Motion Planning, Part IV Graph Search Part II. Howie Choset

Size: px
Start display at page:

Download "Motion Planning, Part IV Graph Search Part II. Howie Choset"

Transcription

1 Motion Planning, Part IV Graph Search Part II Howie Choset

2 Map-Based Approaches: Properties of a roadmap: Roadmap Theory Accessibility: there exists a collision-free path from the start to the road map Departability: there exists a collision-free path from the roadmap to the goal. Connectivity: there exists a collision-free path from the start to the goal (on the roadmap). a roadmap exists a path exists Examples of Roadmaps Generalized Voronoi Graph (GVG) Visibility Graph

3 The Visibility Graph in Action (Part 1) First, draw lines of sight from the start and goal to all visible vertices and corners of the world. start goal

4 The Visibility Graph in Action (Part 2) Second, draw lines of sight from every vertex of every obstacle like before. Remember lines along edges are also lines of sight. start goal

5 The Visibility Graph in Action (Part 3) Second, draw lines of sight from every vertex of every obstacle like before. Remember lines along edges are also lines of sight. start goal

6 The Visibility Graph in Action (Part 4) Second, draw lines of sight from every vertex of every obstacle like before. Remember lines along edges are also lines of sight. start goal

7 The Visibility Graph (Done) Repeat until you re done. goal start

8 Graph Search Howie Choset

9 Informed Search: A* Notation n node/state c(n 1,n 2 ) the length of an edge connecting between n 1 and n 2 b(n 1 ) = n 2 backpointer of a node n 1 to a node n 2. 9

10 Informed Search: A* Evaluation function, f(n) = g(n) + h(n) Operating cost function, g(n) Actual operating cost having been already traversed Heuristic function, h(n) Information used to find the promising node to traverse Admissible never overestimate the actual path cost Cost on a grid 10

11 Example (1/5) 0 Start 1 1 D A C B E F J L 3 K Legend h(x) c(x) G H I 2 Priority = g(x) + h(x) Note: g(x) = sum of all previous arc costs, c(x), from start to x GOAL Example: c(h) = 2 11

12 Example (2/5) 0 Start 1 1 D A C B E F J G H I GOAL L 3 K 2 2 First expand the start node B(3) If goal not found, A(4) expand the first node C(4) in the priority queue (in this case, B) H(3) Insert the newly expanded A(4) nodes into the priority que C(4) and continue until the goal I(5) found, or the priority queu G(7) empty (in which case no p Note: for exists) each expanded node, you also need a pointer to its respective parent. For example, nodes A, B and C point to Start 12

13 Example (3/5) 0 Start 1 1 D A C B E F J G H I L 3 K 2 B(3) A(4) C(4) H(3) A(4) C(4) I(5) G(7) No expansion E(3) GOAL(5) C(4) D(5) I(5) F(7) G(7) We ve found a path to the goal: Start => A => E => Goal (from the pointers) GOAL Are we done? 13

14 0 Start 1 1 D A C L B E F J K G H I GOAL B(3) A(4) C(4) Example (4/5) H(3) A(4) C(4) I(5) G(7) No expansion E(3) C(4) D(5) I(5) F(7) G(7) GOAL(5) There might be a shorter path, but assuming non-negative arc costs, nodes with a lower prio than the goal cannot yield a better path. In this example, nodes with a priority greater th equal to 5 can be pruned. Why don t we expand nodes with an equivalen (why not expand nodes D and I?) 14

15 1 1 D A C B E F J Start 1 If the priority queue still wasn t empty, we would continue expanding while throwing away nodes with priority lower than 4. (remember, lower numbers = higher priority) 2 G H I GOAL L 2 3 K 2 B(3) A(4) C(4) Example (5/5) H(3) A(4) C(4) I(5) G(7) No expansion E(3) C(4) D(5) I(5) F(7) G(7) GOAL(5) We can continue to throw away nodes with priority levels lower than the lowest goal found. As we can see from this example, there was a shorter path through node K. To find the path, simply follow the back pointers. Therefore the path would be: Start => C => K => Goal K(4) L(5) J(5) GOAL(4) 15

16 Monotonic never overestimates the cost of getting from a node to its neighbor. for all paths x,y where y is a successor of x, i.e., h(x) g(y) - g(x) h(y) h(a) = 3 g(a) = 1 h(e) = 1 g(e) = 2 h(a) 3 g(e) - g(a) h(e)

17 Non-opportunistic 1. Put S on priority Q and expand it 2. Expand A because its priority value is 7 3. The goal is reached with priority value 8 4. This is less than B s priority value which is 13 17

18 Roadmap: GVG A GVG is formed by paths equidistant from the two closest objects Remember spokes, start and goal This generates a very safe roadmap which avoids obstacles as much as possible

19 Distance to Obstacle(s) D( q) min d ( q) i

20 Two-Equidistant Two-equidistant surface S ij { x Qfree : d ( x) d ( x) i j 0} QOi QOj

21 More Rigorous Definition Going through obstacles QO i QOk QO d ( x) d ( x) d ( x) j SS ij k i j Two-equidistant face F ij { x SS : d ( x) d ( x) d ( x), h i, j} ij i j h

22 GVD General Voronoi Diagram n 1 n i 1 j i 1 F ij

23 What about concave obstacles? vs

24 What about concave obstacles? d j d i vs d j d i

25 What about concave obstacles? d j d i vs d j d i d j d i d j d i

26 Two-Equidistant Two-equidistant surface S ij { x Qfree : d ( x) d ( x) 0} Two-equidistant surjective surface SS ij i { x S : d ( x) d ( x)} ij i j j d j Two-equidistant Face F ij { x SS : d ( x) d ( x), h i} ij i h C i d i GVD n 1 n F ij i 1 j i 1 S ij C j

