Path Planning for Point Robots. NUS CS 5247 David Hsu

Size: px
Start display at page:

Download "Path Planning for Point Robots. NUS CS 5247 David Hsu"

Transcription

1 Path Planning for Point Robots NUS CS 5247 David Hsu

2 Problem Input Robot represented as a point in the plane Obstacles represented as polygons Initial and goal positions Output A collision-free path between the initial and goal positions NUS CS 5247 David Hsu 2

3 Framework continuous representation (configuration space formulation) discretization (random sampling, processing critical geometric events) graph searching (breadth-first, best-first, A*) NUS CS 5247 David Hsu 3

4 Visibility graph method Observation: If there is a a collision-free path between two points, then there is a polygonal path that bends only at the obstacles vertices. Why? Any collision-free path can be transformed into a polygonal path that bends only at the obstacle vertices. A polygonal path is a piecewise linear curve. NUS CS 5247 David Hsu 4

5 What is a visibility graph? A visibility graph is a graph such that Nodes: q init, q goal, or an obstacle vertex. Edges: An edge exists between nodes u and v if the line segment between u and v is an obstacle edge or it does not intersect the obstacles. NUS CS 5247 David Hsu 5

6 A simple algorithm for building visibility graphs Input: q init,q goal, polygonal obstacles Output: visibility graph G 1: for every pair of nodes u,v 2: if segment(u,v) is an obstacle edge then 3: insert edge(u,v) into G; 4: else 5: for every obstacle edge e 6: if segment(u,v) intersects e 7: go to (1); 8: insert edge(u,v) into G. NUS CS 5247 David Hsu 6

7 Computational efficiency 1: for every pair of nodes u,v O(n 2 ) 2: if segment(u,v) is an obstacle edge then O(n) 3: insert edge(u,v) into G; 4: else 5: for every obstacle edge e O(n) 6: if segment(u,v) intersects e 7: go to (1); 8: insert edge(u,v) into G. Simple algorithm O(n 3 ) time More efficient algorithms Rotational sweep O(n 2 log n) time Optimal algorithm O(n 2 ) time Output sensitive algorithms O(n 2 ) space NUS CS 5247 David Hsu 7

8 Framework continuous representation (configuration space formulation) discretization (random sampling, processing critical geometric events) graph searching (breadth-first, best-first, A*) NUS CS 5247 David Hsu 8

9 Breadth-first search A B C F E D NUS CS 5247 David Hsu 9

10 Breadth-first search A B C F E D NUS CS 5247 David Hsu 10

11 Breadth-first search A B C F E D NUS CS 5247 David Hsu 11

12 Breadth-first search A B C F E D NUS CS 5247 David Hsu 12

13 Breadth-first search A B C F E D NUS CS 5247 David Hsu 13

14 Breadth-first search A B C F E D NUS CS 5247 David Hsu 14

15 Breadth-first search A B C F E D NUS CS 5247 David Hsu 15

16 Breadth-first search A B C F E D NUS CS 5247 David Hsu 16

17 Breadth-first search A B C F E D NUS CS 5247 David Hsu 17

18 Breadth-first search Input: q init, q goal, visibility graph G Output: a path between q init and q goal 1: Q = new queue; 2: Q.enqueue(q init ); 3: mark q init as visited; 4: while Q is not empty 5: curr = Q.dequeue(); 6: if curr == q goal then 7: return curr; 8: for each w adjacent to curr 10: if w is not visited 11: w.parent = curr; 12: Q.enqueue(w) 13: mark w as visited F B A E C D NUS CS 5247 David Hsu 18

19 Other graph search algorithms Depth-first Best-first, A* NUS CS 5247 David Hsu 19

20 Framework continuous representation (configuration space formulation) discretization (random sampling, processing critical geometric events) graph searching (breadth-first, best-first, A*) NUS CS 5247 David Hsu 20

21 A brief summary Discretize the space by constructing visibility graph Search the visibility graph with breadth-first search How to perform the intersection test? NUS CS 5247 David Hsu 21

22 Geometric Preliminaries NUS CS 5247 David Hsu

23 Primitive objects in the plane 0-dim class Point { double x; double y; } 1-dim class Segment { Point p; Point q; } NUS CS 5247 David Hsu 23

24 Primitive objects in the plane 2-dim class Triangle { Point p; Point q; Point r; } class Polygon { list<point> vertices; int numvertices; } NUS CS 5247 David Hsu 24

