Energy Minimization for Segmentation in Computer Vision

Size: px
Start display at page:

Download "Energy Minimization for Segmentation in Computer Vision"

Transcription

1 S * = arg S min E(S) Energy Minimization for Segmentation in Computer Vision Meng Tang, Dmitrii Marin, Ismail Ben Ayed, Yuri Boykov

2 Outline Clustering/segmentation methods K-means, GrabCut, Normalized Cut K-means for clustering/segmentation Probabilistic K-means Kernel K-means Our Kernel Cut: Normalized Cut+ MRF How to optimize Applications Motion, RGBD segmentation, image clustering etc.

3 K-means Clustering 0. Initialize cluster centers 1. Assign points to closest clusters 2. Re-compute means Repeat (1) and (2) until convergence

4 K-means Segmentation: Color Quantization

5 Graph Cut Segmentation Pr(I Fg) Pr(I Bg) E ( 1 S, 0, ) GrabCut [Rother et al. 2004] MRF regularization

6 Markov Random Field (MRF) (graphical models) Potts Model: edge alignment S c interactive segmentation [Boykov & Jolly, 2001] 6

7 Markov Random Field (MRF) (graphical models) Robust P n Potts: bin consistency S c semantic segmentation [Kohli & Torr 2009] [Gould 2014] 7

8 Normalized Cut (NC) eigenvectors discretization A pq [Arbelaez, Maire, Fowlkes & Malik, 2010] [Shi & Malik, 2000] [Ng, Jordan & Weiss, 2002] [Belkin & Niyogi, 2003] [Luxburg, 2007] 8

9 K-means minimizes sum of squared distance(ssd) Assume K=2 SSD + are in color space as

10 squared distance as log-likelihoods single Gaussian of fixed covariance single Gaussian

11 Probabilistic K-means with Descriptive Models single Gaussian of variable covariance model-fittings: ML estimation of

12 Probabilistic K-means with Descriptive Models Gaussian Mixture Models (GMM) Optimized in GrabCut (with smoothness term)

13 K-means probabilistic K-means make models more complex kernel K-means make data more complex embedding input space feature space kernel K-means = K-means in feature space

14 Why is it called kernel K-means? Cluster variance Replace norms by dot products kernel trick kernel, affinity, similarity, dot product explicit kernel κ implicit embedding φ

15 Why is it called kernel K-means? Cluster variance Replace norms by dot products kernel trick kernel, affinity, similarity, dot product explicit kernel κ implicit embedding φ

16 Normalized Cut is Kernel K-means (assuming constant degree d)

17 World Map of Segmentation geometric fitting GMM fitting pkm Probabilistic K-means (ML model fitting) histogram fitting gamma fitting weak kernel clustering (unary) Hilbertian distortion K-modes (mean-shift) basic K-means Gaussian kernel K-means kkm kernel K-means (average distortion AD or association AA) Normalized Cuts Average Cut Spectral clustering Gibbs fitting p.s.d. kernel distortion

18 (log-likelihoods) (normalized cut) Probabilistic K-means or Kernel K-means

19 Secrets of GrabCut typical MRF for segmentation: poor clustering (overfitting & local minima) ML term for θ k model fitting (e.g. GMM) GrabCut [Rother, Kolmogorov, Blake, 2004] color space clustering (probabilistic k-means [Kearns, Mansour & Ng, UAI 97]) 19

20 Normalized Cut clustering good clustering NC for colors Normalized Cut color space clustering 20

21 Our proposal: Normalized Cut + MRF balanced clustering regularization constraints 21

22 Why MRF for Normalized Cut? weak edge alignment semi-supervision is challenging previous NC approach: cannot-link [Yu & Shi 2004] [Eriksson et al. 2010] [Maji et al. 2011] [Chew et al. 2015] post-processing (e.g. [Arbelaez et al., 2011]) must-link reformulation of NC constrained eigen problem Our approach: NC + Potts MRF NC + Potts + seeds MRF 22

23 Why MRF for Normalized Cut? How to incorporate group priors? How many clusters? 8 clusters 3 clusters Our approach: NC + Robust P n Potts MRF NC + label costs MRF 23

24 Bound optimization, in general E(S) E(S t ) A t (S) A t+1 (S) E(S t+1 ) S t S t+1 guaranteed energy decrease 24

25 Bound for our joint energy unary bound for NC we propose kernel bound and spectral bound for NC 25

26 Kernel bound for NC Lemma 1 (concavity) Function e : R Ω R is concave over region S k > 0 given p.s.d. affinity matrix A := [A pq ]. (I) (II) a t (S) first-order Taylor expansion: e(s k ) a t+1 (S) equivalently kernel k-means for NC [Dhillon et al., 2004] 26

27 Our Kernel Cut algorithm unary bound for NC (Kernel Bound or Spectral Bound) iterate (move-making and graph cuts [Boykov, Veksler, Zabih, 2001]) 27

28 Experiments: MRF helps Normalized Cut using image tags (e.g. beach, car) to help image clustering NC + robust P n Potts + with knn kernel on deep features 28

29 Experiments: Normalized Cut helps MRF (a) Video frames (b) Optical flow (c) Our Kernel Cut (NC + Potts) Fig. motion segmentation using RGB, location (XY) and motion (M). +xy means with MRF 29

30 NC with increasing label cost

31 Robustness to smoothness term A seeds ground truth A B B C C GrabCut A B C Kernel Cut separating similar objects

32 More Experiments Potts model improves edge alignment Fig. 1. RGBD segmentation Spectral Clustering (no Potts) Our Kernel Cut (NC with Potts) Our Spectral Cut (NC with Potts) GrabCut Kernel Cut 32

