucasKanade What is

More information

Using temporal seeding to constrain the disparity search range in stereo matching

Using temporal seeding to constrain the disparity search range in stereo matching Using temporal seeding to constrain the disparity search range in stereo matching Thulani Ndhlovu Mobile Intelligent Autonomous Systems CSIR South Africa Email: tndhlovu@csir.co.za Fred Nicolls Department

More information

Ninio, J. and Stevens, K. A. (2000) Variations on the Hermann grid: an extinction illusion. Perception, 29,

Ninio, J. and Stevens, K. A. (2000) Variations on the Hermann grid: an extinction illusion. Perception, 29, Ninio, J. and Stevens, K. A. (2000) Variations on the Hermann grid: an extinction illusion. Perception, 29, 1209-1217. CS 4495 Computer Vision A. Bobick Sparse to Dense Correspodence Building Rome in

More information

Visual motion. Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys

Visual motion. Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys Visual motion Man slides adapted from S. Seitz, R. Szeliski, M. Pollefes Motion and perceptual organization Sometimes, motion is the onl cue Motion and perceptual organization Sometimes, motion is the

More information

Robust Model-Free Tracking of Non-Rigid Shape. Abstract

Robust Model-Free Tracking of Non-Rigid Shape. Abstract Robust Model-Free Tracking of Non-Rigid Shape Lorenzo Torresani Stanford University ltorresa@cs.stanford.edu Christoph Bregler New York University chris.bregler@nyu.edu New York University CS TR2003-840

More information

ViSP tracking methods overview

ViSP tracking methods overview 1 ViSP 2.6.0: Visual servoing platform ViSP tracking methods overview October 12th, 2010 Lagadic project INRIA Rennes-Bretagne Atlantique http://www.irisa.fr/lagadic Tracking methods with ViSP 2 1. Dot

More information

Displacement estimation

Displacement estimation Displacement estimation Displacement estimation by block matching" l Search strategies" l Subpixel estimation" Gradient-based displacement estimation ( optical flow )" l Lukas-Kanade" l Multi-scale coarse-to-fine"

More information

Eppur si muove ( And yet it moves )

Eppur si muove ( And yet it moves ) Eppur si muove ( And yet it moves ) - Galileo Galilei University of Texas at Arlington Tracking of Image Features CSE 4392-5369 Vision-based Robot Sensing, Localization and Control Dr. Gian Luca Mariottini,

More information

Computer Vision: Homework 3 Lucas-Kanade Tracking & Background Subtraction

Computer Vision: Homework 3 Lucas-Kanade Tracking & Background Subtraction 16-720 Computer Vision: Homework 3 Lucas-Kanade Tracking & Background Subtraction Instructor: Deva Ramanan TAs: Achal Dave, Sashank Jujjavarapu Siddarth Malreddy, Brian Pugh See course website for deadline:

More information

Chapter 9 Object Tracking an Overview

Chapter 9 Object Tracking an Overview Chapter 9 Object Tracking an Overview The output of the background subtraction algorithm, described in the previous chapter, is a classification (segmentation) of pixels into foreground pixels (those belonging

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 19: Optical flow http://en.wikipedia.org/wiki/barberpole_illusion Readings Szeliski, Chapter 8.4-8.5 Announcements Project 2b due Tuesday, Nov 2 Please sign

More information

Problems with template matching

Problems with template matching Problems with template matching The template represents the object as we expect to find it in the image The object can indeed be scaled or rotated This technique requires a separate template for each scale

More information

16720 Computer Vision: Homework 3 Template Tracking and Layered Motion.

16720 Computer Vision: Homework 3 Template Tracking and Layered Motion. 16720 Computer Vision: Homework 3 Template Tracking and Layered Motion. Instructor: Martial Hebert TAs: Varun Ramakrishna and Tomas Simon Due Date: October 24 th, 2011. 1 Instructions You should submit

More information

Particle Filtering. CS6240 Multimedia Analysis. Leow Wee Kheng. Department of Computer Science School of Computing National University of Singapore

Particle Filtering. CS6240 Multimedia Analysis. Leow Wee Kheng. Department of Computer Science School of Computing National University of Singapore Particle Filtering CS6240 Multimedia Analysis Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore (CS6240) Particle Filtering 1 / 28 Introduction Introduction

