Bayesian Analysis of Differential Gene Expression

Size: px
Start display at page:

Download "Bayesian Analysis of Differential Gene Expression"

Transcription

1 Bayesian Analysis of Differential Gene Expression Biostat Journal Club Chuan Zhou Department of Biostatistics Vanderbilt University Bayesian Modeling p. 1/1

2 Lewin et al., 2006 Goals and Data Model specification Model checking Integrated vs. non-integrated Application to mouse data Discussion Bayesian Modeling p. 2/1

3 Goals Difficulties with differential gene expression analysis Fold change not comparable between genes Small numbers of replicates Multiple sources of variability Proposed approach: model biological variability, systematic array effects and differential expression simultaneously A fully Bayesian model, take into account uncertainty in parameter estimates Decision rules based on posterior distributions Use Bayesian FDR estimate to select cutoff point Bayesian Modeling p. 3/1

4 Data Three wild-type mice and three mice with Cd36 gene removed Hybridized to Affymetrix U74A, U74B and U74C chips, total 18 microarrays U74A chip data: three repeated measurements of two conditions for each of the 12,488 genes Data pre-processed by Affymetrix MAS 5.0 software Skewed data use log transformation Bayesian Modeling p. 4/1

5 Bayesian hierarchical model Intuition Observed = Gene effect + Differential effect + Array effect Notations: y gsr = log-expression of gene g, condition s = 1, 2, and replicate r. An ANOVA model y g1r N(α g 1 2 δ g + β g1r, σ 2 g1) y g2r N(α g δ g + β g2r, σ 2 g2) Identifiability constraint: β gs = 0, g, s Bayesian Modeling p. 5/1

6 The Model Model array effect as a function of the expression level β gsr = f sr (α g ). For example, a quadratic spline β gsr =b (0) sr0 + b(1) sr0 (α g a 0 ) + b (2) sr0 (α g a 0 ) 2 K + b (2) sr0 (α g a 0 ) 2 I[α g a srk ], k=1 Assume variances are exchangeable within condition σ 2 gs lognorm(µ s, η 2 s). Gene effects α g and knots a srk are uniform between (a 0, a K+1 ) which are pre-specified bounds. Bayesian Modeling p. 6/1

7 The Model Confounding: normalizing across replicates and conditions in a preprocessing step implicitly assume there is no differential effects Implementation: MCMC using WinBUGS, code available online, 74,922 data points, 1000 iterations took approximately 3 hours on a dual processor 2.4 GHz machine Rules for selecting genes p g P( δ g > δ cut and α g > α cut data) Genes are selected if p g p cut. The choice of p cut is determined by the evaluation of FDR. Bayesian Modeling p. 7/1

8 Model checking Use biological replicate data Exploratory analysis of array effects Divide genes into J groups with similar expression levels y g1r N(α g + β j1r, σ 2 j1 ) Try various functional forms f( ) for array effects determined by DIC Clearly see non-linear relationship between gene effects and array effects Bayesian Modeling p. 8/1

9 Non-linear array effects Bayesian Modeling p. 9/1

10 Predictive checks on prior for variance Four possibilities: equal variance model σgs 2 σs, 2 σs 2 lognorm(0, 10 4 ); exchangeable log-normal variance model; exchangeable with 1-parameter gamma σgs 2 Gam(2, βs prior ), βs prior Gam(10 2, 10 2 ); exchangeable model with 2-parameter gamma σgs 2 Gam(αs prior, βs prior ), αs prior Gam(10 2, 10 2 ) and βs prior Gam(10 2, 10 2 ). Use predictive p-values under the model Simulate y (pred) gs p gs P(S 2(pred) gs N(α g + f(α g ), σ 2 gs) > S 2(obs) gs ) Under the null hypothesis of the model being true, the distribution of p-values is almost uniform. Bayesian Modeling p. 10/1

11 Non-linear array effects Bayesian Modeling p. 11/1

12 Integrated vs. non-integrated analysis Expect to obtain biased estimates of the array effects if they are estimated in a preprocessing step, similar to a measurement error problem A simulation study compare to pre-normalization using loess smoothing The ratios of MSE of array effects (loess vs. full model) are 1.5, 1.3, 1.2, 1.2, 1.4, 1.3 (averaged for 5 simulation each chip). Lower estimated FDR with full model, but no difference in FNR The larger the magnitude of array effects, the larger the difference between the pre-normalized and integrated models Bayesian Modeling p. 12/1

13 Non-linear array effects Bayesian Modeling p. 13/1

14 Application to mouse data Choose α cut = 4, δ cut = log(2) a priori FDR = [1/ S(p cut ] g S(p cut ) (1 p g), where S(p cut ) is the group of genes with p g > p cut and S(p cut ) is its cardinality. standardized log-fold difference t g E(δ g /[σ 2 g1 + σ 2 g2/3] 1/2 data) Bayesian Modeling p. 14/1