33 Medical image segmentation (3D)

34 Conclusion + Probabilistic K-means vs Kernel K-means NC equivalent to Kernel K-means new unary kernel and spectral bounds for NC can combine NC with any MRF constraints can combine MRF with balanced clustering MRF with features of any dimension (RGBD, RGBM, RGBXYM, deep, ) 34

35 Take home code for

Segmentation with non-linear constraints on appearance, complexity, and geometry

Segmentation with non-linear constraints on appearance, complexity, and geometry IPAM February 2013 Western Univesity Segmentation with non-linear constraints on appearance, complexity, and geometry Yuri Boykov Andrew Delong Lena Gorelick Hossam Isack Anton Osokin Frank Schmidt Olga

More information

Announcements. Image Segmentation. From images to objects. Extracting objects. Status reports next Thursday ~5min presentations in class

Announcements. Image Segmentation. From images to objects. Extracting objects. Status reports next Thursday ~5min presentations in class Image Segmentation Announcements Status reports next Thursday ~5min presentations in class Project voting From Sandlot Science Today s Readings Forsyth & Ponce, Chapter 1 (plus lots of optional references

More information

Clustering Lecture 5: Mixture Model

Clustering Lecture 5: Mixture Model Clustering Lecture 5: Mixture Model Jing Gao SUNY Buffalo 1 Outline Basics Motivation, definition, evaluation Methods Partitional Hierarchical Density-based Mixture model Spectral methods Advanced topics

More information

Normalized Cut meets MRF

Normalized Cut meets MRF In European Conference on Computer Vision (ECCV), Oct. 2016 1 Normalized Cut meets MRF Meng Tang Dmitrii Marin Ismail Ben Ayed Yuri Boykov mtang73@csd.uwo.ca dmitrii.a.marin@gmail.com ismail.benayed@etsmtl.ca

More information

CAP5415-Computer Vision Lecture 13-Image/Video Segmentation Part II. Dr. Ulas Bagci

CAP5415-Computer Vision Lecture 13-Image/Video Segmentation Part II. Dr. Ulas Bagci CAP-Computer Vision Lecture -Image/Video Segmentation Part II Dr. Ulas Bagci bagci@ucf.edu Labeling & Segmentation Labeling is a common way for modeling various computer vision problems (e.g. optical flow,

More information

Markov Random Fields and Segmentation with Graph Cuts

Markov Random Fields and Segmentation with Graph Cuts Markov Random Fields and Segmentation with Graph Cuts Computer Vision Jia-Bin Huang, Virginia Tech Many slides from D. Hoiem Administrative stuffs Final project Proposal due Oct 27 (Thursday) HW 4 is out

More information

Image Segmentation Using Iterated Graph Cuts Based on Multi-scale Smoothing

Image Segmentation Using Iterated Graph Cuts Based on Multi-scale Smoothing Image Segmentation Using Iterated Graph Cuts Based on Multi-scale Smoothing Tomoyuki Nagahashi 1, Hironobu Fujiyoshi 1, and Takeo Kanade 2 1 Dept. of Computer Science, Chubu University. Matsumoto 1200,

More information

Discrete Optimization Methods in Computer Vision CSE 6389 Slides by: Boykov Modified and Presented by: Mostafa Parchami Basic overview of graph cuts

Discrete Optimization Methods in Computer Vision CSE 6389 Slides by: Boykov Modified and Presented by: Mostafa Parchami Basic overview of graph cuts Discrete Optimization Methods in Computer Vision CSE 6389 Slides by: Boykov Modified and Presented by: Mostafa Parchami Basic overview of graph cuts [Yuri Boykov, Olga Veksler, Ramin Zabih, Fast Approximation

More information

MRFs and Segmentation with Graph Cuts

MRFs and Segmentation with Graph Cuts 02/24/10 MRFs and Segmentation with Graph Cuts Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Today s class Finish up EM MRFs w ij i Segmentation with Graph Cuts j EM Algorithm: Recap

More information

intro, applications MRF, labeling... how it can be computed at all? Applications in segmentation: GraphCut, GrabCut, demos

intro, applications MRF, labeling... how it can be computed at all? Applications in segmentation: GraphCut, GrabCut, demos Image as Markov Random Field and Applications 1 Tomáš Svoboda, svoboda@cmp.felk.cvut.cz Czech Technical University in Prague, Center for Machine Perception http://cmp.felk.cvut.cz Talk Outline Last update:

More information

Fast Trust Region for Segmentation

Fast Trust Region for Segmentation IEEE conference on Computer Vision and Pattern Recognition (CVPR), Portland, Oregon, 2013 p. 1 Fast Trust Region for Segmentation Lena Gorelick 1 lenagorelick@gmail.com 1 Computer Vision Group University

More information

Lecture 7: Segmentation. Thursday, Sept 20

Lecture 7: Segmentation. Thursday, Sept 20 Lecture 7: Segmentation Thursday, Sept 20 Outline Why segmentation? Gestalt properties, fun illusions and/or revealing examples Clustering Hierarchical K-means Mean Shift Graph-theoretic Normalized cuts

More information

Image Segmentation continued Graph Based Methods. Some slides: courtesy of O. Capms, Penn State, J.Ponce and D. Fortsyth, Computer Vision Book