25 Intersecting primitive objects in the plane Case 1: line segment & line segment? = NUS CS 5247 David Hsu 25

26 Intersect line segments Counter-clockwise test c a b ab bc x y b b i x a y a x y c c j x b y b k 0 0 isccw(point a, Point b, Point c ) { u = b a; v = c b; return (u.x*v.y v.x*u.y) > 0; } NUS CS 5247 David Hsu 26

27 Intersect line segments with ccw Pseudo-code iscoincident(segment s, Segment t) { return xor(isccw(s.p, s.q, t.p), isccw(s.p, s.q, t.q)) && xor(isccw(t.p, t.q, s.p), isccw(t.p, t.q, s.q)) } Special cases NUS CS 5247 David Hsu 27

28 Intersecting primitive objects in the plane Case 2 line segment l & polygon P Intersect l with every edge of P Case 3 polygon P & polygon Q Intersect every edge of P with every edge of Q More efficient algorithms exist if P or Q are convex. NUS CS 5247 David Hsu 28

29 Additional information CS 4235 computational geometry Efficient geometry libraries CGAL, LEDA, etc. NUS CS 5247 David Hsu 29

30 Visibility graph method Represent the connectivity of the configuration space in the visibility graph Running time O(n 3 ) Compute the visibility graph Search the graph An optimal O(n 2 ) time algorithm exists. Space O(n 2 ) Can we do better? NUS CS 5247 David Hsu 30

31 Classic path planning approaches Roadmap Represent the connectivity of the free space by a network of 1-D curves Cell decomposition Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells Potential field Define a potential function over the free space that has a global minimum at the goal and follow the steepest descent of the potential function NUS CS 5247 David Hsu 31

32 Classic path planning approaches Roadmap Represent the connectivity of the free space by a network of 1-D curves Cell decomposition Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells Potential field Define a potential function over the free space that has a global minimum at the goal and follow the steepest descent of the potential function NUS CS 5247 David Hsu 32

33 Roadmap Visibility graph Shakey Project, SRI [Nilsson, 1969] Voronoi diagram Introduced by computational geometry researchers. Generate paths that maximizes clearance. Applicable mostly to 2-D configuration spaces. NUS CS 5247 David Hsu 33

34 Voronoi diagram method Space O(n) Running time O(n log n) NUS CS 5247 David Hsu 34

35 Other roadmap methods Silhouette First complete general method that applies to spaces of any dimensions and is singly exponential in the number of dimensions [Canny, 87] Probabilistic roadmaps NUS CS 5247 David Hsu 35

36 Classic path planning approaches Roadmap Represent the connectivity of the free space by a network of 1-D curves Cell decomposition Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells Potential field Define a potential function over the free space that has a global minimum at the goal and follow the steepest descent of the potential function NUS CS 5247 David Hsu 36

37 Cell-decomposition methods Exact cell decomposition The free space F is represented by a collection of nonoverlapping simple cells whose union is exactly F Examples of cells: trapezoids, triangles NUS CS 5247 David Hsu 37

38 Trapezoidal decomposition NUS CS 5247 David Hsu 38

39 Computational efficiency Running time O(n log n) by planar sweep Space O(n) Mostly for 2-D configuration spaces NUS CS 5247 David Hsu 39

40 Adjacency graph Nodes: cells Edges: There is an edge between every pair of nodes whose corresponding cells are adjacent. NUS CS 5247 David Hsu 40

41 Framework continuous representation (configuration space formulation) discretization (random sampling, processing critical geometric events) graph searching (breadth-first, best-first, A*) NUS CS 5247 David Hsu 41

42 A brief summary Discretize the space by constructing an adjacency graph of the cells Search the adjacency graph NUS CS 5247 David Hsu 42

43 Cell-decomposition methods Exact cell decomposition Approximate cell decomposition F is represented by a collection of non-overlapping cells whose union is contained in F. Cells usually have simple, regular shapes, e.g., rectangles, squares. Facilitate hierarchical space decomposition NUS CS 5247 David Hsu 43

44 Quadtree decomposition empty mixed full NUS CS 5247 David Hsu 44

45 Octree decomposition NUS CS 5247 David Hsu 45

46 Sketch of the algorithm 1. Decompose the free space F into cells. 2. Search for a sequence of mixed or free cells that connect the initial and goal positions. 3. Further decompose the mixed. 4. Repeat (2) and (3) until a sequence of free cells is found. NUS CS 5247 David Hsu 46