15 Non-linear array effects Bayesian Modeling p. 15/1

16 Non-linear array effects Bayesian Modeling p. 16/1

17 Discussion Unified Bayesian hierarchical model Justify functional choice by exploratory analysis Joint estimation of differential effects and array effects Richer output Expert opinions expressed in pre-selected cutoffs Bayesian Modeling p. 17/1

/ Computational Genomics. Normalization

/ Computational Genomics. Normalization 10-810 /02-710 Computational Genomics Normalization Genes and Gene Expression Technology Display of Expression Information Yeast cell cycle expression Experiments (over time) baseline expression program

More information

Calibration and emulation of TIE-GCM

Calibration and emulation of TIE-GCM Calibration and emulation of TIE-GCM Serge Guillas School of Mathematics Georgia Institute of Technology Jonathan Rougier University of Bristol Big Thanks to Crystal Linkletter (SFU-SAMSI summer school)

More information

Course on Microarray Gene Expression Analysis

Course on Microarray Gene Expression Analysis Course on Microarray Gene Expression Analysis ::: Normalization methods and data preprocessing Madrid, April 27th, 2011. Gonzalo Gómez ggomez@cnio.es Bioinformatics Unit CNIO ::: Introduction. The probe-level

More information

Preprocessing -- examples in microarrays

Preprocessing -- examples in microarrays Preprocessing -- examples in microarrays I: cdna arrays Image processing Addressing (gridding) Segmentation (classify a pixel as foreground or background) Intensity extraction (summary statistic) Normalization

More information

INLA: an introduction

INLA: an introduction INLA: an introduction Håvard Rue 1 Norwegian University of Science and Technology Trondheim, Norway May 2009 1 Joint work with S.Martino (Trondheim) and N.Chopin (Paris) Latent Gaussian models Background

More information

Automated Bioinformatics Analysis System on Chip ABASOC. version 1.1

Automated Bioinformatics Analysis System on Chip ABASOC. version 1.1 Automated Bioinformatics Analysis System on Chip ABASOC version 1.1 Phillip Winston Miller, Priyam Patel, Daniel L. Johnson, PhD. University of Tennessee Health Science Center Office of Research Molecular

More information

Gene signature selection to predict survival benefits from adjuvant chemotherapy in NSCLC patients

Gene signature selection to predict survival benefits from adjuvant chemotherapy in NSCLC patients 1 Gene signature selection to predict survival benefits from adjuvant chemotherapy in NSCLC patients 1,2 Keyue Ding, Ph.D. Nov. 8, 2014 1 NCIC Clinical Trials Group, Kingston, Ontario, Canada 2 Dept. Public

More information

Microarray Data Analysis (V) Preprocessing (i): two-color spotted arrays

Microarray Data Analysis (V) Preprocessing (i): two-color spotted arrays Microarray Data Analysis (V) Preprocessing (i): two-color spotted arrays Preprocessing Probe-level data: the intensities read for each of the components. Genomic-level data: the measures being used in

More information

Package BAC. R topics documented: November 30, 2018

Package BAC. R topics documented: November 30, 2018 Type Package Title Bayesian Analysis of Chip-chip experiment Version 1.42.0 Date 2007-11-20 Author Raphael Gottardo Package BAC November 30, 2018 Maintainer Raphael Gottardo Depends

More information

Bayesian Robust Inference of Differential Gene Expression The bridge package

Bayesian Robust Inference of Differential Gene Expression The bridge package Bayesian Robust Inference of Differential Gene Expression The bridge package Raphael Gottardo October 30, 2017 Contents Department Statistics, University of Washington http://www.rglab.org raph@stat.washington.edu

More information

RJaCGH, a package for analysis of

RJaCGH, a package for analysis of RJaCGH, a package for analysis of CGH arrays with Reversible Jump MCMC 1. CGH Arrays: Biological problem: Changes in number of DNA copies are associated to cancer activity. Microarray technology: Oscar

More information

A spatio-temporal model for extreme precipitation simulated by a climate model.

A spatio-temporal model for extreme precipitation simulated by a climate model. A spatio-temporal model for extreme precipitation simulated by a climate model. Jonathan Jalbert Joint work with Anne-Catherine Favre, Claude Bélisle and Jean-François Angers STATMOS Workshop: Climate

More information

CARMAweb users guide version Johannes Rainer

CARMAweb users guide version Johannes Rainer CARMAweb users guide version 1.0.8 Johannes Rainer July 4, 2006 Contents 1 Introduction 1 2 Preprocessing 5 2.1 Preprocessing of Affymetrix GeneChip data............................. 5 2.2 Preprocessing

More information

A toolbox of smooths. Simon Wood Mathematical Sciences, University of Bath, U.K.

A toolbox of smooths. Simon Wood Mathematical Sciences, University of Bath, U.K. A toolbo of smooths Simon Wood Mathematical Sciences, University of Bath, U.K. Smooths for semi-parametric GLMs To build adequate semi-parametric GLMs requires that we use functions with appropriate properties.