Image Segmentation continued Graph Based Methods. Some slides: courtesy of O. Capms, Penn State, J.Ponce and D. Fortsyth, Computer Vision Book Image Segmentation continued Graph Based Methods Some slides: courtesy of O. Capms, Penn State, J.Ponce and D. Fortsyth, Computer Vision Book Previously Binary segmentation Segmentation by thresholding

More information

Iterative MAP and ML Estimations for Image Segmentation

Iterative MAP and ML Estimations for Image Segmentation Iterative MAP and ML Estimations for Image Segmentation Shifeng Chen 1, Liangliang Cao 2, Jianzhuang Liu 1, and Xiaoou Tang 1,3 1 Dept. of IE, The Chinese University of Hong Kong {sfchen5, jzliu}@ie.cuhk.edu.hk

More information

IMPROVED FINE STRUCTURE MODELING VIA GUIDED STOCHASTIC CLIQUE FORMATION IN FULLY CONNECTED CONDITIONAL RANDOM FIELDS

IMPROVED FINE STRUCTURE MODELING VIA GUIDED STOCHASTIC CLIQUE FORMATION IN FULLY CONNECTED CONDITIONAL RANDOM FIELDS IMPROVED FINE STRUCTURE MODELING VIA GUIDED STOCHASTIC CLIQUE FORMATION IN FULLY CONNECTED CONDITIONAL RANDOM FIELDS M. J. Shafiee, A. G. Chung, A. Wong, and P. Fieguth Vision & Image Processing Lab, Systems

More information

LOOSECUT: INTERACTIVE IMAGE SEGMENTATION WITH LOOSELY BOUNDED BOXES

LOOSECUT: INTERACTIVE IMAGE SEGMENTATION WITH LOOSELY BOUNDED BOXES Loose Input Box LOOSECUT: INTERACTIVE IMAGE SEGMENTATION WITH LOOSELY BOUNDED BOXES Hongkai Yu 1, Youjie Zhou 1, Hui Qian 2, Min Xian 3, and Song Wang 1 1 University of South Carolina, SC 2 Zhejiang University,

More information

Computer Vision : Exercise 4 Labelling Problems

Computer Vision : Exercise 4 Labelling Problems Computer Vision Exercise 4 Labelling Problems 13/01/2014 Computer Vision : Exercise 4 Labelling Problems Outline 1. Energy Minimization (example segmentation) 2. Iterated Conditional Modes 3. Dynamic Programming

More information

Human Head-Shoulder Segmentation

Human Head-Shoulder Segmentation Human Head-Shoulder Segmentation Hai Xin, Haizhou Ai Computer Science and Technology Tsinghua University Beijing, China ahz@mail.tsinghua.edu.cn Hui Chao, Daniel Tretter Hewlett-Packard Labs 1501 Page

More information

Markov/Conditional Random Fields, Graph Cut, and applications in Computer Vision

Markov/Conditional Random Fields, Graph Cut, and applications in Computer Vision Markov/Conditional Random Fields, Graph Cut, and applications in Computer Vision Fuxin Li Slides and materials from Le Song, Tucker Hermans, Pawan Kumar, Carsten Rother, Peter Orchard, and others Recap:

More information

Image Segmentation Using Iterated Graph Cuts BasedonMulti-scaleSmoothing

Image Segmentation Using Iterated Graph Cuts BasedonMulti-scaleSmoothing Image Segmentation Using Iterated Graph Cuts BasedonMulti-scaleSmoothing Tomoyuki Nagahashi 1, Hironobu Fujiyoshi 1, and Takeo Kanade 2 1 Dept. of Computer Science, Chubu University. Matsumoto 1200, Kasugai,

More information

Segmentation and Grouping

Segmentation and Grouping CS 1699: Intro to Computer Vision Segmentation and Grouping Prof. Adriana Kovashka University of Pittsburgh September 24, 2015 Goals: Grouping in vision Gather features that belong together Obtain an intermediate

More information

6.801/866. Segmentation and Line Fitting. T. Darrell

6.801/866. Segmentation and Line Fitting. T. Darrell 6.801/866 Segmentation and Line Fitting T. Darrell Segmentation and Line Fitting Gestalt grouping Background subtraction K-Means Graph cuts Hough transform Iterative fitting (Next time: Probabilistic segmentation)

More information

Graph based machine learning with applications to media analytics

Graph based machine learning with applications to media analytics Graph based machine learning with applications to media analytics Lei Ding, PhD 9-1-2011 with collaborators at Outline Graph based machine learning Basic structures Algorithms Examples Applications in

More information

UNSUPERVISED CO-SEGMENTATION BASED ON A NEW GLOBAL GMM CONSTRAINT IN MRF. Hongkai Yu, Min Xian, and Xiaojun Qi

UNSUPERVISED CO-SEGMENTATION BASED ON A NEW GLOBAL GMM CONSTRAINT IN MRF. Hongkai Yu, Min Xian, and Xiaojun Qi UNSUPERVISED CO-SEGMENTATION BASED ON A NEW GLOBAL GMM CONSTRAINT IN MRF Hongkai Yu, Min Xian, and Xiaojun Qi Department of Computer Science, Utah State University, Logan, UT 84322-4205 hongkai.yu@aggiemail.usu.edu,

More information

Markov Random Fields and Segmentation with Graph Cuts

Markov Random Fields and Segmentation with Graph Cuts Markov Random Fields and Segmentation with Graph Cuts Computer Vision Jia-Bin Huang, Virginia Tech Many slides from D. Hoiem Administrative stuffs Final project Proposal due Oct 30 (Monday) HW 4 is out

More information

Prof. Feng Liu. Spring /17/2017. With slides by F. Durand, Y.Y. Chuang, R. Raskar, and C.