47 Classic path planning approaches Roadmap Represent the connectivity of the free space by a network of 1-D curves Cell decomposition Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells Potential field Define a potential function over the free space that has a global minimum at the goal and follow the steepest descent of the potential function NUS CS 5247 David Hsu 47

48 Potential field Initially proposed for real-time collision avoidance [Khatib, 1986]. Hundreds of papers published on this topic. A potential field is a scalar function over the free space. To navigate, the robot applies a force proportional to the negated gradient of the potential field. A navigation function is an ideal potential field that has global minimum at the goal has no local minima grows to infinity near obstacles is smooth NUS CS 5247 David Hsu 48

49 Attractive & repulsive fields F att = k att ( x x goal ) F rep k = rep ρ 2 ρ ρ0 ρ x 0 if ρ ρ, 0 ifρ> ρ 0 goal k att, k rep : positive scaling factors goal force x : position of the robot ρ : distance to the obstacle motion robot ρ 0 : distance of influence [Khatib, 1986] NUS CS 5247 David Hsu 49

50 Algorithm in pictures + NUS CS 5247 David Hsu 50

51 Sketch of the algorithm Place a regular grid G over the configuration space Compute the potential field over G Search G using a best-first algorithm with potential field as the heuristic function NUS CS 5247 David Hsu 51

52 Local minima What can we do? Escape from local minima by taking random walks Build an ideal potential field navigation function that does not have local minima NUS CS 5247 David Hsu 52

53 Question Can such an ideal potential field be constructed efficiently in general? NUS CS 5247 David Hsu 53

54 Completeness A complete motion planner always returns a solution when one exists and indicates that no such solution exists otherwise. Is the visibility graph algorithm complete? Yes. How about the exact cell decomposition algorithm and the potential field algorithm? NUS CS 5247 David Hsu 54

Sung-Eui Yoon ( 윤성의 )

Sung-Eui Yoon ( 윤성의 ) Path Planning for Point Robots Sung-Eui Yoon ( 윤성의 ) Course URL: http://sglab.kaist.ac.kr/~sungeui/mpa Class Objectives Motion planning framework Classic motion planning approaches 2 3 Configuration Space:

More information

Spring 2010: Lecture 9. Ashutosh Saxena. Ashutosh Saxena

Spring 2010: Lecture 9. Ashutosh Saxena. Ashutosh Saxena CS 4758/6758: Robot Learning Spring 2010: Lecture 9 Why planning and control? Video Typical Architecture Planning 0.1 Hz Control 50 Hz Does it apply to all robots and all scenarios? Previous Lecture: Potential

More information

ECE276B: Planning & Learning in Robotics Lecture 5: Configuration Space

ECE276B: Planning & Learning in Robotics Lecture 5: Configuration Space ECE276B: Planning & Learning in Robotics Lecture 5: Configuration Space Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Tianyu Wang: tiw161@eng.ucsd.edu Yongxi Lu: yol070@eng.ucsd.edu

More information

Autonomous and Mobile Robotics Prof. Giuseppe Oriolo. Motion Planning 1 Retraction and Cell Decomposition

Autonomous and Mobile Robotics Prof. Giuseppe Oriolo. Motion Planning 1 Retraction and Cell Decomposition Autonomous and Mobile Robotics Prof. Giuseppe Oriolo Motion Planning 1 Retraction and Cell Decomposition motivation robots are expected to perform tasks in workspaces populated by obstacles autonomy requires

More information

Motion Planning 2D. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo

Motion Planning 2D. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Motion Planning 2D Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Tratto dai corsi: CS 326A: Motion Planning ai.stanford.edu/~latombe/cs326/2007/index.htm Prof. J.C. Latombe Stanford

More information

Path Planning. Jacky Baltes Dept. of Computer Science University of Manitoba 11/21/10

Path Planning. Jacky Baltes Dept. of Computer Science University of Manitoba   11/21/10 Path Planning Jacky Baltes Autonomous Agents Lab Department of Computer Science University of Manitoba Email: jacky@cs.umanitoba.ca http://www.cs.umanitoba.ca/~jacky Path Planning Jacky Baltes Dept. of