27 Voronoi Diagram: Metrics

28 Note the curved edges Voronoi Diagram (L2)

29 Note the lack of curved edges Voronoi Diagram (L1)

30 Exact Cell vs. Approximate Cell Cell: simple region

31 Adjacency Graph Node correspond to a cell Edge connects nodes of adjacent cells Two cells are adjacent if they share a common boundary c 14 c 4 c 7 c 5 c 2 c 8 c 15 c 7 c 14 c 1 c c 11 c 4 c 5 c 15 c 3 10 c 13 c 2 c 8 c 11 c 6 c 9 c 12 c 1 c 10 c c 6 c 3 9 c 12 c 13

32 Set Notation

33 Examples

34 Definition

35 Cell Decompositions: Trapezoidal Decomposition A way to divide the world into smaller regions Assume a polygonal world

36 Cell Decompositions: Trapezoidal Decomposition Simply draw a vertical line from each vertex until you hit an obstacle. This reduces the world to a union of trapezoid-shaped cells

37 Applications: Coverage By reducing the world to cells, we ve essentially abstracted the world to a graph.

38 Find a path By reducing the world to cells, we ve essentially abstracted the world to a graph.

39 Find a path With an adjacency graph, a path from start to goal can be found by simple traversal start goal

40 Find a path With an adjacency graph, a path from start to goal can be found by simple traversal start goal

41 Find a path With an adjacency graph, a path from start to goal can be found by simple traversal start goal

42 Find a path With an adjacency graph, a path from start to goal can be found by simple traversal start goal

43 Find a path With an adjacency graph, a path from start to goal can be found by simple traversal start goal

44 Find a path With an adjacency graph, a path from start to goal can be found by simple traversal start goal

45 Find a path With an adjacency graph, a path from start to goal can be found by simple traversal start goal

46 Find a path With an adjacency graph, a path from start to goal can be found by simple traversal start goal

47 Find a path With an adjacency graph, a path from start to goal can be found by simple traversal start goal

48 Find a path With an adjacency graph, a path from start to goal can be found by simple traversal start goal

49 Find a path With an adjacency graph, a path from start to goal can be found by simple traversal start goal

50 Connect Midpoints of Traps

51 Applications: Coverage First, a distinction between sensor and detector must be made Sensor: Senses obstacles Detector: What actually does the coverage We ll be observing the simple case of having an omniscient sensor and having the detector s footprint equal to the robot s footprint

52 Howie Choset Robotics Institute (snake robots)

53 Cell Decompositions: Trapezoidal Decomposition How is this useful? Well, trapezoids can easily be covered with simple back-and-forth sweeping motions. If we cover all the trapezoids, we can effectively cover the entire reachable world.

54 Applications: Coverage Simply visit all the nodes, performing a sweeping motion in each, and you re done.

55 Cell Decomp. in Terms of Critical Points h m Slice is a level set Slice function: h(x,y)= x, slice={(x,y) h(x,y)= } At a critical point x of h M, h( x) m( x) where M = {x m(x)=0}

56 1-connected h(x,y) = a1

57 2-connected h(x,y) = a2

58 h(x,y) = a3 1-connected

59 h(x,y) = a4 2-connected

60 a1 a2 a3 a4 Connectivity of the slice in the free space changes at the critical points (Morse theory)

61 Each cell can be covered by back and forth motions

62 Cell-Decomposition Approach Define Decomposition Completeness Sensor-based Construction Define Other Decompositions Other patterns Extended detector

63 Provably completeness = guaranteed completeness

64 Simultaneous Coverage* and Localization *mapping too 25m x 30m Successful Experiment: Stopped because of robot battery limitations

65 Operational Hierarchy Path Planning Position Planning Local Planning Where to cover and map How to collaboratively move and maintain low position error (w/o GPS) Obstacle detection/avoidance Terrain features to inform Path Planner Calibrate robots initial location and go

66 Probabilistic Coverage

67 Process Variables Uniformity Waste Positioning Cycle-time Time-to-completion Programming time Surface Deposition

68 Conclusion: Complete Overview The Basics Motion Planning Statement The World and Robot Configuration Space Metrics Path Planning Algorithms Start-Goal Methods Lumelsky Bug Algorithms Potential Charge Functions The Wavefront Planner Map-Based Approaches Generalized Voronoi Graphs Visibility Graphs Cellular Decompositions => Coverage Done with Motion Planning!

Motion Planning. Howie CHoset

Motion Planning. Howie CHoset Motion Planning Howie CHoset Questions Where are we? Where do we go? Which is more important? Encoders Encoders Incremental Photodetector Encoder disk LED Photoemitter Encoders - Incremental Encoders -

More information

Motion Planning, Part III Graph Search, Part I. Howie Choset

Motion Planning, Part III Graph Search, Part I. Howie Choset Motion Planning, Part III Graph Search, Part I Howie Choset Happy President s Day The Configuration Space What it is A set of reachable areas constructed from knowledge of both the robot and the world

More information

Robotic Motion Planning: A* and D* Search

Robotic Motion Planning: A* and D* Search Robotic Motion Planning: A* and D* Search Robotics Institute 6-75 http://voronoi.sbp.ri.cmu.edu/~motion Howie Choset http://voronoi.sbp.ri.cmu.edu/~choset 6-75, Howie Choset with slides from G. Ayorker

More information

Road Map Methods. Including material from Howie Choset / G.D. Hager S. Leonard

Road Map Methods. Including material from Howie Choset / G.D. Hager S. Leonard Road Map Methods Including material from Howie Choset The Basic Idea Capture the connectivity of Q free by a graph or network of paths. 16-735, Howie Choset, with significant copying from who loosely based