Prof. Feng Liu. Spring /17/2017. With slides by F. Durand, Y.Y. Chuang, R. Raskar, and C. Prof. Feng Liu Spring 2017 http://www.cs.pdx.edu/~fliu/courses/cs510/ 05/17/2017 With slides by F. Durand, Y.Y. Chuang, R. Raskar, and C. Rother Last Time Image segmentation Normalized cut and segmentation

More information

Segmentation: Clustering, Graph Cut and EM

Segmentation: Clustering, Graph Cut and EM Segmentation: Clustering, Graph Cut and EM Ying Wu Electrical Engineering and Computer Science Northwestern University, Evanston, IL 60208 yingwu@northwestern.edu http://www.eecs.northwestern.edu/~yingwu

More information

Supervised texture detection in images

Supervised texture detection in images Supervised texture detection in images Branislav Mičušík and Allan Hanbury Pattern Recognition and Image Processing Group, Institute of Computer Aided Automation, Vienna University of Technology Favoritenstraße

More information

Lecture 13 Segmentation and Scene Understanding Chris Choy, Ph.D. candidate Stanford Vision and Learning Lab (SVL)

Lecture 13 Segmentation and Scene Understanding Chris Choy, Ph.D. candidate Stanford Vision and Learning Lab (SVL) Lecture 13 Segmentation and Scene Understanding Chris Choy, Ph.D. candidate Stanford Vision and Learning Lab (SVL) http://chrischoy.org Stanford CS231A 1 Understanding a Scene Objects Chairs, Cups, Tables,

More information

Segmentation Computer Vision Spring 2018, Lecture 27

Segmentation Computer Vision Spring 2018, Lecture 27 Segmentation http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 218, Lecture 27 Course announcements Homework 7 is due on Sunday 6 th. - Any questions about homework 7? - How many of you have

More information

Tracking system. Danica Kragic. Object Recognition & Model Based Tracking

Tracking system. Danica Kragic. Object Recognition & Model Based Tracking Tracking system Object Recognition & Model Based Tracking Motivation Manipulating objects in domestic environments Localization / Navigation Object Recognition Servoing Tracking Grasping Pose estimation

More information

Constrained-CNN losses for weakly supervised segmentation

Constrained-CNN losses for weakly supervised segmentation Constrained-CNN losses for weakly supervised segmentation MIDL 2018, Amsterdam Hoel Kervadec*, Jose Dolz*, Meng Tang**, Éric Granger*, Yuri Boykov**, Ismail Ben Ayed* *ÉTS Montréal, **Univertisy of Waterloo

More information

Graph Cuts vs. Level Sets. part I Basics of Graph Cuts

Graph Cuts vs. Level Sets. part I Basics of Graph Cuts ECCV 2006 tutorial on Graph Cuts vs. Level Sets part I Basics of Graph Cuts Yuri Boykov University of Western Ontario Daniel Cremers University of Bonn Vladimir Kolmogorov University College London Graph

More information

Lecture 16 Segmentation and Scene understanding

Lecture 16 Segmentation and Scene understanding Lecture 16 Segmentation and Scene understanding Introduction! Mean-shift! Graph-based segmentation! Top-down segmentation! Silvio Savarese Lecture 15 -! 3-Mar-14 Segmentation Silvio Savarese Lecture 15

More information

Segmentation with non-linear regional constraints via line-search cuts

Segmentation with non-linear regional constraints via line-search cuts Segmentation with non-linear regional constraints via line-search cuts Lena Gorelick 1, Frank R. Schmidt 2, Yuri Boykov 1, Andrew Delong 1, and Aaron Ward 1 1 University of Western Ontario, Canada 2 Université

More information

Dr. Ulas Bagci

Dr. Ulas Bagci CAP- Computer Vision Lecture - Image Segmenta;on as an Op;miza;on Problem Dr. Ulas Bagci bagci@ucf.edu Reminders Oct Guest Lecture: SVM by Dr. Gong Oct 8 Guest Lecture: Camera Models by Dr. Shah PA# October

More information

Image Segmentation. April 24, Stanford University. Philipp Krähenbühl (Stanford University) Segmentation April 24, / 63

Image Segmentation. April 24, Stanford University. Philipp Krähenbühl (Stanford University) Segmentation April 24, / 63 Image Segmentation Philipp Krähenbühl Stanford University April 24, 2013 Philipp Krähenbühl (Stanford University) Segmentation April 24, 2013 1 / 63 Image Segmentation Goal: identify groups of pixels that

More information

Lecture 11: E-M and MeanShift. CAP 5415 Fall 2007

Lecture 11: E-M and MeanShift. CAP 5415 Fall 2007 Lecture 11: E-M and MeanShift CAP 5415 Fall 2007 Review on Segmentation by Clustering Each Pixel Data Vector Example (From Comanciu and Meer) Review of k-means Let's find three clusters in this data These

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Image Segmentation Some material for these slides comes from https://www.csd.uwo.ca/courses/cs4487a/

More information

Uncertainty Driven Multi-Scale Optimization

Uncertainty Driven Multi-Scale Optimization Uncertainty Driven Multi-Scale Optimization Pushmeet Kohli 1 Victor Lempitsky 2 Carsten Rother 1 1 Microsoft Research Cambridge 2 University of Oxford Abstract. This paper proposes a new multi-scale energy

More information

Segmentation. Bottom Up Segmentation

Segmentation. Bottom Up Segmentation Segmentation Bottom up Segmentation Semantic Segmentation Bottom Up Segmentation 1 Segmentation as clustering Depending on what we choose as the feature space, we can group pixels in different ways. Grouping

More information

Image Segmentation. Marc Pollefeys. ETH Zurich. Slide credits: V. Ferrari, K. Grauman, B. Leibe, S. Lazebnik, S. Seitz,Y Boykov, W. Freeman, P.