More information

MEV 442: Introduction to Robotics - Module 3 INTRODUCTION TO ROBOT PATH PLANNING

MEV 442: Introduction to Robotics - Module 3 INTRODUCTION TO ROBOT PATH PLANNING MEV 442: Introduction to Robotics - Module 3 INTRODUCTION TO ROBOT PATH PLANNING THE PATH PLANNING PROBLEM The robot should find out a path enables the continuous motion of a robot from an initial configuration

More information

Road Map Methods. Including material from Howie Choset / G.D. Hager S. Leonard

Road Map Methods. Including material from Howie Choset / G.D. Hager S. Leonard Road Map Methods Including material from Howie Choset The Basic Idea Capture the connectivity of Q free by a graph or network of paths. 16-735, Howie Choset, with significant copying from who loosely based

More information

EE631 Cooperating Autonomous Mobile Robots

EE631 Cooperating Autonomous Mobile Robots EE631 Cooperating Autonomous Mobile Robots Lecture 3: Path Planning Algorithm Prof. Yi Guo ECE Dept. Plan Representing the Space Path Planning Methods A* Search Algorithm D* Search Algorithm Representing

More information

Computational Geometry csci3250. Laura Toma. Bowdoin College

Computational Geometry csci3250. Laura Toma. Bowdoin College Computational Geometry csci3250 Laura Toma Bowdoin College Motion Planning Input: a robot R and a set of obstacles S = {O 1, O 2, } start position p start end position p end Find a path from start to end

More information

Path Planning. Marcello Restelli. Dipartimento di Elettronica e Informazione Politecnico di Milano tel:

Path Planning. Marcello Restelli. Dipartimento di Elettronica e Informazione Politecnico di Milano   tel: Marcello Restelli Dipartimento di Elettronica e Informazione Politecnico di Milano email: restelli@elet.polimi.it tel: 02 2399 3470 Path Planning Robotica for Computer Engineering students A.A. 2006/2007

More information

9. Three Dimensional Object Representations

9. Three Dimensional Object Representations 9. Three Dimensional Object Representations Methods: Polygon and Quadric surfaces: For simple Euclidean objects Spline surfaces and construction: For curved surfaces Procedural methods: Eg. Fractals, Particle

More information

Motion Planning. Howie CHoset

Motion Planning. Howie CHoset Motion Planning Howie CHoset Questions Where are we? Where do we go? Which is more important? Encoders Encoders Incremental Photodetector Encoder disk LED Photoemitter Encoders - Incremental Encoders -

More information

Week Date Lecture (W: 3:05p-4:50, 7-222)

Week Date Lecture (W: 3:05p-4:50, 7-222) 2017 School of Information Technology and Electrical Engineering at the University of Queensland Lecture Schedule Week Date Lecture (W: 3:05p-4:50, 7-222) 1 26-Jul Introduction + Representing Position

More information

Lecture 11 Combinatorial Planning: In the Plane

Lecture 11 Combinatorial Planning: In the Plane CS 460/560 Introduction to Computational Robotics Fall 2017, Rutgers University Lecture 11 Combinatorial Planning: In the Plane Instructor: Jingjin Yu Outline Convex shapes, revisited Combinatorial planning

More information

Motion Planning for a Point Robot (2/2) Point Robot on a Grid. Planning requires models. Point Robot on a Grid 1/18/2012.

Motion Planning for a Point Robot (2/2) Point Robot on a Grid. Planning requires models. Point Robot on a Grid 1/18/2012. Motion Planning for a Point Robot (/) Class scribing Position paper 1 Planning requires models Point Robot on a Grid The Bug algorithms are reactive motion strategies ; they are not motion planners To

More information

Robot Motion Planning

Robot Motion Planning Robot Motion Planning slides by Jan Faigl Department of Computer Science and Engineering Faculty of Electrical Engineering, Czech Technical University in Prague lecture A4M36PAH - Planning and Games Dpt.