More information

Package enrich. September 3, 2013

Package enrich. September 3, 2013 Package enrich September 3, 2013 Type Package Title An R package for the analysis of multiple ChIP-seq data Version 2.0 Date 2013-09-01 Author Yanchun Bao , Veronica Vinciotti

More information

Bayesian model selection and diagnostics

Bayesian model selection and diagnostics Bayesian model selection and diagnostics A typical Bayesian analysis compares a handful of models. Example 1: Consider the spline model for the motorcycle data, how many basis functions? Example 2: Consider

More information

From Bayesian Analysis of Item Response Theory Models Using SAS. Full book available for purchase here.

From Bayesian Analysis of Item Response Theory Models Using SAS. Full book available for purchase here. From Bayesian Analysis of Item Response Theory Models Using SAS. Full book available for purchase here. Contents About this Book...ix About the Authors... xiii Acknowledgments... xv Chapter 1: Item Response

More information

Introduction to GE Microarray data analysis Practical Course MolBio 2012

Introduction to GE Microarray data analysis Practical Course MolBio 2012 Introduction to GE Microarray data analysis Practical Course MolBio 2012 Claudia Pommerenke Nov-2012 Transkriptomanalyselabor TAL Microarray and Deep Sequencing Core Facility Göttingen University Medical

More information

Manual for the R gaga package

Manual for the R gaga package Manual for the R gaga package David Rossell Department of Bioinformatics & Biostatistics IRB Barcelona Barcelona, Spain. rosselldavid@gmail.com Here we illustrate several uses of the package gaga, including

More information

Manual for the R gaga package

Manual for the R gaga package Manual for the R gaga package David Rossell Department of Bioinformatics & Biostatistics IRB Barcelona Barcelona, Spain. rosselldavid@gmail.com 1 Introduction Newton et al. [2001] and Kendziorski et al.

More information

BART STAT8810, Fall 2017

BART STAT8810, Fall 2017 BART STAT8810, Fall 2017 M.T. Pratola November 1, 2017 Today BART: Bayesian Additive Regression Trees BART: Bayesian Additive Regression Trees Additive model generalizes the single-tree regression model:

More information

Introduction to WinBUGS

Introduction to WinBUGS Introduction to WinBUGS Joon Jin Song Department of Statistics Texas A&M University Introduction: BUGS BUGS: Bayesian inference Using Gibbs Sampling Bayesian Analysis of Complex Statistical Models using

More information

GAMs semi-parametric GLMs. Simon Wood Mathematical Sciences, University of Bath, U.K.

GAMs semi-parametric GLMs. Simon Wood Mathematical Sciences, University of Bath, U.K. GAMs semi-parametric GLMs Simon Wood Mathematical Sciences, University of Bath, U.K. Generalized linear models, GLM 1. A GLM models a univariate response, y i as g{e(y i )} = X i β where y i Exponential

More information

Generalized Additive Models

Generalized Additive Models :p Texts in Statistical Science Generalized Additive Models An Introduction with R Simon N. Wood Contents Preface XV 1 Linear Models 1 1.1 A simple linear model 2 Simple least squares estimation 3 1.1.1

More information

Package TANOVA. R topics documented: February 19, Version Date

Package TANOVA. R topics documented: February 19, Version Date Version 1.0.0 Date 2010-05-05 Package TANOVA February 19, 2015 Title Time Course Analysis of Variance for Microarray Depends R (>= 2.3.0), MASS, splines Author Baiyu Zhou and Weihong

More information

Graphical Models, Bayesian Method, Sampling, and Variational Inference

Graphical Models, Bayesian Method, Sampling, and Variational Inference Graphical Models, Bayesian Method, Sampling, and Variational Inference With Application in Function MRI Analysis and Other Imaging Problems Wei Liu Scientific Computing and Imaging Institute University

More information

February 2017 (1/20) 2 Piecewise Polynomial Interpolation 2.2 (Natural) Cubic Splines. MA378/531 Numerical Analysis II ( NA2 )

February 2017 (1/20) 2 Piecewise Polynomial Interpolation 2.2 (Natural) Cubic Splines. MA378/531 Numerical Analysis II ( NA2 ) f f f f f (/2).9.8.7.6.5.4.3.2. S Knots.7.6.5.4.3.2. 5 5.2.8.6.4.2 S Knots.2 5 5.9.8.7.6.5.4.3.2..9.8.7.6.5.4.3.2. S Knots 5 5 S Knots 5 5 5 5.35.3.25.2.5..5 5 5.6.5.4.3.2. 5 5 4 x 3 3.5 3 2.5 2.5.5 5

More information

R-Square Coeff Var Root MSE y Mean

R-Square Coeff Var Root MSE y Mean STAT:50 Applied Statistics II Exam - Practice 00 possible points. Consider a -factor study where each of the factors has 3 levels. The factors are Diet (,,3) and Drug (A,B,C) and there are n = 3 observations