Image Segmentation. Marc Pollefeys. ETH Zurich. Slide credits: V. Ferrari, K. Grauman, B. Leibe, S. Lazebnik, S. Seitz,Y Boykov, W. Freeman, P. Image Segmentation Perceptual and Sensory Augmented Computing Computer Vision WS 0/09 Marc Pollefeys ETH Zurich Slide credits: V. Ferrari, K. Grauman, B. Leibe, S. Lazebnik, S. Seitz,Y Boykov, W. Freeman,

More information

human vision: grouping k-means clustering graph-theoretic clustering Hough transform line fitting RANSAC

human vision: grouping k-means clustering graph-theoretic clustering Hough transform line fitting RANSAC COS 429: COMPUTER VISON Segmentation human vision: grouping k-means clustering graph-theoretic clustering Hough transform line fitting RANSAC Reading: Chapters 14, 15 Some of the slides are credited to:

More information

Spatio-Temporal GrabCut Human Segmentation for Face and Pose Recovery

Spatio-Temporal GrabCut Human Segmentation for Face and Pose Recovery Spatio-Temporal GrabCut Human Segmentation for Face and Pose Recovery Antonio Hernández 1 ahernandez@cvc.uab.es Miguel Reyes 1 mreyese@gmail.com Sergio Escalera 2 sergio@maia.ub.es Petia Radeva 1 petia@cvc.uab.es

More information

Unit 3 : Image Segmentation

Unit 3 : Image Segmentation Unit 3 : Image Segmentation K-means Clustering Mean Shift Segmentation Active Contour Models Snakes Normalized Cut Segmentation CS 6550 0 Histogram-based segmentation Goal Break the image into K regions

More information

Iterated Graph Cuts for Image Segmentation

Iterated Graph Cuts for Image Segmentation Iterated Graph Cuts for Image Segmentation Bo Peng 1, Lei Zhang 1, and Jian Yang 2 1 Department of Computing, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China. 2 School of Computer Science

More information

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009 Analysis: TextonBoost and Semantic Texton Forests Daniel Munoz 16-721 Februrary 9, 2009 Papers [shotton-eccv-06] J. Shotton, J. Winn, C. Rother, A. Criminisi, TextonBoost: Joint Appearance, Shape and Context

More information

Expectation Maximization (EM) and Gaussian Mixture Models

Expectation Maximization (EM) and Gaussian Mixture Models Expectation Maximization (EM) and Gaussian Mixture Models Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer 1 2 3 4 5 6 7 8 Unsupervised Learning Motivation

More information

Multiple cosegmentation

Multiple cosegmentation Armand Joulin, Francis Bach and Jean Ponce. INRIA -Ecole Normale Supérieure April 25, 2012 Segmentation Introduction Segmentation Supervised and weakly-supervised segmentation Cosegmentation Segmentation

More information

Segmentation. Bottom up Segmentation Semantic Segmentation

Segmentation. Bottom up Segmentation Semantic Segmentation Segmentation Bottom up Segmentation Semantic Segmentation Semantic Labeling of Street Scenes Ground Truth Labels 11 classes, almost all occur simultaneously, large changes in viewpoint, scale sky, road,

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 2014-2015 Jakob Verbeek, November 28, 2014 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.14.15

More information

Parsing World s Skylines using Shape-Constrained MRFs

Parsing World s Skylines using Shape-Constrained MRFs Parsing World s Skylines using Shape-Constrained MRFs Rashmi Tonge CVIT, IIIT Hyderabad Subhransu Maji Toyota Technological Institute at Chicago C. V. Jawahar CVIT, IIIT Hyderabad Abstract We propose an

More information

Mathematics in Image Processing

Mathematics in Image Processing Mathematics in Image Processing Michal Šorel Department of Image Processing Institute of Information Theory and Automation (ÚTIA) Academy of Sciences of the Czech Republic http://zoi.utia.cas.cz/ Mathematics

More information

COMP90051 Statistical Machine Learning

COMP90051 Statistical Machine Learning COMP90051 Statistical Machine Learning Semester 2, 2016 Lecturer: Trevor Cohn 20. PGM Representation Next Lectures Representation of joint distributions Conditional/marginal independence * Directed vs

More information

Discriminative Clustering for Image Co-Segmentation

Discriminative Clustering for Image Co-Segmentation Discriminative Clustering for Image Co-Segmentation Joulin, A.; Bach, F.; Ponce, J. (CVPR. 2010) Iretiayo Akinola Josh Tennefoss Outline Why Co-segmentation? Previous Work Problem Formulation Experimental

More information

Image Segmentation continued Graph Based Methods

Image Segmentation continued Graph Based Methods Image Segmentation continued Graph Based Methods Previously Images as graphs Fully-connected graph node (vertex) for every pixel link between every pair of pixels, p,q affinity weight w pq for each link

More information

CS 2770: Computer Vision. Edges and Segments. Prof. Adriana Kovashka University of Pittsburgh February 21, 2017