More information

Manipula0on Algorithms Mo0on Planning. Mo#on Planning I. Katharina Muelling (NREC, Carnegie Mellon University) 1

Manipula0on Algorithms Mo0on Planning. Mo#on Planning I. Katharina Muelling (NREC, Carnegie Mellon University) 1 16-843 Manipula0on Algorithms Mo0on Planning Mo#on Planning I Katharina Muelling (NREC, Carnegie Mellon University) 1 Configura0on Space Obstacles Star Algorithm Convex robot, transla#on C obs : convex

More information

Autonomous Mobile Robots, Chapter 6 Planning and Navigation Where am I going? How do I get there? Localization. Cognition. Real World Environment

Autonomous Mobile Robots, Chapter 6 Planning and Navigation Where am I going? How do I get there? Localization. Cognition. Real World Environment Planning and Navigation Where am I going? How do I get there?? Localization "Position" Global Map Cognition Environment Model Local Map Perception Real World Environment Path Motion Control Competencies

More information

Visibility Graph. How does a Mobile Robot get from A to B?

Visibility Graph. How does a Mobile Robot get from A to B? Robot Path Planning Things to Consider: Spatial reasoning/understanding: robots can have many dimensions in space, obstacles can be complicated Global Planning: Do we know the environment apriori? Online

More information

Approximate path planning. Computational Geometry csci3250 Laura Toma Bowdoin College

Approximate path planning. Computational Geometry csci3250 Laura Toma Bowdoin College Approximate path planning Computational Geometry csci3250 Laura Toma Bowdoin College Outline Path planning Combinatorial Approximate Combinatorial path planning Idea: Compute free C-space combinatorially

More information

Geometric Path Planning McGill COMP 765 Oct 12 th, 2017

Geometric Path Planning McGill COMP 765 Oct 12 th, 2017 Geometric Path Planning McGill COMP 765 Oct 12 th, 2017 The Motion Planning Problem Intuition: Find a safe path/trajectory from start to goal More precisely: A path is a series of robot configurations

More information

Minkowski Sums. Dinesh Manocha Gokul Varadhan. UNC Chapel Hill. NUS CS 5247 David Hsu

Minkowski Sums. Dinesh Manocha Gokul Varadhan. UNC Chapel Hill. NUS CS 5247 David Hsu Minkowski Sums Dinesh Manocha Gokul Varadhan UNC Chapel Hill NUS CS 5247 David Hsu Last Lecture Configuration space workspace configuration space 2 Problem Configuration Space of a Translating Robot Input:

More information

Advanced Robotics Path Planning & Navigation

Advanced Robotics Path Planning & Navigation Advanced Robotics Path Planning & Navigation 1 Agenda Motivation Basic Definitions Configuration Space Global Planning Local Planning Obstacle Avoidance ROS Navigation Stack 2 Literature Choset, Lynch,

More information

Computational Geometry. Algorithm Design (10) Computational Geometry. Convex Hull. Areas in Computational Geometry

Computational Geometry. Algorithm Design (10) Computational Geometry. Convex Hull. Areas in Computational Geometry Computational Geometry Algorithm Design (10) Computational Geometry Graduate School of Engineering Takashi Chikayama Algorithms formulated as geometry problems Broad application areas Computer Graphics,

More information

Robot motion planning using exact cell decomposition and potential field methods

Robot motion planning using exact cell decomposition and potential field methods Robot motion planning using exact cell decomposition and potential field methods DUŠAN GLAVAŠKI, MARIO VOLF, MIRJANA BONKOVIĆ Laboratory for Robotics and Intelligent Systems Faculty of Electrical Engineering,

More information

Robotics Tasks. CS 188: Artificial Intelligence Spring Manipulator Robots. Mobile Robots. Degrees of Freedom. Sensors and Effectors

Robotics Tasks. CS 188: Artificial Intelligence Spring Manipulator Robots. Mobile Robots. Degrees of Freedom. Sensors and Effectors CS 188: Artificial Intelligence Spring 2006 Lecture 5: Robot Motion Planning 1/31/2006 Dan Klein UC Berkeley Many slides from either Stuart Russell or Andrew Moore Motion planning (today) How to move from

More information

Discrete Motion Planning

Discrete Motion Planning RBE MOTION PLANNING Discrete Motion Planning Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Announcement Homework 1 is out Due Date - Feb 1 Updated

More information

Robot Motion Planning and (a little) Computational Geometry

Robot Motion Planning and (a little) Computational Geometry Images taken from slides b B. Baazit, G. Dudek, J. C. Latombe and A. Moore Robot Motion Planning and (a little) Computational Geometr Topics: Transforms Topological Methods Configuration space Skeletonization

More information

Planning: Part 1 Classical Planning

Planning: Part 1 Classical Planning Planning: Part 1 Classical Planning Computer Science 6912 Department of Computer Science Memorial University of Newfoundland July 12, 2016 COMP 6912 (MUN) Planning July 12, 2016 1 / 9 Planning Localization

More information

Roadmaps. Vertex Visibility Graph. Reduced visibility graph, i.e., not including segments that extend into obstacles on either side.