More information

MEM380 Applied Autonomous Robots Fall Depth First Search A* and Dijkstra s Algorithm

MEM380 Applied Autonomous Robots Fall Depth First Search A* and Dijkstra s Algorithm MEM380 Applied Autonomous Robots Fall Breadth First Search Depth First Search A* and Dijkstra s Algorithm Admin Stuff Course Website: http://robotics.mem.drexel.edu/mhsieh/courses/mem380i/ Instructor:

More information

Robotic Motion Planning: Cell Decompositions (with some discussion on coverage and pursuer/evader)

Robotic Motion Planning: Cell Decompositions (with some discussion on coverage and pursuer/evader) Robotic Motion Planning: Cell Decompositions (with some discussion on coverage and pursuer/evader) Robotics Institute 16-735 http://voronoi.sbp.ri.cmu.edu/~motion Howie Choset http://voronoi.sbp.ri.cmu.edu/~choset

More information

EE631 Cooperating Autonomous Mobile Robots

EE631 Cooperating Autonomous Mobile Robots EE631 Cooperating Autonomous Mobile Robots Lecture 3: Path Planning Algorithm Prof. Yi Guo ECE Dept. Plan Representing the Space Path Planning Methods A* Search Algorithm D* Search Algorithm Representing

More information

CMU-Q Lecture 4: Path Planning. Teacher: Gianni A. Di Caro

CMU-Q Lecture 4: Path Planning. Teacher: Gianni A. Di Caro CMU-Q 15-381 Lecture 4: Path Planning Teacher: Gianni A. Di Caro APPLICATION: MOTION PLANNING Path planning: computing a continuous sequence ( a path ) of configurations (states) between an initial configuration

More information

Motion Planning. Howie CHoset

Motion Planning. Howie CHoset Motion Planning Howie CHoset What is Motion Planning? What is Motion Planning? Determining where to go Overview The Basics Motion Planning Statement The World and Robot Configuration Space Metrics Algorithms

More information

Navigation and Metric Path Planning

Navigation and Metric Path Planning Navigation and Metric Path Planning October 4, 2011 Minerva tour guide robot (CMU): Gave tours in Smithsonian s National Museum of History Example of Minerva s occupancy map used for navigation Objectives

More information

Advanced Robotics Path Planning & Navigation

Advanced Robotics Path Planning & Navigation Advanced Robotics Path Planning & Navigation 1 Agenda Motivation Basic Definitions Configuration Space Global Planning Local Planning Obstacle Avoidance ROS Navigation Stack 2 Literature Choset, Lynch,

More information

Path Planning. Marcello Restelli. Dipartimento di Elettronica e Informazione Politecnico di Milano tel:

Path Planning. Marcello Restelli. Dipartimento di Elettronica e Informazione Politecnico di Milano   tel: Marcello Restelli Dipartimento di Elettronica e Informazione Politecnico di Milano email: restelli@elet.polimi.it tel: 02 2399 3470 Path Planning Robotica for Computer Engineering students A.A. 2006/2007

More information

Metric Planning: Overview

Metric Planning: Overview Also called quantitative planning Tries to find optimal path to goal Metric Planning: Overview As opposed to some path as per qualitative approach Usually plans path as series of subgoals (waypoints) Optimal/best

More information

Visibility Graph. How does a Mobile Robot get from A to B?

Visibility Graph. How does a Mobile Robot get from A to B? Robot Path Planning Things to Consider: Spatial reasoning/understanding: robots can have many dimensions in space, obstacles can be complicated Global Planning: Do we know the environment apriori? Online

More information

Roadmaps. Vertex Visibility Graph. Reduced visibility graph, i.e., not including segments that extend into obstacles on either side.

Roadmaps. Vertex Visibility Graph. Reduced visibility graph, i.e., not including segments that extend into obstacles on either side. Roadmaps Vertex Visibility Graph Full visibility graph Reduced visibility graph, i.e., not including segments that extend into obstacles on either side. (but keeping endpoints roads) what else might we

More information

Lesson 1 Introduction to Path Planning Graph Searches: BFS and DFS

Lesson 1 Introduction to Path Planning Graph Searches: BFS and DFS Lesson 1 Introduction to Path Planning Graph Searches: BFS and DFS DASL Summer Program Path Planning References: http://robotics.mem.drexel.edu/mhsieh/courses/mem380i/index.html http://dasl.mem.drexel.edu/hing/bfsdfstutorial.htm

More information

Informed search. Soleymani. CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2016

Informed search. Soleymani. CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2016 Informed search CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2016 Soleymani Artificial Intelligence: A Modern Approach, Chapter 3 Outline Best-first search Greedy

More information

Sung-Eui Yoon ( 윤성의 )

Sung-Eui Yoon ( 윤성의 ) Path Planning for Point Robots Sung-Eui Yoon ( 윤성의 ) Course URL: http://sglab.kaist.ac.kr/~sungeui/mpa Class Objectives Motion planning framework Classic motion planning approaches 2 3 Configuration Space:

More information

6.141: Robotics systems and science Lecture 10: Implementing Motion Planning

6.141: Robotics systems and science Lecture 10: Implementing Motion Planning 6.141: Robotics systems and science Lecture 10: Implementing Motion Planning Lecture Notes Prepared by N. Roy and D. Rus EECS/MIT Spring 2011 Reading: Chapter 3, and Craig: Robotics http://courses.csail.mit.edu/6.141/!

More information

Motion Planning for a Point Robot (2/2) Point Robot on a Grid. Planning requires models. Point Robot on a Grid 1/18/2012.