CS 2770: Computer Vision. Edges and Segments. Prof. Adriana Kovashka University of Pittsburgh February 21, 2017 CS 2770: Computer Vision Edges and Segments Prof. Adriana Kovashka University of Pittsburgh February 21, 2017 Edges vs Segments Figure adapted from J. Hays Edges vs Segments Edges More low-level Don t

More information

Principal-channels for One-sided Object Cutout

Principal-channels for One-sided Object Cutout Principal-channels for One-sided Object Cutout Lior Gavish, Lior Wolf, Lior Shapira, and Daniel Cohen-Or Tel-Aviv University, Tel-Aviv, Israel Abstract We introduce principal-channels for cutting out objects

More information

3 October, 2013 MVA ENS Cachan. Lecture 2: Logistic regression & intro to MIL Iasonas Kokkinos

3 October, 2013 MVA ENS Cachan. Lecture 2: Logistic regression & intro to MIL Iasonas Kokkinos Machine Learning for Computer Vision 1 3 October, 2013 MVA ENS Cachan Lecture 2: Logistic regression & intro to MIL Iasonas Kokkinos Iasonas.kokkinos@ecp.fr Department of Applied Mathematics Ecole Centrale

More information

Segmentation. Separate image into coherent regions

Segmentation. Separate image into coherent regions Segmentation II Segmentation Separate image into coherent regions Berkeley segmentation database: http://www.eecs.berkeley.edu/research/projects/cs/vision/grouping/segbench/ Slide by L. Lazebnik Interactive

More information

Combining Appearance and Structure from Motion Features for Road Scene Understanding

Combining Appearance and Structure from Motion Features for Road Scene Understanding STURGESS et al.: COMBINING APPEARANCE AND SFM FEATURES 1 Combining Appearance and Structure from Motion Features for Road Scene Understanding Paul Sturgess paul.sturgess@brookes.ac.uk Karteek Alahari karteek.alahari@brookes.ac.uk

More information

Segmentation and low-level grouping.

Segmentation and low-level grouping. Segmentation and low-level grouping. Bill Freeman, MIT 6.869 April 14, 2005 Readings: Mean shift paper and background segmentation paper. Mean shift IEEE PAMI paper by Comanici and Meer, http://www.caip.rutgers.edu/~comanici/papers/msrobustapproach.pdf

More information

Segmentation & Grouping Kristen Grauman UT Austin. Announcements

Segmentation & Grouping Kristen Grauman UT Austin. Announcements Segmentation & Grouping Kristen Grauman UT Austin Tues Feb 7 A0 on Canvas Announcements No office hours today TA office hours this week as usual Guest lecture Thursday by Suyog Jain Interactive segmentation

More information

Cluster Analysis (b) Lijun Zhang

Cluster Analysis (b) Lijun Zhang Cluster Analysis (b) Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Grid-Based and Density-Based Algorithms Graph-Based Algorithms Non-negative Matrix Factorization Cluster Validation Summary

More information

What have we leaned so far?

What have we leaned so far? What have we leaned so far? Camera structure Eye structure Project 1: High Dynamic Range Imaging What have we learned so far? Image Filtering Image Warping Camera Projection Model Project 2: Panoramic

More information

Part III: Affinity Functions for Image Segmentation

Part III: Affinity Functions for Image Segmentation Part III: Affinity Functions for Image Segmentation Charless Fowlkes joint work with David Martin and Jitendra Malik at University of California at Berkeley 1 Q: What measurements should we use for constructing

More information

Robust Kernel Methods in Clustering and Dimensionality Reduction Problems

Robust Kernel Methods in Clustering and Dimensionality Reduction Problems Robust Kernel Methods in Clustering and Dimensionality Reduction Problems Jian Guo, Debadyuti Roy, Jing Wang University of Michigan, Department of Statistics Introduction In this report we propose robust

More information

Visual Representations for Machine Learning

Visual Representations for Machine Learning Visual Representations for Machine Learning Spectral Clustering and Channel Representations Lecture 1 Spectral Clustering: introduction and confusion Michael Felsberg Klas Nordberg The Spectral Clustering

More information

Clustering. CS294 Practical Machine Learning Junming Yin 10/09/06

Clustering. CS294 Practical Machine Learning Junming Yin 10/09/06 Clustering CS294 Practical Machine Learning Junming Yin 10/09/06 Outline Introduction Unsupervised learning What is clustering? Application Dissimilarity (similarity) of objects Clustering algorithm K-means,

More information

Color Image Segmentation Using a Spatial K-Means Clustering Algorithm

Color Image Segmentation Using a Spatial K-Means Clustering Algorithm Color Image Segmentation Using a Spatial K-Means Clustering Algorithm Dana Elena Ilea and Paul F. Whelan Vision Systems Group School of Electronic Engineering Dublin City University Dublin 9, Ireland danailea@eeng.dcu.ie

More information

Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University

Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University NIPS 2008: E. Sudderth & M. Jordan, Shared Segmentation of Natural

More information

Mixture Models and EM

Mixture Models and EM Table of Content Chapter 9 Mixture Models and EM -means Clustering Gaussian Mixture Models (GMM) Expectation Maximiation (EM) for Mixture Parameter Estimation Introduction Mixture models allows Complex

More information

Hough Regions for Joining Instance Localization and Segmentation

Hough Regions for Joining Instance Localization and Segmentation Hough Regions for Joining Instance Localization and Segmentation Hayko Riemenschneider 1,2, Sabine Sternig 1, Michael Donoser 1, Peter M. Roth 1, and Horst Bischof 1 1 Institute for Computer Graphics and