Roadmaps. Vertex Visibility Graph. Reduced visibility graph, i.e., not including segments that extend into obstacles on either side. Roadmaps Vertex Visibility Graph Full visibility graph Reduced visibility graph, i.e., not including segments that extend into obstacles on either side. (but keeping endpoints roads) what else might we

More information

Motion Planning, Part III Graph Search, Part I. Howie Choset

Motion Planning, Part III Graph Search, Part I. Howie Choset Motion Planning, Part III Graph Search, Part I Howie Choset Happy President s Day The Configuration Space What it is A set of reachable areas constructed from knowledge of both the robot and the world

More information

CS Path Planning

CS Path Planning Why Path Planning? CS 603 - Path Planning Roderic A. Grupen 4/13/15 Robotics 1 4/13/15 Robotics 2 Why Motion Planning? Origins of Motion Planning Virtual Prototyping! Character Animation! Structural Molecular

More information

Lecture 3: Motion Planning 2

Lecture 3: Motion Planning 2 CS 294-115 Algorithmic Human-Robot Interaction Fall 2017 Lecture 3: Motion Planning 2 Scribes: David Chan and Liting Sun - Adapted from F2016 Notes by Molly Nicholas and Chelsea Zhang 3.1 Previously Recall

More information

Motion Planning. O Rourke, Chapter 8

Motion Planning. O Rourke, Chapter 8 O Rourke, Chapter 8 Outline Translating a polygon Moving a ladder Shortest Path (Point-to-Point) Goal: Given disjoint polygons in the plane, and given positions s and t, find the shortest path from s to

More information

Advanced Robotics Path Planning & Navigation

Advanced Robotics Path Planning & Navigation Advanced Robotics Path Planning & Navigation 1 Agenda Motivation Basic Definitions Configuration Space Global Planning Local Planning Obstacle Avoidance ROS Navigation Stack 2 Literature Choset, Lynch,

More information

Configuration Space of a Robot

Configuration Space of a Robot Robot Path Planning Overview: 1. Visibility Graphs 2. Voronoi Graphs 3. Potential Fields 4. Sampling-Based Planners PRM: Probabilistic Roadmap Methods RRTs: Rapidly-exploring Random Trees Configuration

More information

Lecture 3: Motion Planning (cont.)

Lecture 3: Motion Planning (cont.) CS 294-115 Algorithmic Human-Robot Interaction Fall 2016 Lecture 3: Motion Planning (cont.) Scribes: Molly Nicholas, Chelsea Zhang 3.1 Previously in class... Recall that we defined configuration spaces.

More information

Trajectory Optimization

Trajectory Optimization Trajectory Optimization Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Recap We heard about RRT*, a sampling-based planning in high-dimensional cost

More information

Planning in Mobile Robotics

Planning in Mobile Robotics Planning in Mobile Robotics Part I. Miroslav Kulich Intelligent and Mobile Robotics Group Gerstner Laboratory for Intelligent Decision Making and Control Czech Technical University in Prague Tuesday 26/07/2011

More information

Algorithms for Sensor-Based Robotics: Sampling-Based Motion Planning

Algorithms for Sensor-Based Robotics: Sampling-Based Motion Planning Algorithms for Sensor-Based Robotics: Sampling-Based Motion Planning Computer Science 336 http://www.cs.jhu.edu/~hager/teaching/cs336 Professor Hager http://www.cs.jhu.edu/~hager Recall Earlier Methods

More information

Introduction to State-of-the-art Motion Planning Algorithms. Presented by Konstantinos Tsianos

Introduction to State-of-the-art Motion Planning Algorithms. Presented by Konstantinos Tsianos Introduction to State-of-the-art Motion Planning Algorithms Presented by Konstantinos Tsianos Robots need to move! Motion Robot motion must be continuous Geometric constraints Dynamic constraints Safety

More information

Coverage. Ioannis Rekleitis

Coverage. Ioannis Rekleitis Coverage Ioannis Rekleitis Motivation Humanitarian Demining CS-417 Introduction to Robotics and Intelligent Systems 2 Motivation Lawn Mowing CS-417 Introduction to Robotics and Intelligent Systems 3 Motivation

More information

6.141: Robotics systems and science Lecture 10: Implementing Motion Planning

6.141: Robotics systems and science Lecture 10: Implementing Motion Planning 6.141: Robotics systems and science Lecture 10: Implementing Motion Planning Lecture Notes Prepared by N. Roy and D. Rus EECS/MIT Spring 2011 Reading: Chapter 3, and Craig: Robotics http://courses.csail.mit.edu/6.141/!