More information

NONPARAMETRIC REGRESSION SPLINES FOR GENERALIZED LINEAR MODELS IN THE PRESENCE OF MEASUREMENT ERROR

NONPARAMETRIC REGRESSION SPLINES FOR GENERALIZED LINEAR MODELS IN THE PRESENCE OF MEASUREMENT ERROR NONPARAMETRIC REGRESSION SPLINES FOR GENERALIZED LINEAR MODELS IN THE PRESENCE OF MEASUREMENT ERROR J. D. Maca July 1, 1997 Abstract The purpose of this manual is to demonstrate the usage of software for

More information

Package twilight. August 3, 2013

Package twilight. August 3, 2013 Package twilight August 3, 2013 Version 1.37.0 Title Estimation of local false discovery rate Author Stefanie Scheid In a typical microarray setting with gene expression data observed

More information

Microarray Data Analysis (VI) Preprocessing (ii): High-density Oligonucleotide Arrays

Microarray Data Analysis (VI) Preprocessing (ii): High-density Oligonucleotide Arrays Microarray Data Analysis (VI) Preprocessing (ii): High-density Oligonucleotide Arrays High-density Oligonucleotide Array High-density Oligonucleotide Array PM (Perfect Match): The perfect match probe has

More information

Gradient LASSO algoithm

Gradient LASSO algoithm Gradient LASSO algoithm Yongdai Kim Seoul National University, Korea jointly with Yuwon Kim University of Minnesota, USA and Jinseog Kim Statistical Research Center for Complex Systems, Korea Contents

More information

Application of Hierarchical Clustering to Find Expression Modules in Cancer

Application of Hierarchical Clustering to Find Expression Modules in Cancer Application of Hierarchical Clustering to Find Expression Modules in Cancer T. M. Murali August 18, 2008 Innovative Application of Hierarchical Clustering A module map showing conditional activity of expression

More information

Gene Expression an Overview of Problems & Solutions: 1&2. Utah State University Bioinformatics: Problems and Solutions Summer 2006

Gene Expression an Overview of Problems & Solutions: 1&2. Utah State University Bioinformatics: Problems and Solutions Summer 2006 Gene Expression an Overview of Problems & Solutions: 1&2 Utah State University Bioinformatics: Problems and Solutions Summer 2006 Review DNA mrna Proteins action! mrna transcript abundance ~ expression

More information

Normalization: Bioconductor s marray package

Normalization: Bioconductor s marray package Normalization: Bioconductor s marray package Yee Hwa Yang 1 and Sandrine Dudoit 2 October 30, 2017 1. Department of edicine, University of California, San Francisco, jean@biostat.berkeley.edu 2. Division

More information

Exploratory data analysis for microarrays

Exploratory data analysis for microarrays Exploratory data analysis for microarrays Jörg Rahnenführer Computational Biology and Applied Algorithmics Max Planck Institute for Informatics D-66123 Saarbrücken Germany NGFN - Courses in Practical DNA

More information

How to use the rbsurv Package

How to use the rbsurv Package How to use the rbsurv Package HyungJun Cho, Sukwoo Kim, Soo-heang Eo, and Jaewoo Kang April 30, 2018 Contents 1 Introduction 1 2 Robust likelihood-based survival modeling 2 3 Algorithm 2 4 Example: Glioma

More information

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University DS 4400 Machine Learning and Data Mining I Alina Oprea Associate Professor, CCIS Northeastern University September 20 2018 Review Solution for multiple linear regression can be computed in closed form

More information

Model validation T , , Heli Hiisilä

Model validation T , , Heli Hiisilä Model validation T-61.6040, 03.10.2006, Heli Hiisilä Testing Neural Models: How to Use Re-Sampling Techniques? A. Lendasse & Fast bootstrap methodology for model selection, A. Lendasse, G. Simon, V. Wertz,

More information

Deposited on: 07 September 2010

Deposited on: 07 September 2010 Lee, D. and Shaddick, G. (2007) Time-varying coefficient models for the analysis of air pollution and health outcome data. Biometrics, 63 (4). pp. 1253-1261. ISSN 0006-341X http://eprints.gla.ac.uk/36767

More information

Canopy Light: Synthesizing multiple data sources

Canopy Light: Synthesizing multiple data sources Canopy Light: Synthesizing multiple data sources Tree growth depends upon light (previous example, lab 7) Hard to measure how much light an ADULT tree receives Multiple sources of proxy data Exposed Canopy

More information

Analysis of (cdna) Microarray Data: Part I. Sources of Bias and Normalisation

Analysis of (cdna) Microarray Data: Part I. Sources of Bias and Normalisation Analysis of (cdna) Microarray Data: Part I. Sources of Bias and Normalisation MICROARRAY ANALYSIS My (Educated?) View 1. Data included in GEXEX a. Whole data stored and securely available b. GP3xCLI on

More information

Double Self-Organizing Maps to Cluster Gene Expression Data

Double Self-Organizing Maps to Cluster Gene Expression Data Double Self-Organizing Maps to Cluster Gene Expression Data Dali Wang, Habtom Ressom, Mohamad Musavi, Cristian Domnisoru University of Maine, Department of Electrical & Computer Engineering, Intelligent

More information

Package madsim. December 7, 2016

Package madsim. December 7, 2016 Type Package Package madsim December 7, 2016 Title A Flexible Microarray Data Simulation Model Version 1.2.1 Date 2016-12-07 Author Doulaye Dembele Maintainer Doulaye Dembele Description

More information

DDP ANOVA Model. May 9, ddpanova-package... 1 ddpanova... 2 ddpsurvival... 5 post.pred... 7 post.sim DDP ANOVA with univariate response

DDP ANOVA Model. May 9, ddpanova-package... 1 ddpanova... 2 ddpsurvival... 5 post.pred... 7 post.sim DDP ANOVA with univariate response R topics documented: DDP ANOVA Model May 9, 2007 ddpanova-package..................................... 1 ddpanova.......................................... 2 ddpsurvival.........................................