More information

Dense 3D Reconstruction. Christiano Gava

Dense 3D Reconstruction. Christiano Gava Dense 3D Reconstruction Christiano Gava christiano.gava@dfki.de Outline Previous lecture: structure and motion II Structure and motion loop Triangulation Today: dense 3D reconstruction The matching problem

More information

Real-Time Scene Reconstruction. Remington Gong Benjamin Harris Iuri Prilepov

Real-Time Scene Reconstruction. Remington Gong Benjamin Harris Iuri Prilepov Real-Time Scene Reconstruction Remington Gong Benjamin Harris Iuri Prilepov June 10, 2010 Abstract This report discusses the implementation of a real-time system for scene reconstruction. Algorithms for

More information

On the Dimensionality of Deformable Face Models

On the Dimensionality of Deformable Face Models On the Dimensionality of Deformable Face Models CMU-RI-TR-06-12 Iain Matthews, Jing Xiao, and Simon Baker The Robotics Institute Carnegie Mellon University 5000 Forbes Avenue Pittsburgh, PA 15213 Abstract

More information

Dense Image-based Motion Estimation Algorithms & Optical Flow

Dense Image-based Motion Estimation Algorithms & Optical Flow Dense mage-based Motion Estimation Algorithms & Optical Flow Video A video is a sequence of frames captured at different times The video data is a function of v time (t) v space (x,y) ntroduction to motion

More information

Colour Segmentation-based Computation of Dense Optical Flow with Application to Video Object Segmentation

Colour Segmentation-based Computation of Dense Optical Flow with Application to Video Object Segmentation ÖGAI Journal 24/1 11 Colour Segmentation-based Computation of Dense Optical Flow with Application to Video Object Segmentation Michael Bleyer, Margrit Gelautz, Christoph Rhemann Vienna University of Technology

More information

How and what do we see? Segmentation and Grouping. Fundamental Problems. Polyhedral objects. Reducing the combinatorics of pose estimation

How and what do we see? Segmentation and Grouping. Fundamental Problems. Polyhedral objects. Reducing the combinatorics of pose estimation Segmentation and Grouping Fundamental Problems ' Focus of attention, or grouping ' What subsets of piels do we consider as possible objects? ' All connected subsets? ' Representation ' How do we model

More information

Robustifying the Flock of Trackers

Robustifying the Flock of Trackers 1-Feb-11 Matas, Vojir : Robustifying the Flock of Trackers 1 Robustifying the Flock of Trackers Tomáš Vojíř and Jiří Matas {matas, vojirtom}@cmp.felk.cvut.cz Department of Cybernetics, Faculty of Electrical

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometr and Camera Calibration 3D Coordinate Sstems Right-handed vs. left-handed 2D Coordinate Sstems ais up vs. ais down Origin at center vs. corner Will often write (u, v) for image coordinates v

More information

Image Registration Lecture 4: First Examples

Image Registration Lecture 4: First Examples Image Registration Lecture 4: First Examples Prof. Charlene Tsai Outline Example Intensity-based registration SSD error function Image mapping Function minimization: Gradient descent Derivative calculation

More information

Unsupervised Face Alignment by Robust Nonrigid Mapping

Unsupervised Face Alignment by Robust Nonrigid Mapping Unsupervised Face Alignment by Robust Nonrigid Mapping Jianke Zhu 1 1 Computer Vision Lab ETH Zurich, Switzerland {zhu,vangool}@vision.ethz.ch Luc Van Gool 1,2 2 PSI-VISICS, ESAT KU Leuven, Belgium Luc.Vangool@esat.kuleuven.be

More information

A Fast 2D Shape Recovery Approach by Fusing Features and Appearance

A Fast 2D Shape Recovery Approach by Fusing Features and Appearance IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE MANUSCRIPT, JUNE 2008 A Fast 2D Shape Recovery Approach by Fusing Features and Appearance Jianke Zhu, Michael R. Lyu, Fellow, IEEE and Thomas

More information

Dense 3D Reconstruction. Christiano Gava

Dense 3D Reconstruction. Christiano Gava Dense 3D Reconstruction Christiano Gava christiano.gava@dfki.de Outline Previous lecture: structure and motion II Structure and motion loop Triangulation Wide baseline matching (SIFT) Today: dense 3D reconstruction