More information

Robotic Motion Planning: Review C-Space and Start Potential Functions

Robotic Motion Planning: Review C-Space and Start Potential Functions Robotic Motion Planning: Review C-Space and Start Potential Functions Robotics Institute 16-735 http://www.cs.cmu.edu/~motionplanning Howie Choset http://www.cs.cmu.edu/~choset What if the robot is not

More information

Roadmap-Based Path Planning

Roadmap-Based Path Planning Roadmap-Based d Path Planning Chapter 7 Objectives Understand the definition of a Road Map Investigate techniques for roadmap-based goal- directed path planning in 2D environments geometry-based algorithms

More information

Unit 5: Part 1 Planning

Unit 5: Part 1 Planning Unit 5: Part 1 Planning Computer Science 4766/6778 Department of Computer Science Memorial University of Newfoundland March 25, 2014 COMP 4766/6778 (MUN) Planning March 25, 2014 1 / 9 Planning Localization

More information

Motion Planning, Part IV Graph Search Part II. Howie Choset

Motion Planning, Part IV Graph Search Part II. Howie Choset Motion Planning, Part IV Graph Search Part II Howie Choset Map-Based Approaches: Properties of a roadmap: Roadmap Theory Accessibility: there exists a collision-free path from the start to the road map

More information

Introduction to Robotics

Introduction to Robotics Jianwei Zhang zhang@informatik.uni-hamburg.de Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Technische Aspekte Multimodaler Systeme 05. July 2013 J. Zhang 1 Task-level

More information

Motion Planning. Howie CHoset

Motion Planning. Howie CHoset Motion Planning Howie CHoset What is Motion Planning? What is Motion Planning? Determining where to go Overview The Basics Motion Planning Statement The World and Robot Configuration Space Metrics Algorithms

More information

Human-Oriented Robotics. Robot Motion Planning. Kai Arras Social Robotics Lab, University of Freiburg

Human-Oriented Robotics. Robot Motion Planning. Kai Arras Social Robotics Lab, University of Freiburg Robot Motion Planning Kai Arras, University of Freiburg 1 Contents Introduction Configuration space Combinatorial planning Sampling-based planning Potential fields methods A, Any-Angle A, D/D Lite Dynamic

More information

Collision and Proximity Queries

Collision and Proximity Queries Collision and Proximity Queries Dinesh Manocha (based on slides from Ming Lin) COMP790-058 Fall 2013 Geometric Proximity Queries l Given two object, how would you check: If they intersect with each other

More information

Geometric Path Planning for General Robot Manipulators

Geometric Path Planning for General Robot Manipulators Proceedings of the World Congress on Engineering and Computer Science 29 Vol II WCECS 29, October 2-22, 29, San Francisco, USA Geometric Path Planning for General Robot Manipulators Ziyad Aljarboua Abstract

More information

Algorithms for Sensor-Based Robotics: Sampling-Based Motion Planning

Algorithms for Sensor-Based Robotics: Sampling-Based Motion Planning Algorithms for Sensor-Based Robotics: Sampling-Based Motion Planning Computer Science 336 http://www.cs.jhu.edu/~hager/teaching/cs336 Professor Hager http://www.cs.jhu.edu/~hager Recall Earlier Methods

More information

Solid Modelling. Graphics Systems / Computer Graphics and Interfaces COLLEGE OF ENGINEERING UNIVERSITY OF PORTO

Solid Modelling. Graphics Systems / Computer Graphics and Interfaces COLLEGE OF ENGINEERING UNIVERSITY OF PORTO Solid Modelling Graphics Systems / Computer Graphics and Interfaces 1 Solid Modelling In 2D, one set 2D line segments or curves does not necessarily form a closed area. In 3D, a collection of surfaces