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 013-014 Jakob Verbeek, December 13+0, 013 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.13.14

More information

CS4670 / 5670: Computer Vision Noah Snavely

CS4670 / 5670: Computer Vision Noah Snavely { { 11/26/2013 CS4670 / 5670: Computer Vision Noah Snavely Graph-Based Image Segmentation Stereo as a minimization problem match cost Want each pixel to find a good match in the other image smoothness

More information

Simultaneous Multi-class Pixel Labeling over Coherent Image Sets

Simultaneous Multi-class Pixel Labeling over Coherent Image Sets Simultaneous Multi-class Pixel Labeling over Coherent Image Sets Paul Rivera Research School of Computer Science Australian National University Canberra, ACT 0200 Stephen Gould Research School of Computer

More information

Learning CRFs using Graph Cuts

Learning CRFs using Graph Cuts Appears in European Conference on Computer Vision (ECCV) 2008 Learning CRFs using Graph Cuts Martin Szummer 1, Pushmeet Kohli 1, and Derek Hoiem 2 1 Microsoft Research, Cambridge CB3 0FB, United Kingdom

More information

Segmentation in electron microscopy images

Segmentation in electron microscopy images Segmentation in electron microscopy images Aurelien Lucchi, Kevin Smith, Yunpeng Li Bohumil Maco, Graham Knott, Pascal Fua. http://cvlab.epfl.ch/research/medical/neurons/ Outline Automated Approach to

More information

Joint optimization of segmentation and appearance models November Vicente, 26, Kolmogorov, / Rothe 14

Joint optimization of segmentation and appearance models November Vicente, 26, Kolmogorov, / Rothe 14 Joint optimization of segmentation and appearance models Vicente, Kolmogorov, Rother Chris Russell November 26, 2009 Joint optimization of segmentation and appearance models November Vicente, 26, Kolmogorov,

More information

Multi-sensor Fusion Using Dempster s Theory of Evidence for Video Segmentation

Multi-sensor Fusion Using Dempster s Theory of Evidence for Video Segmentation Multi-sensor Fusion Using Dempster s Theory of Evidence for Video Segmentation Björn Scheuermann, Sotirios Gkoutelitsas, and Bodo Rosenhahn Institut für Informationsverarbeitung (TNT) Leibniz Universität

More information

UNSUPERVISED COSEGMENTATION BASED ON SUPERPIXEL MATCHING AND FASTGRABCUT. Hongkai Yu and Xiaojun Qi

UNSUPERVISED COSEGMENTATION BASED ON SUPERPIXEL MATCHING AND FASTGRABCUT. Hongkai Yu and Xiaojun Qi UNSUPERVISED COSEGMENTATION BASED ON SUPERPIXEL MATCHING AND FASTGRABCUT Hongkai Yu and Xiaojun Qi Department of Computer Science, Utah State University, Logan, UT 84322-4205 hongkai.yu@aggiemail.usu.edu

More information

Object Recognition Using Pictorial Structures. Daniel Huttenlocher Computer Science Department. In This Talk. Object recognition in computer vision

Object Recognition Using Pictorial Structures. Daniel Huttenlocher Computer Science Department. In This Talk. Object recognition in computer vision Object Recognition Using Pictorial Structures Daniel Huttenlocher Computer Science Department Joint work with Pedro Felzenszwalb, MIT AI Lab In This Talk Object recognition in computer vision Brief definition

More information

Interactive Foreground Extraction using graph cut

Interactive Foreground Extraction using graph cut Interactive Foreground Extraction using graph cut Carsten Rother, Vladimir Kolmogorov, Yuri Boykov, Andrew Blake Microsoft Technical Report: MSR-TR-2011-46 Note, this is an extended version of chapter

More information

Clustering Lecture 8. David Sontag New York University. Slides adapted from Luke Zettlemoyer, Vibhav Gogate, Carlos Guestrin, Andrew Moore, Dan Klein

Clustering Lecture 8. David Sontag New York University. Slides adapted from Luke Zettlemoyer, Vibhav Gogate, Carlos Guestrin, Andrew Moore, Dan Klein Clustering Lecture 8 David Sontag New York University Slides adapted from Luke Zettlemoyer, Vibhav Gogate, Carlos Guestrin, Andrew Moore, Dan Klein Clustering: Unsupervised learning Clustering Requires

More information

Adaptive Learning of an Accurate Skin-Color Model

Adaptive Learning of an Accurate Skin-Color Model Adaptive Learning of an Accurate Skin-Color Model Q. Zhu K.T. Cheng C. T. Wu Y. L. Wu Electrical & Computer Engineering University of California, Santa Barbara Presented by: H.T Wang Outline Generic Skin

More information

Applications. Foreground / background segmentation Finding skin-colored regions. Finding the moving objects. Intelligent scissors

Applications. Foreground / background segmentation Finding skin-colored regions. Finding the moving objects. Intelligent scissors Segmentation I Goal Separate image into coherent regions Berkeley segmentation database: http://www.eecs.berkeley.edu/research/projects/cs/vision/grouping/segbench/ Slide by L. Lazebnik Applications Intelligent

More information

Normalized Cut Loss for Weakly-supervised CNN Segmentation

Normalized Cut Loss for Weakly-supervised CNN Segmentation Normalized Cut Loss for Weakly-supervised CNN Segmentation Meng Tang 2,1* Abdelaziz Djelouah 1 Federico Perazzi 1 Yuri Boykov 2 Christopher Schroers 1 1 Disney Research, Zürich, Switzerland 2 Computer