Motion Planning for a Point Robot (2/2) Point Robot on a Grid. Planning requires models. Point Robot on a Grid 1/18/2012. Motion Planning for a Point Robot (/) Class scribing Position paper 1 Planning requires models Point Robot on a Grid The Bug algorithms are reactive motion strategies ; they are not motion planners To

More information

Path Planning. Jacky Baltes Dept. of Computer Science University of Manitoba 11/21/10

Path Planning. Jacky Baltes Dept. of Computer Science University of Manitoba   11/21/10 Path Planning Jacky Baltes Autonomous Agents Lab Department of Computer Science University of Manitoba Email: jacky@cs.umanitoba.ca http://www.cs.umanitoba.ca/~jacky Path Planning Jacky Baltes Dept. of

More information

Coverage. Ioannis Rekleitis

Coverage. Ioannis Rekleitis Coverage Ioannis Rekleitis Motivation Humanitarian Demining CS-417 Introduction to Robotics and Intelligent Systems 2 Motivation Lawn Mowing CS-417 Introduction to Robotics and Intelligent Systems 3 Motivation

More information

A* Optimality CS4804

A* Optimality CS4804 A* Optimality CS4804 Plan A* in a tree A* in a graph How to handle multiple paths to a node Intuition about consistency Search space + heuristic design practice A* Search Expand node in frontier with best

More information

Coverage. Ioannis Rekleitis

Coverage. Ioannis Rekleitis Coverage Ioannis Rekleitis Coverage A task performed quite often in everyday life: Cleaning Painting Plowing/Sowing Tile setting etc. CSCE 774: Robotic Systems 2 Motivation Humanitarian Demining CSCE 774:

More information

6.141: Robotics systems and science Lecture 10: Motion Planning III

6.141: Robotics systems and science Lecture 10: Motion Planning III 6.141: Robotics systems and science Lecture 10: Motion Planning III Lecture Notes Prepared by N. Roy and D. Rus EECS/MIT Spring 2012 Reading: Chapter 3, and Craig: Robotics http://courses.csail.mit.edu/6.141/!

More information

Path Planning. Ioannis Rekleitis

Path Planning. Ioannis Rekleitis Path Planning Ioannis Rekleitis Outline Path Planning Visibility Graph Potential Fields Bug Algorithms Skeletons/Voronoi Graphs C-Space CSCE-574 Robotics 2 Mo+on Planning The ability to go from A to B

More information

Basic Motion Planning Algorithms

Basic Motion Planning Algorithms Basic Motion Planning Algorithms Sohaib Younis Intelligent Robotics 7 January, 2013 1 Outline Introduction Environment Map Dijkstra's algorithm A* algorithm Summary 2 Introduction Definition: Motion Planning

More information

ECE276B: Planning & Learning in Robotics Lecture 5: Configuration Space

ECE276B: Planning & Learning in Robotics Lecture 5: Configuration Space ECE276B: Planning & Learning in Robotics Lecture 5: Configuration Space Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Tianyu Wang: tiw161@eng.ucsd.edu Yongxi Lu: yol070@eng.ucsd.edu

More information

Planning Techniques for Robotics Planning Representations: Skeletonization- and Grid-based Graphs

Planning Techniques for Robotics Planning Representations: Skeletonization- and Grid-based Graphs 16-350 Planning Techniques for Robotics Planning Representations: Skeletonization- and Grid-based Graphs Maxim Likhachev Robotics Institute 2D Planning for Omnidirectional Point Robot Planning for omnidirectional

More information

Autonomous Mobile Robots, Chapter 6 Planning and Navigation Where am I going? How do I get there? Localization. Cognition. Real World Environment

Autonomous Mobile Robots, Chapter 6 Planning and Navigation Where am I going? How do I get there? Localization. Cognition. Real World Environment Planning and Navigation Where am I going? How do I get there?? Localization "Position" Global Map Cognition Environment Model Local Map Perception Real World Environment Path Motion Control Competencies

More information

Computational Geometry csci3250. Laura Toma. Bowdoin College

Computational Geometry csci3250. Laura Toma. Bowdoin College Computational Geometry csci3250 Laura Toma Bowdoin College Motion Planning Input: a robot R and a set of obstacles S = {O 1, O 2, } start position p start end position p end Find a path from start to end

More information

Lecture 11 Combinatorial Planning: In the Plane

Lecture 11 Combinatorial Planning: In the Plane CS 460/560 Introduction to Computational Robotics Fall 2017, Rutgers University Lecture 11 Combinatorial Planning: In the Plane Instructor: Jingjin Yu Outline Convex shapes, revisited Combinatorial planning

More information

MEV 442: Introduction to Robotics - Module 3 INTRODUCTION TO ROBOT PATH PLANNING

MEV 442: Introduction to Robotics - Module 3 INTRODUCTION TO ROBOT PATH PLANNING MEV 442: Introduction to Robotics - Module 3 INTRODUCTION TO ROBOT PATH PLANNING THE PATH PLANNING PROBLEM The robot should find out a path enables the continuous motion of a robot from an initial configuration

More information

Informed Search A* Algorithm

Informed Search A* Algorithm Informed Search A* Algorithm CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2018 Soleymani Artificial Intelligence: A Modern Approach, Chapter 3 Most slides have

More information

A* and 3D Configuration Space

A* and 3D Configuration Space Homework #4 A* and 3D Configuration Space Part I: Star Algorithm to build 3D Configuration Space I have implemented again the Star Algorithm to compute the 3-dimensional configuration space Q starting