More information

Face Tracking. Synonyms. Definition. Main Body Text. Amit K. Roy-Chowdhury and Yilei Xu. Facial Motion Estimation

Face Tracking. Synonyms. Definition. Main Body Text. Amit K. Roy-Chowdhury and Yilei Xu. Facial Motion Estimation Face Tracking Amit K. Roy-Chowdhury and Yilei Xu Department of Electrical Engineering, University of California, Riverside, CA 92521, USA {amitrc,yxu}@ee.ucr.edu Synonyms Facial Motion Estimation Definition

More information

DIGITAL. Computer Vision Algorithms for. Automating HD Post-Production. Institute of Information and Communication Technologies

DIGITAL. Computer Vision Algorithms for. Automating HD Post-Production. Institute of Information and Communication Technologies Computer Vision Algorithms for Automating HD Post-Production Hannes Fassold, Jakub Rosner 2010-09-22 DIGITAL Institute of Information and Communication Technologies Overview 2 Harris/KLT feature point

More information

Corner Detection. Harvey Rhody Chester F. Carlson Center for Imaging Science Rochester Institute of Technology

Corner Detection. Harvey Rhody Chester F. Carlson Center for Imaging Science Rochester Institute of Technology Corner Detection Harvey Rhody Chester F. Carlson Center for Imaging Science Rochester Institute of Technology rhody@cis.rit.edu April 11, 2006 Abstract Corners and edges are two of the most important geometrical

More information

Video Processing for Judicial Applications

Video Processing for Judicial Applications Video Processing for Judicial Applications Konstantinos Avgerinakis, Alexia Briassouli, Ioannis Kompatsiaris Informatics and Telematics Institute, Centre for Research and Technology, Hellas Thessaloniki,

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 11 140311 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Motion Analysis Motivation Differential Motion Optical

More information

Uncertainty estimation for KLT tracking

Uncertainty estimation for KLT tracking Uncertainty estimation for KLT tracking Sameer Sheorey 1, Shalini Keshavamurthy 1, Huili Yu 1, Hieu Nguyen 1 and Clark N. Taylor 2 1 UtopiaCompression Corporation, Los Angeles, California 90064 2 Air Force

More information

2D vs. 3D Deformable Face Models: Representational Power, Construction, and Real-Time Fitting

2D vs. 3D Deformable Face Models: Representational Power, Construction, and Real-Time Fitting 2D vs. 3D Deformable Face Models: Representational Power, Construction, and Real-Time Fitting Iain Matthews, Jing Xiao, and Simon Baker The Robotics Institute, Carnegie Mellon University Epsom PAL, Epsom

More information

Shape and Motion from Image Streams: a Factorization Method Part 3. Detection and Tracking of Point Features Technical Report CMU-CS

Shape and Motion from Image Streams: a Factorization Method Part 3. Detection and Tracking of Point Features Technical Report CMU-CS Shape and Motion from Image Streams: a Factorization Method Part 3 Detection and Tracking of Point Features Technical Report CMU-CS-91-132 Carlo Tomasi Takeo Kanade April 1991 Abstract The factorization

More information

Optical flow. Cordelia Schmid

Optical flow. Cordelia Schmid Optical flow Cordelia Schmid Motion field The motion field is the projection of the 3D scene motion into the image Optical flow Definition: optical flow is the apparent motion of brightness patterns in

More information

Computer Vision Lecture 18

Computer Vision Lecture 18 Course Outline Computer Vision Lecture 8 Motion and Optical Flow.0.009 Bastian Leibe RWTH Aachen http://www.umic.rwth-aachen.de/multimedia leibe@umic.rwth-aachen.de Man slides adapted from K. Grauman,

More information

Automatic Construction of Active Appearance Models as an Image Coding Problem

Automatic Construction of Active Appearance Models as an Image Coding Problem Automatic Construction of Active Appearance Models as an Image Coding Problem Simon Baker, Iain Matthews, and Jeff Schneider The Robotics Institute Carnegie Mellon University Pittsburgh, PA 1213 Abstract

More information

Using Geometric Blur for Point Correspondence

Using Geometric Blur for Point Correspondence 1 Using Geometric Blur for Point Correspondence Nisarg Vyas Electrical and Computer Engineering Department, Carnegie Mellon University, Pittsburgh, PA Abstract In computer vision applications, point correspondence

More information