More information

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University DS 4400 Machine Learning and Data Mining I Alina Oprea Associate Professor, CCIS Northeastern University January 24 2019 Logistics HW 1 is due on Friday 01/25 Project proposal: due Feb 21 1 page description

More information

Variational Methods for Discrete-Data Latent Gaussian Models

Variational Methods for Discrete-Data Latent Gaussian Models Variational Methods for Discrete-Data Latent Gaussian Models University of British Columbia Vancouver, Canada March 6, 2012 The Big Picture Joint density models for data with mixed data types Bayesian

More information

Subgroup identification for dose-finding trials via modelbased recursive partitioning

Subgroup identification for dose-finding trials via modelbased recursive partitioning Subgroup identification for dose-finding trials via modelbased recursive partitioning Marius Thomas, Björn Bornkamp, Heidi Seibold & Torsten Hothorn ISCB 2017, Vigo July 10, 2017 Motivation Characterizing

More information

L10. PARTICLE FILTERING CONTINUED. NA568 Mobile Robotics: Methods & Algorithms

L10. PARTICLE FILTERING CONTINUED. NA568 Mobile Robotics: Methods & Algorithms L10. PARTICLE FILTERING CONTINUED NA568 Mobile Robotics: Methods & Algorithms Gaussian Filters The Kalman filter and its variants can only model (unimodal) Gaussian distributions Courtesy: K. Arras Motivation

More information

Preprocessing, Multiphase Inference, and Massive Data in Theory and Practice

Preprocessing, Multiphase Inference, and Massive Data in Theory and Practice Preprocessing, Multiphase Inference, and Massive Data in Theory and Practice Alexander W Blocker Department of Statistics Harvard University MMDS 2012 July 13, 2012 Joint work with Xiao-Li Meng Alexander

More information

A Nonparametric Bayesian Approach to Detecting Spatial Activation Patterns in fmri Data

A Nonparametric Bayesian Approach to Detecting Spatial Activation Patterns in fmri Data A Nonparametric Bayesian Approach to Detecting Spatial Activation Patterns in fmri Data Seyoung Kim, Padhraic Smyth, and Hal Stern Bren School of Information and Computer Sciences University of California,

More information

1 Methods for Posterior Simulation

1 Methods for Posterior Simulation 1 Methods for Posterior Simulation Let p(θ y) be the posterior. simulation. Koop presents four methods for (posterior) 1. Monte Carlo integration: draw from p(θ y). 2. Gibbs sampler: sequentially drawing

More information

Image analysis. Computer Vision and Classification Image Segmentation. 7 Image analysis

Image analysis. Computer Vision and Classification Image Segmentation. 7 Image analysis 7 Computer Vision and Classification 413 / 458 Computer Vision and Classification The k-nearest-neighbor method The k-nearest-neighbor (knn) procedure has been used in data analysis and machine learning

More information

ISyE8843A, Brani Vidakovic Handout 14

ISyE8843A, Brani Vidakovic Handout 14 ISyE8843A, Brani Vidakovic Handout 4 BUGS BUGS is freely available software for constructing Bayesian statistical models and evaluating them using MCMC methodology. BUGS and WINBUGS are distributed freely

More information

Tutorial - Analysis of Microarray Data. Microarray Core E Consortium for Functional Glycomics Funded by the NIGMS

Tutorial - Analysis of Microarray Data. Microarray Core E Consortium for Functional Glycomics Funded by the NIGMS Tutorial - Analysis of Microarray Data Microarray Core E Consortium for Functional Glycomics Funded by the NIGMS Data Analysis introduction Warning: Microarray data analysis is a constantly evolving science.