More information

Path Planning for Point Robots. NUS CS 5247 David Hsu

Path Planning for Point Robots. NUS CS 5247 David Hsu Path Planning for Point Robots NUS CS 5247 David Hsu Problem Input Robot represented as a point in the plane Obstacles represented as polygons Initial and goal positions Output A collision-free path between

More information

Unit 5: Part 1 Planning

Unit 5: Part 1 Planning Unit 5: Part 1 Planning Computer Science 4766/6778 Department of Computer Science Memorial University of Newfoundland March 25, 2014 COMP 4766/6778 (MUN) Planning March 25, 2014 1 / 9 Planning Localization

More information

Advanced Robotics Path Planning & Navigation

Advanced Robotics Path Planning & Navigation Advanced Robotics Path Planning & Navigation 1 Agenda Motivation Basic Definitions Configuration Space Global Planning Local Planning Obstacle Avoidance ROS Navigation Stack 2 Literature Choset, Lynch,

More information

CS 354R: Computer Game Technology

CS 354R: Computer Game Technology CS 354R: Computer Game Technology A* Heuristics Fall 2018 A* Search f(n): The current best estimate for the best path through a node: f(n)=g(n)+h(n) g(n): current known best cost for getting to a node

More information

Discrete Motion Planning

Discrete Motion Planning RBE MOTION PLANNING Discrete Motion Planning Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Announcement Homework 1 is out Due Date - Feb 1 Updated

More information

CS 331: Artificial Intelligence Informed Search. Informed Search

CS 331: Artificial Intelligence Informed Search. Informed Search CS 331: Artificial Intelligence Informed Search 1 Informed Search How can we make search smarter? Use problem-specific knowledge beyond the definition of the problem itself Specifically, incorporate knowledge

More information

Robotic Motion Planning: Review C-Space and Start Potential Functions

Robotic Motion Planning: Review C-Space and Start Potential Functions Robotic Motion Planning: Review C-Space and Start Potential Functions Robotics Institute 16-735 http://www.cs.cmu.edu/~motionplanning Howie Choset http://www.cs.cmu.edu/~choset What if the robot is not

More information

Notes. Video Game AI: Lecture 5 Planning for Pathfinding. Lecture Overview. Knowledge vs Search. Jonathan Schaeffer this Friday

Notes. Video Game AI: Lecture 5 Planning for Pathfinding. Lecture Overview. Knowledge vs Search. Jonathan Schaeffer this Friday Notes Video Game AI: Lecture 5 Planning for Pathfinding Nathan Sturtevant COMP 3705 Jonathan Schaeffer this Friday Planning vs localization We cover planning today Localization is just mapping a real-valued

More information

Planning: Part 1 Classical Planning

Planning: Part 1 Classical Planning Planning: Part 1 Classical Planning Computer Science 6912 Department of Computer Science Memorial University of Newfoundland July 12, 2016 COMP 6912 (MUN) Planning July 12, 2016 1 / 9 Planning Localization

More information

CS 331: Artificial Intelligence Informed Search. Informed Search

CS 331: Artificial Intelligence Informed Search. Informed Search CS 331: Artificial Intelligence Informed Search 1 Informed Search How can we make search smarter? Use problem-specific knowledge beyond the definition of the problem itself Specifically, incorporate knowledge

More information

CS Path Planning

CS Path Planning Why Path Planning? CS 603 - Path Planning Roderic A. Grupen 4/13/15 Robotics 1 4/13/15 Robotics 2 Why Motion Planning? Origins of Motion Planning Virtual Prototyping! Character Animation! Structural Molecular

More information

Spring 2010: Lecture 9. Ashutosh Saxena. Ashutosh Saxena

Spring 2010: Lecture 9. Ashutosh Saxena. Ashutosh Saxena CS 4758/6758: Robot Learning Spring 2010: Lecture 9 Why planning and control? Video Typical Architecture Planning 0.1 Hz Control 50 Hz Does it apply to all robots and all scenarios? Previous Lecture: Potential

More information

Homework #3 (Search) Out: 1/24/11 Due: 2/1/11 (at noon)

Homework #3 (Search) Out: 1/24/11 Due: 2/1/11 (at noon) CS121 Introduction to Artificial Intelligence Winter 2011 Homework #3 (Search) Out: 1/24/11 Due: 2/1/11 (at noon) How to complete this HW: First copy this file; then type your answers in the file immediately

More information

ME512: Mobile Robotics Path Planning Algorithms. Atul Thakur, Assistant Professor Mechanical Engineering Department IIT Patna

ME512: Mobile Robotics Path Planning Algorithms. Atul Thakur, Assistant Professor Mechanical Engineering Department IIT Patna ME512: Mobile Robotics Path Planning Algorithms Atul Thakur, Assistant Professor Mechanical Engineering Department IIT Patna Path Planning Problem Given Robot state Obstacle positions Robot capabilities

More information

Roadmap-Based Path Planning

Roadmap-Based Path Planning Roadmap-Based d Path Planning Chapter 7 Objectives Understand the definition of a Road Map Investigate techniques for roadmap-based goal- directed path planning in 2D environments geometry-based algorithms

More information

Autonomous and Mobile Robotics Prof. Giuseppe Oriolo. Motion Planning 1 Retraction and Cell Decomposition

Autonomous and Mobile Robotics Prof. Giuseppe Oriolo. Motion Planning 1 Retraction and Cell Decomposition Autonomous and Mobile Robotics Prof. Giuseppe Oriolo Motion Planning 1 Retraction and Cell Decomposition motivation robots are expected to perform tasks in workspaces populated by obstacles autonomy requires

More information

CS4733 Class Notes. 1 2-D Robot Motion Planning Algorithm Using Grown Obstacles

CS4733 Class Notes. 1 2-D Robot Motion Planning Algorithm Using Grown Obstacles CS4733 Class Notes 1 2-D Robot Motion Planning Algorithm Using Grown Obstacles Reference: An Algorithm for Planning Collision Free Paths Among Poyhedral Obstacles by T. Lozano-Perez and M. Wesley. This

More information

Informed (Heuristic) Search. Idea: be smart about what paths to try.