More information

Spatial-Color Pixel Classification by Spectral Clustering for Color Image Segmentation

Spatial-Color Pixel Classification by Spectral Clustering for Color Image Segmentation 2008 ICTTA Damascus (Syria), April, 2008 Spatial-Color Pixel Classification by Spectral Clustering for Color Image Segmentation Pierre-Alexandre Hébert (LASL) & L. Macaire (LAGIS) Context Summary Segmentation

More information

CS 229 Midterm Review

CS 229 Midterm Review CS 229 Midterm Review Course Staff Fall 2018 11/2/2018 Outline Today: SVMs Kernels Tree Ensembles EM Algorithm / Mixture Models [ Focus on building intuition, less so on solving specific problems. Ask

More information

Computer Vision II Lecture 4

Computer Vision II Lecture 4 Computer Vision II Lecture 4 Color based Tracking 29.04.2014 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course Outline Single-Object Tracking Background modeling

More information

Overview Citation. ML Introduction. Overview Schedule. ML Intro Dataset. Introduction to Semi-Supervised Learning Review 10/4/2010

Overview Citation. ML Introduction. Overview Schedule. ML Intro Dataset. Introduction to Semi-Supervised Learning Review 10/4/2010 INFORMATICS SEMINAR SEPT. 27 & OCT. 4, 2010 Introduction to Semi-Supervised Learning Review 2 Overview Citation X. Zhu and A.B. Goldberg, Introduction to Semi- Supervised Learning, Morgan & Claypool Publishers,

More information

VIDEO MATTING USING MOTION EXTENDED GRABCUT

VIDEO MATTING USING MOTION EXTENDED GRABCUT VIDEO MATTING USING MOTION EXTENDED GRABCUT David Corrigan 1, Simon Robinson 2 and Anil Kokaram 1 1 Sigmedia Group, Trinity College Dublin, Ireland. Email: {corrigad, akokaram}@tcd.ie 2 The Foundry, London,

More information

Outline. Segmentation & Grouping. Examples of grouping in vision. Grouping in vision. Grouping in vision 2/9/2011. CS 376 Lecture 7 Segmentation 1

Outline. Segmentation & Grouping. Examples of grouping in vision. Grouping in vision. Grouping in vision 2/9/2011. CS 376 Lecture 7 Segmentation 1 Outline What are grouping problems in vision? Segmentation & Grouping Wed, Feb 9 Prof. UT-Austin Inspiration from human perception Gestalt properties Bottom-up segmentation via clustering Algorithms: Mode

More information

Normalized Cuts Clustering with Prior Knowledge and a Pre-clustering Stage

Normalized Cuts Clustering with Prior Knowledge and a Pre-clustering Stage Normalized Cuts Clustering with Prior Knowledge and a Pre-clustering Stage D. Peluffo-Ordoñez 1, A. E. Castro-Ospina 1, D. Chavez-Chamorro 1, C. D. Acosta-Medina 1, and G. Castellanos-Dominguez 1 1- Signal

More information

SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014

SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014 SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014 SIFT SIFT: Scale Invariant Feature Transform; transform image

More information

Object segmentation in video via graph cut built on superpixels

Object segmentation in video via graph cut built on superpixels Fundamenta Informaticae 90 (2009) 1 15 1 DOI 10.3233/FI-2009-0001 IOS Press Object segmentation in video via graph cut built on superpixels Bogdan Kwolek Rzeszów University of Technology Rzeszów, Poland

More information

MACHINE LEARNING: CLUSTERING, AND CLASSIFICATION. Steve Tjoa June 25, 2014

MACHINE LEARNING: CLUSTERING, AND CLASSIFICATION. Steve Tjoa June 25, 2014 MACHINE LEARNING: CLUSTERING, AND CLASSIFICATION Steve Tjoa kiemyang@gmail.com June 25, 2014 Review from Day 2 Supervised vs. Unsupervised Unsupervised - clustering Supervised binary classifiers (2 classes)

More information

MEDICAL IMAGE COMPUTING (CAP 5937) LECTURE 10: Medical Image Segmentation as an Energy Minimization Problem

MEDICAL IMAGE COMPUTING (CAP 5937) LECTURE 10: Medical Image Segmentation as an Energy Minimization Problem SPRING 06 MEDICAL IMAGE COMPUTING (CAP 97) LECTURE 0: Medical Image Segmentation as an Energy Minimization Problem Dr. Ulas Bagci HEC, Center for Research in Computer Vision (CRCV), University of Central

More information

Image Segmentation. Luc Van Gool, ETH Zurich. Vittorio Ferrari, Un. of Edinburgh. With important contributions by

Image Segmentation. Luc Van Gool, ETH Zurich. Vittorio Ferrari, Un. of Edinburgh. With important contributions by Image Segmentation Perceptual and Sensory Augmented Computing Computer Vision WS 0/09 Luc Van Gool, ETH Zurich With important contributions by Vittorio Ferrari, Un. of Edinburgh Slide credits: K. Grauman,

More information

Automatic User Interaction Correction via Multi-label Graph Cuts

Automatic User Interaction Correction via Multi-label Graph Cuts Automatic User Interaction Correction via Multi-label Graph Cuts Antonio Hernández-Vela 1,2 ahernandez@cvc.uab.cat Carlos Primo 2 carlos.pg79@gmail.com Sergio Escalera 1,2 sergio@maia.ub.es 1 Computer

More information