More information

Probabilistic multi-resolution scanning for cross-sample differences

Probabilistic multi-resolution scanning for cross-sample differences Probabilistic multi-resolution scanning for cross-sample differences Li Ma (joint work with Jacopo Soriano) Duke University 10th Conference on Bayesian Nonparametrics Li Ma (Duke) Multi-resolution scanning

More information

An Effective and Efficient Performance Optimization Method by Design & Experiment: A Case Study with Ceph Storage

An Effective and Efficient Performance Optimization Method by Design & Experiment: A Case Study with Ceph Storage An Effective and Efficient Performance Optimization Method by Design & Experiment: A Case Study with Ceph Storage Lay Wai Kong, Ph.D. Six Sigma Master Black Belt Intel Corporation 1 Objective: Design of

More information

Hierarchical Modelling for Large Spatial Datasets

Hierarchical Modelling for Large Spatial Datasets Hierarchical Modelling for Large Spatial Datasets Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics,

More information

Package EBglmnet. January 30, 2016

Package EBglmnet. January 30, 2016 Type Package Package EBglmnet January 30, 2016 Title Empirical Bayesian Lasso and Elastic Net Methods for Generalized Linear Models Version 4.1 Date 2016-01-15 Author Anhui Huang, Dianting Liu Maintainer

More information

Pathway Analysis using Partek Genomics Suite 6.6 and Partek Pathway

Pathway Analysis using Partek Genomics Suite 6.6 and Partek Pathway Pathway Analysis using Partek Genomics Suite 6.6 and Partek Pathway Overview Partek Pathway provides a visualization tool for pathway enrichment spreadsheets, utilizing KEGG and/or Reactome databases for

More information

General Factorial Models

General Factorial Models In Chapter 8 in Oehlert STAT:5201 Week 9 - Lecture 2 1 / 34 It is possible to have many factors in a factorial experiment. In DDD we saw an example of a 3-factor study with ball size, height, and surface

More information

Effective probabilistic stopping rules for randomized metaheuristics: GRASP implementations

Effective probabilistic stopping rules for randomized metaheuristics: GRASP implementations Effective probabilistic stopping rules for randomized metaheuristics: GRASP implementations Celso C. Ribeiro Isabel Rosseti Reinaldo C. Souza Universidade Federal Fluminense, Brazil July 2012 1/45 Contents

More information

R package mcll for Monte Carlo local likelihood estimation

R package mcll for Monte Carlo local likelihood estimation R package mcll for Monte Carlo local likelihood estimation Minjeong Jeon University of California, Berkeley Sophia Rabe-Hesketh University of California, Berkeley February 4, 2013 Cari Kaufman University

More information

GNU MCSim Frederic Yves Bois Chair of mathematical modeling and system biology for predictive toxicology

GNU MCSim Frederic Yves Bois Chair of mathematical modeling and system biology for predictive toxicology GNU MCSim Frederic Yves Bois Chair of mathematical modeling and system biology for predictive toxicology frederic.bois@utc.fr 20/06/2011 1 / 11 Talk overview GNU MCSim is... What it can do Statistical

More information

Slides 11: Verification and Validation Models

Slides 11: Verification and Validation Models Slides 11: Verification and Validation Models Purpose and Overview The goal of the validation process is: To produce a model that represents true behaviour closely enough for decision making purposes.

More information

Title. Description. Menu. Remarks and examples. stata.com. stata.com. PSS Control Panel

Title. Description. Menu. Remarks and examples. stata.com. stata.com. PSS Control Panel Title stata.com GUI Graphical user interface for power and sample-size analysis Description Menu Remarks and examples Also see Description This entry describes the graphical user interface (GUI) for the

More information

PROCEDURE HELP PREPARED BY RYAN MURPHY

PROCEDURE HELP PREPARED BY RYAN MURPHY Module on Microarray Statistics for Biochemistry: Metabolomics & Regulation Part 2: Normalization of Microarray Data By Johanna Hardin and Laura Hoopes Instructions and worksheet to be handed in NAME Lecture/Discussion

More information

srap: Simplified RNA-Seq Analysis Pipeline

srap: Simplified RNA-Seq Analysis Pipeline srap: Simplified RNA-Seq Analysis Pipeline Charles Warden October 30, 2017 1 Introduction This package provides a pipeline for gene expression analysis. The normalization function is specific for RNA-Seq

More information

Fly wing length data Sokal and Rohlf Box 10.1 Ch13.xls. on chalk board

Fly wing length data Sokal and Rohlf Box 10.1 Ch13.xls. on chalk board Model Based Statistics in Biology. Part IV. The General Linear Model. Multiple Explanatory Variables. Chapter 13.6 Nested Factors (Hierarchical ANOVA ReCap. Part I (Chapters 1,2,3,4), Part II (Ch 5, 6,

More information

A Topography-Preserving Latent Variable Model with Learning Metrics

A Topography-Preserving Latent Variable Model with Learning Metrics A Topography-Preserving Latent Variable Model with Learning Metrics Samuel Kaski and Janne Sinkkonen Helsinki University of Technology Neural Networks Research Centre P.O. Box 5400, FIN-02015 HUT, Finland

More information

Statistical Matching using Fractional Imputation

Statistical Matching using Fractional Imputation Statistical Matching using Fractional Imputation Jae-Kwang Kim 1 Iowa State University 1 Joint work with Emily Berg and Taesung Park 1 Introduction 2 Classical Approaches 3 Proposed method 4 Application:

More information

TTEDesigner User s Manual

TTEDesigner User s Manual TTEDesigner User s Manual John D. Cook Department of Biostatistics, Box 447 The University of Texas, M. D. Anderson Cancer Center 1515 Holcombe Blvd., Houston, Texas 77030, USA cook@mdanderson.org September