Informed (Heuristic) Search. Idea: be smart about what paths to try. Informed (Heuristic) Search Idea: be smart about what paths to try. 1 Blind Search vs. Informed Search What s the difference? How do we formally specify this? A node is selected for expansion based on

More information

CS S Lecture February 13, 2017

CS S Lecture February 13, 2017 CS 6301.008.18S Lecture February 13, 2017 Main topics are #Voronoi-diagrams, #Fortune. Quick Note about Planar Point Location Last week, I started giving a difficult analysis of the planar point location

More information

Collision Detection. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering

Collision Detection. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering RBE 550 MOTION PLANNING BASED ON DR. DMITRY BERENSON S RBE 550 Collision Detection Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Euler Angle RBE

More information

University of Nevada, Reno. Dynamic Path Planning and Replanning for Mobile Robot Team Using RRT*

University of Nevada, Reno. Dynamic Path Planning and Replanning for Mobile Robot Team Using RRT* University of Nevada, Reno Dynamic Path Planning and Replanning for Mobile Robot Team Using RRT* A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer

More information

Manipula0on Algorithms Mo0on Planning. Mo#on Planning I. Katharina Muelling (NREC, Carnegie Mellon University) 1

Manipula0on Algorithms Mo0on Planning. Mo#on Planning I. Katharina Muelling (NREC, Carnegie Mellon University) 1 16-843 Manipula0on Algorithms Mo0on Planning Mo#on Planning I Katharina Muelling (NREC, Carnegie Mellon University) 1 Configura0on Space Obstacles Star Algorithm Convex robot, transla#on C obs : convex

More information

Computer Vision & Digital Image Processing. Global Processing via Graph-Theoretic Techniques

Computer Vision & Digital Image Processing. Global Processing via Graph-Theoretic Techniques Computer Vision & Digital Image Processing Edge Linking Via Graph Theoretic Techniques Dr. D. J. Jackson Lecture 19-1 Global Processing via Graph-Theoretic Techniques The previous method for edge-linking

More information

Assignment 1 is out! Due: 9 Sep 23:59! Can work in a group of 2-3 students.! NO cheating!!!! Submit in turnitin! Code + report!

Assignment 1 is out! Due: 9 Sep 23:59! Can work in a group of 2-3 students.! NO cheating!!!! Submit in turnitin! Code + report! Assignment 1 is out! Due: 9 Sep 23:59! Submit in turnitin! Code + report! Can work in a group of 2-3 students.! Please register your group in the website linked from the assignment description before tomorrow

More information

Robotics Tasks. CS 188: Artificial Intelligence Spring Manipulator Robots. Mobile Robots. Degrees of Freedom. Sensors and Effectors

Robotics Tasks. CS 188: Artificial Intelligence Spring Manipulator Robots. Mobile Robots. Degrees of Freedom. Sensors and Effectors CS 188: Artificial Intelligence Spring 2006 Lecture 5: Robot Motion Planning 1/31/2006 Dan Klein UC Berkeley Many slides from either Stuart Russell or Andrew Moore Motion planning (today) How to move from

More information

3 SOLVING PROBLEMS BY SEARCHING

3 SOLVING PROBLEMS BY SEARCHING 48 3 SOLVING PROBLEMS BY SEARCHING A goal-based agent aims at solving problems by performing actions that lead to desirable states Let us first consider the uninformed situation in which the agent is not

More information

Robot Motion Planning

Robot Motion Planning Robot Motion Planning James Bruce Computer Science Department Carnegie Mellon University April 7, 2004 Agent Planning An agent is a situated entity which can choose and execute actions within in an environment.

More information

Robot Motion Control Matteo Matteucci

Robot Motion Control Matteo Matteucci Robot Motion Control Open loop control A mobile robot is meant to move from one place to another Pre-compute a smooth trajectory based on motion segments (e.g., line and circle segments) from start to

More information

search, DFS & BrFS; cycle checking & MPC arc costs; heuristics; LCFS, BeFS, A* misc: iterative deepening, etc.

search, DFS & BrFS; cycle checking & MPC arc costs; heuristics; LCFS, BeFS, A* misc: iterative deepening, etc. CSC384: Lecture 5 Last time search, DFS & BrFS; cycle checking & MPC Today arc costs; heuristics; LCFS, BeFS, A* misc: iterative deepening, etc. Readings: Today: Ch.4.5, 4.6 Next Weds: class notes (no

More information

Chapter S:V. V. Formal Properties of A*

Chapter S:V. V. Formal Properties of A* Chapter S:V V. Formal Properties of A* Properties of Search Space Graphs Auxiliary Concepts Roadmap Completeness of A* Admissibility of A* Efficiency of A* Monotone Heuristic Functions S:V-1 Formal Properties

More information

Prediction-Based Path Planning with Obstacle Avoidance in Dynamic Target Environment

Prediction-Based Path Planning with Obstacle Avoidance in Dynamic Target Environment 48 Prediction-Based Path Planning with Obstacle Avoidance in Dynamic Target Environment Zahraa Y. Ibrahim Electrical Engineering Department University of Basrah Basrah, Iraq Abdulmuttalib T. Rashid Electrical

More information

Beyond A*: Speeding up pathfinding through hierarchical abstraction. Daniel Harabor NICTA & The Australian National University

Beyond A*: Speeding up pathfinding through hierarchical abstraction. Daniel Harabor NICTA & The Australian National University Beyond A*: Speeding up pathfinding through hierarchical abstraction Daniel Harabor NICTA & The Australian National University Motivation Myth: Pathfinding is a solved problem. Motivation Myth: Pathfinding

More information

521495A: Artificial Intelligence

521495A: Artificial Intelligence 521495A: Artificial Intelligence Informed Search Lectured by Abdenour Hadid Adjunct Professor, CMVS, University of Oulu Slides adopted from http://ai.berkeley.edu Today Informed Search Heuristics Greedy

More information

Coverage and Search Algorithms. Chapter 10

Coverage and Search Algorithms. Chapter 10 Coverage and Search Algorithms Chapter 10 Objectives To investigate some simple algorithms for covering the area in an environment To understand how to break down an environment into simple convex pieces

More information

Approximate path planning. Computational Geometry csci3250 Laura Toma Bowdoin College

Approximate path planning. Computational Geometry csci3250 Laura Toma Bowdoin College Approximate path planning Computational Geometry csci3250 Laura Toma Bowdoin College Outline Path planning Combinatorial Approximate Combinatorial path planning Idea: Compute free C-space combinatorially

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Informed Search Prof. Scott Niekum University of Texas at Austin [These slides based on ones created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

Heuristic (Informed) Search

Heuristic (Informed) Search Heuristic (Informed) Search (Where we try to choose smartly) R&N: Chap. 4, Sect. 4.1 3 1 Recall that the ordering of FRINGE defines the search strategy Search Algorithm #2 SEARCH#2 1. INSERT(initial-node,FRINGE)

More information

Robotic Motion Planning: Bug Algorithms (with some discussion on curve tracing and sensors)

Robotic Motion Planning: Bug Algorithms (with some discussion on curve tracing and sensors) Robotic Motion Planning: Bug Algorithms (with some discussion on curve tracing and sensors) Robotics Institute 16-735 http://voronoi.sbp.ri.cmu.edu/~motion Howie Choset http://voronoi.sbp.ri.cmu.edu/~choset

More information

Robot Motion Planning

Robot Motion Planning Robot Motion Planning slides by Jan Faigl Department of Computer Science and Engineering Faculty of Electrical Engineering, Czech Technical University in Prague lecture A4M36PAH - Planning and Games Dpt.

More information

Geometric Path Planning McGill COMP 765 Oct 12 th, 2017

Geometric Path Planning McGill COMP 765 Oct 12 th, 2017 Geometric Path Planning McGill COMP 765 Oct 12 th, 2017 The Motion Planning Problem Intuition: Find a safe path/trajectory from start to goal More precisely: A path is a series of robot configurations

More information

Computer Game Programming Basic Path Finding

Computer Game Programming Basic Path Finding 15-466 Computer Game Programming Basic Path Finding Robotics Institute Path Planning Sven Path Planning needs to be very fast (especially for games with many characters) needs to generate believable paths

More information

Route planning / Search Movement Group behavior Decision making

Route planning / Search Movement Group behavior Decision making Game AI Where is the AI Route planning / Search Movement Group behavior Decision making General Search Algorithm Design Keep a pair of set of states: One, the set of states to explore, called the open

More information

Divided-and-Conquer for Voronoi Diagrams Revisited. Supervisor: Ben Galehouse Presenter: Xiaoqi Cao

Divided-and-Conquer for Voronoi Diagrams Revisited. Supervisor: Ben Galehouse Presenter: Xiaoqi Cao Divided-and-Conquer for Voronoi Diagrams Revisited Supervisor: Ben Galehouse Presenter: Xiaoqi Cao Outline Introduction Generalized Voronoi Diagram Algorithm for building generalized Voronoi Diagram Applications

More information

Humanoid Robotics. Path Planning and Walking. Maren Bennewitz

Humanoid Robotics. Path Planning and Walking. Maren Bennewitz Humanoid Robotics Path Planning and Walking Maren Bennewitz 1 Introduction Given the robot s pose in a model of the environment Compute a path to a target location First: 2D path in a 2D grid map representation

More information

Configuration Space of a Robot

Configuration Space of a Robot Robot Path Planning Overview: 1. Visibility Graphs 2. Voronoi Graphs 3. Potential Fields 4. Sampling-Based Planners PRM: Probabilistic Roadmap Methods RRTs: Rapidly-exploring Random Trees Configuration

More information

Local Search Methods. CS 188: Artificial Intelligence Fall Announcements. Hill Climbing. Hill Climbing Diagram. Today

Local Search Methods. CS 188: Artificial Intelligence Fall Announcements. Hill Climbing. Hill Climbing Diagram. Today CS 188: Artificial Intelligence Fall 2006 Lecture 5: Robot Motion Planning 9/14/2006 Local Search Methods Queue-based algorithms keep fallback options (backtracking) Local search: improve what you have

More information

ITCS 6150 Intelligent Systems. Lecture 5 Informed Searches

ITCS 6150 Intelligent Systems. Lecture 5 Informed Searches ITCS 6150 Intelligent Systems Lecture 5 Informed Searches Informed Searches We are informed (in some way) about future states and future paths We use this information to make better decisions about which

More information

Problem Solving & Heuristic Search

Problem Solving & Heuristic Search 190.08 Artificial 2016-Spring Problem Solving & Heuristic Search Byoung-Tak Zhang School of Computer Science and Engineering Seoul National University 190.08 Artificial (2016-Spring) http://www.cs.duke.edu/courses/fall08/cps270/

More information

Autonomous Robotics 6905

Autonomous Robotics 6905 6905 Lecture 5: to Path-Planning and Navigation Dalhousie University i October 7, 2011 1 Lecture Outline based on diagrams and lecture notes adapted from: Probabilistic bili i Robotics (Thrun, et. al.)