More information

winbugs and openbugs

winbugs and openbugs Eric F. Lock UMN Division of Biostatistics, SPH elock@umn.edu 04/19/2017 Bayesian estimation software Several stand-alone applications and add-ons to estimate Bayesian models Stand-alone applications:

More information

CS281 Section 9: Graph Models and Practical MCMC

CS281 Section 9: Graph Models and Practical MCMC CS281 Section 9: Graph Models and Practical MCMC Scott Linderman November 11, 213 Now that we have a few MCMC inference algorithms in our toolbox, let s try them out on some random graph models. Graphs

More information

Passive Differential Matched-field Depth Estimation of Moving Acoustic Sources

Passive Differential Matched-field Depth Estimation of Moving Acoustic Sources Lincoln Laboratory ASAP-2001 Workshop Passive Differential Matched-field Depth Estimation of Moving Acoustic Sources Shawn Kraut and Jeffrey Krolik Duke University Department of Electrical and Computer

More information

Missing Data and Imputation

Missing Data and Imputation Missing Data and Imputation NINA ORWITZ OCTOBER 30 TH, 2017 Outline Types of missing data Simple methods for dealing with missing data Single and multiple imputation R example Missing data is a complex

More information

EBSeq: An R package for differential expression analysis using RNA-seq data

EBSeq: An R package for differential expression analysis using RNA-seq data EBSeq: An R package for differential expression analysis using RNA-seq data Ning Leng, John A. Dawson, Christina Kendziorski October 9, 2012 Contents 1 Introduction 2 2 The Model 3 2.1 Two conditions............................

More information

ROTS: Reproducibility Optimized Test Statistic

ROTS: Reproducibility Optimized Test Statistic ROTS: Reproducibility Optimized Test Statistic Fatemeh Seyednasrollah, Tomi Suomi, Laura L. Elo fatsey (at) utu.fi March 3, 2016 Contents 1 Introduction 2 2 Algorithm overview 3 3 Input data 3 4 Preprocessing

More information

Issues in MCMC use for Bayesian model fitting. Practical Considerations for WinBUGS Users

Issues in MCMC use for Bayesian model fitting. Practical Considerations for WinBUGS Users Practical Considerations for WinBUGS Users Kate Cowles, Ph.D. Department of Statistics and Actuarial Science University of Iowa 22S:138 Lecture 12 Oct. 3, 2003 Issues in MCMC use for Bayesian model fitting

More information

CHAPTER 3 AN OVERVIEW OF DESIGN OF EXPERIMENTS AND RESPONSE SURFACE METHODOLOGY

CHAPTER 3 AN OVERVIEW OF DESIGN OF EXPERIMENTS AND RESPONSE SURFACE METHODOLOGY 23 CHAPTER 3 AN OVERVIEW OF DESIGN OF EXPERIMENTS AND RESPONSE SURFACE METHODOLOGY 3.1 DESIGN OF EXPERIMENTS Design of experiments is a systematic approach for investigation of a system or process. A series

More information

Moving Beyond Linearity

Moving Beyond Linearity Moving Beyond Linearity The truth is never linear! 1/23 Moving Beyond Linearity The truth is never linear! r almost never! 1/23 Moving Beyond Linearity The truth is never linear! r almost never! But often

More information

STAT 705 Introduction to generalized additive models

STAT 705 Introduction to generalized additive models STAT 705 Introduction to generalized additive models Timothy Hanson Department of Statistics, University of South Carolina Stat 705: Data Analysis II 1 / 22 Generalized additive models Consider a linear

More information

Using FARMS for summarization Using I/NI-calls for gene filtering. Djork-Arné Clevert. Institute of Bioinformatics, Johannes Kepler University Linz

Using FARMS for summarization Using I/NI-calls for gene filtering. Djork-Arné Clevert. Institute of Bioinformatics, Johannes Kepler University Linz Software Manual Institute of Bioinformatics, Johannes Kepler University Linz Using FARMS for summarization Using I/NI-calls for gene filtering Djork-Arné Clevert Institute of Bioinformatics, Johannes Kepler

More information

A short reference to FSPMA definition files

A short reference to FSPMA definition files A short reference to FSPMA definition files P. Sykacek Department of Genetics & Department of Pathology University of Cambridge peter@sykacek.net June 22, 2005 Abstract This report provides a brief reference

More information

Predictor Selection Algorithm for Bayesian Lasso

Predictor Selection Algorithm for Bayesian Lasso Predictor Selection Algorithm for Baesian Lasso Quan Zhang Ma 16, 2014 1 Introduction The Lasso [1] is a method in regression model for coefficients shrinkage and model selection. It is often used in the

More information

10. Clustering. Introduction to Bioinformatics Jarkko Salojärvi. Based on lecture slides by Samuel Kaski

10. Clustering. Introduction to Bioinformatics Jarkko Salojärvi. Based on lecture slides by Samuel Kaski 10. Clustering Introduction to Bioinformatics 30.9.2008 Jarkko Salojärvi Based on lecture slides by Samuel Kaski Definition of a cluster Typically either 1. A group of mutually similar samples, or 2. A

More information

Assessing the Quality of the Natural Cubic Spline Approximation

Assessing the Quality of the Natural Cubic Spline Approximation Assessing the Quality of the Natural Cubic Spline Approximation AHMET SEZER ANADOLU UNIVERSITY Department of Statisticss Yunus Emre Kampusu Eskisehir TURKEY ahsst12@yahoo.com Abstract: In large samples,

More information

Package mederrrank. R topics documented: July 8, 2015

Package mederrrank. R topics documented: July 8, 2015 Package mederrrank July 8, 2015 Title Bayesian Methods for Identifying the Most Harmful Medication Errors Version 0.0.8 Date 2015-07-06 Two distinct but related statistical approaches to the problem of

More information

Transfer Learning on Heterogenous Feature Spaces via Spectral Transformation

Transfer Learning on Heterogenous Feature Spaces via Spectral Transformation 2010 IEEE International Conference on Data Mining Transfer Learning on Heterogenous Feature Spaces via Spectral Transformation Xiaoxiao Shi, Qi Liu, Wei Fan, Philip S. Yu, and Ruixin Zhu Department of

More information

Statistical Modeling with Spline Functions Methodology and Theory

Statistical Modeling with Spline Functions Methodology and Theory This is page 1 Printer: Opaque this Statistical Modeling with Spline Functions Methodology and Theory Mark H. Hansen University of California at Los Angeles Jianhua Z. Huang University of Pennsylvania

More information

Moving Beyond Linearity

Moving Beyond Linearity Moving Beyond Linearity Basic non-linear models one input feature: polynomial regression step functions splines smoothing splines local regression. more features: generalized additive models. Polynomial

More information

Chapter 3. Bootstrap. 3.1 Introduction. 3.2 The general idea

Chapter 3. Bootstrap. 3.1 Introduction. 3.2 The general idea Chapter 3 Bootstrap 3.1 Introduction The estimation of parameters in probability distributions is a basic problem in statistics that one tends to encounter already during the very first course on the subject.

More information

REGRESSION ANALYSIS : LINEAR BY MAUAJAMA FIRDAUS & TULIKA SAHA

REGRESSION ANALYSIS : LINEAR BY MAUAJAMA FIRDAUS & TULIKA SAHA REGRESSION ANALYSIS : LINEAR BY MAUAJAMA FIRDAUS & TULIKA SAHA MACHINE LEARNING It is the science of getting computer to learn without being explicitly programmed. Machine learning is an area of artificial

More information

Chapter 6: Linear Model Selection and Regularization

Chapter 6: Linear Model Selection and Regularization Chapter 6: Linear Model Selection and Regularization As p (the number of predictors) comes close to or exceeds n (the sample size) standard linear regression is faced with problems. The variance of the

More information

Model validation through "Posterior predictive checking" and "Leave-one-out"

Model validation through Posterior predictive checking and Leave-one-out Workshop of the Bayes WG / IBS-DR Mainz, 2006-12-01 G. Nehmiz M. Könen-Bergmann Model validation through "Posterior predictive checking" and "Leave-one-out" Overview The posterior predictive distribution

More information

A Provably Convergent Multifidelity Optimization Algorithm not Requiring High-Fidelity Derivatives

A Provably Convergent Multifidelity Optimization Algorithm not Requiring High-Fidelity Derivatives A Provably Convergent Multifidelity Optimization Algorithm not Requiring High-Fidelity Derivatives Multidisciplinary Design Optimization Specialist Conference April 4, 00 Andrew March & Karen Willcox Motivation

More information

Splines and penalized regression

Splines and penalized regression Splines and penalized regression November 23 Introduction We are discussing ways to estimate the regression function f, where E(y x) = f(x) One approach is of course to assume that f has a certain shape,

More information

Variability in Annual Temperature Profiles

Variability in Annual Temperature Profiles Variability in Annual Temperature Profiles A Multivariate Spatial Analysis of Regional Climate Model Output Tamara Greasby, Stephan Sain Institute for Mathematics Applied to Geosciences, National Center

More information

Bayesian Feedback in Data Clustering

Bayesian Feedback in Data Clustering Bayesian Feedback in Data Clustering A. K. Jain, Pavan K. Mallapragada and Martin Law Department of Computer Science and Engineering Michigan State University, East Lansing, MI-4884 {jain,pavanm,lawhiu}@cse.msu.edu

More information

Discussion on Bayesian Model Selection and Parameter Estimation in Extragalactic Astronomy by Martin Weinberg

Discussion on Bayesian Model Selection and Parameter Estimation in Extragalactic Astronomy by Martin Weinberg Discussion on Bayesian Model Selection and Parameter Estimation in Extragalactic Astronomy by Martin Weinberg Phil Gregory Physics and Astronomy Univ. of British Columbia Introduction Martin Weinberg reported

More information