More information

CS 4700: Foundations of Artificial Intelligence

CS 4700: Foundations of Artificial Intelligence CS 4700: Foundations of Artificial Intelligence Bart Selman selman@cs.cornell.edu Informed Search Readings R&N - Chapter 3: 3.5 and 3.6 Search Search strategies determined by choice of node (in queue)

More information

Informed Search Lecture 5

Informed Search Lecture 5 Lecture 5 How can we exploit problem-specific knowledge to find solutions more efficiently? Where does this knowledge come from and under what conditions is it useful? 1 Agenda Review: Uninformed Search

More information

Pathfinding. Artificial Intelligence for gaming

Pathfinding. Artificial Intelligence for gaming Pathfinding Artificial Intelligence for gaming Pathfinding Group AI Execution Management Strategy World Inter face Character AI Decision Making Movement Pathfinding Animation Physics Pathfinding Graphs

More information

Object. Slice Normal. Slice. Object Boundary. Normal to boundary

Object. Slice Normal. Slice. Object Boundary. Normal to boundary Exact Cellular Decomposition of Closed Orientable Surfaces Embedded in < 3 Prasad N. Atkar Howie Choset Alfred A. Rizzi Ercan U. Acar Carnegie Mellon University Department of Mechanical Engineering and

More information

video 1 video 2 Motion Planning (It s all in the discretization) Digital Actors Basic problem Basic problem Two Possible Discretizations

video 1 video 2 Motion Planning (It s all in the discretization) Digital Actors Basic problem Basic problem Two Possible Discretizations Motion Planning (It s all in the discretization) Motion planning is the ability for an agent to compute its own motions in order to achieve certain goals. ll autonomous robots and digital actors should

More information

Mobile Robots: An Introduction.

Mobile Robots: An Introduction. Mobile Robots: An Introduction Amirkabir University of Technology Computer Engineering & Information Technology Department http://ce.aut.ac.ir/~shiry/lecture/robotics-2004/robotics04.html Introduction

More information

Foundations of AI. 4. Informed Search Methods. Heuristics, Local Search Methods, Genetic Algorithms

Foundations of AI. 4. Informed Search Methods. Heuristics, Local Search Methods, Genetic Algorithms Foundations of AI 4. Informed Search Methods Heuristics, Local Search Methods, Genetic Algorithms Luc De Raedt and Wolfram Burgard and Bernhard Nebel Contents Best-First Search A* and IDA* Local Search

More information

Can work in a group of at most 3 students.! Can work individually! If you work in a group of 2 or 3 students,!

Can work in a group of at most 3 students.! Can work individually! If you work in a group of 2 or 3 students,! Assignment 1 is out! Due: 26 Aug 23:59! Submit in turnitin! Code + report! Can work in a group of at most 3 students.! Can work individually! If you work in a group of 2 or 3 students,! Each member must

More information

Motion Planning. Jana Kosecka Department of Computer Science

Motion Planning. Jana Kosecka Department of Computer Science Motion Planning Jana Kosecka Department of Computer Science Discrete planning, graph search, shortest path, A* methods Road map methods Configuration space Slides thanks to http://cs.cmu.edu/~motionplanning,

More information

Introduction to Information Science and Technology (IST) Part IV: Intelligent Machines and Robotics Planning

Introduction to Information Science and Technology (IST) Part IV: Intelligent Machines and Robotics Planning Introduction to Information Science and Technology (IST) Part IV: Intelligent Machines and Robotics Planning Sören Schwertfeger / 师泽仁 ShanghaiTech University ShanghaiTech University - SIST - 10.05.2017

More information

Spring 2007 Midterm Exam

Spring 2007 Midterm Exam 15-381 Spring 2007 Midterm Exam Spring 2007 March 8 Name: Andrew ID: This is an open-book, open-notes examination. You have 80 minutes to complete this examination. Unless explicitly requested, we do not

More information

What s Special About Bugs

What s Special About Bugs Robotic Motion Planning: Bug Algorithms University of Denver ENCE 4800 Richard Voyles What s Special About Bugs Many planning algorithms assume global knowledge Bug algorithms assume only local knowledge

More information

mywbut.com Informed Search Strategies-I

mywbut.com Informed Search Strategies-I Informed Search Strategies-I 1 3.1 Introduction We have outlined the different types of search strategies. In the earlier chapter we have looked at different blind search strategies. Uninformed search

More information

Computational Geometry

Computational Geometry More on Voronoi diagrams 1 Can we move a disc from one location to another amidst obstacles? 2 Since the Voronoi diagram of point sites is locally furthest away from those sites, we can move the disc if

More information

HW#1 due today. HW#2 due Monday, 9/09/13, in class Continue reading Chapter 3

HW#1 due today. HW#2 due Monday, 9/09/13, in class Continue reading Chapter 3 9-04-2013 Uninformed (blind) search algorithms Breadth-First Search (BFS) Uniform-Cost Search Depth-First Search (DFS) Depth-Limited Search Iterative Deepening Best-First Search HW#1 due today HW#2 due

More information

Robot Motion Control and Planning

Robot Motion Control and Planning Robot Motion Control and Planning http://www.ceng.metu.edu.tr/~saranli/courses/ceng786 Lecture 2 Bug Algorithms Uluç Saranlı http://www.ceng.metu.edu.tr/~saranli CENG786 - Robot Motion Control and Planning

More information