More information

Probabilistic Methods for Kinodynamic Path Planning

Probabilistic Methods for Kinodynamic Path Planning 16.412/6.834J Cognitive Robotics February 7 th, 2005 Probabilistic Methods for Kinodynamic Path Planning Based on Past Student Lectures by: Paul Elliott, Aisha Walcott, Nathan Ickes and Stanislav Funiak

More information

A Reduced-Order Analytical Solution to Mobile Robot Trajectory Generation in the Presence of Moving Obstacles

A Reduced-Order Analytical Solution to Mobile Robot Trajectory Generation in the Presence of Moving Obstacles A Reduced-Order Analytical Solution to Mobile Robot Trajectory Generation in the Presence of Moving Obstacles Jing Wang, Zhihua Qu,, Yi Guo and Jian Yang Electrical and Computer Engineering University

More information

CS 4649/7649 Robot Intelligence: Planning

CS 4649/7649 Robot Intelligence: Planning CS 4649/7649 Robot Intelligence: Planning Probabilistic Roadmaps Sungmoon Joo School of Interactive Computing College of Computing Georgia Institute of Technology S. Joo (sungmoon.joo@cc.gatech.edu) 1

More information

L1 - Introduction. Contents. Introduction of CAD/CAM system Components of CAD/CAM systems Basic concepts of graphics programming

L1 - Introduction. Contents. Introduction of CAD/CAM system Components of CAD/CAM systems Basic concepts of graphics programming L1 - Introduction Contents Introduction of CAD/CAM system Components of CAD/CAM systems Basic concepts of graphics programming 1 Definitions Computer-Aided Design (CAD) The technology concerned with the

More information

Local Search Methods. CS 188: Artificial Intelligence Fall Announcements. Hill Climbing. Hill Climbing Diagram. Today

Local Search Methods. CS 188: Artificial Intelligence Fall Announcements. Hill Climbing. Hill Climbing Diagram. Today CS 188: Artificial Intelligence Fall 2006 Lecture 5: Robot Motion Planning 9/14/2006 Local Search Methods Queue-based algorithms keep fallback options (backtracking) Local search: improve what you have

More information

Potential Function. Homework #3. Part I: Star Algorithm

Potential Function. Homework #3. Part I: Star Algorithm Homework #3 Potential Function Part I: Star Algorithm I have implemented the Star Algorithm to compute the 2-dimensional configuration space Q starting from the workspace W and the robot shape R. The obstacles

More information

6.141: Robotics systems and science Lecture 10: Motion Planning III

6.141: Robotics systems and science Lecture 10: Motion Planning III 6.141: Robotics systems and science Lecture 10: Motion Planning III Lecture Notes Prepared by N. Roy and D. Rus EECS/MIT Spring 2012 Reading: Chapter 3, and Craig: Robotics http://courses.csail.mit.edu/6.141/!

More information

Announcements. CS 188: Artificial Intelligence Fall Robot motion planning! Today. Robotics Tasks. Mobile Robots

Announcements. CS 188: Artificial Intelligence Fall Robot motion planning! Today. Robotics Tasks. Mobile Robots CS 188: Artificial Intelligence Fall 2007 Lecture 6: Robot Motion Planning 9/13/2007 Announcements Project 1 due (yesterday)! Project 2 (Pacman with ghosts) up in a few days Reminder: you are allowed to

More information

CS 188: Artificial Intelligence Fall Announcements

CS 188: Artificial Intelligence Fall Announcements CS 188: Artificial Intelligence Fall 2007 Lecture 6: Robot Motion Planning 9/13/2007 Dan Klein UC Berkeley Many slides over the course adapted from either Stuart Russell or Andrew Moore Announcements Project

More information

CS4733 Class Notes. 1 2-D Robot Motion Planning Algorithm Using Grown Obstacles

CS4733 Class Notes. 1 2-D Robot Motion Planning Algorithm Using Grown Obstacles CS4733 Class Notes 1 2-D Robot Motion Planning Algorithm Using Grown Obstacles Reference: An Algorithm for Planning Collision Free Paths Among Poyhedral Obstacles by T. Lozano-Perez and M. Wesley. This

More information

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 24 Solid Modelling

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 24 Solid Modelling Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 24 Solid Modelling Welcome to the lectures on computer graphics. We have

More information

Roadmap Methods vs. Cell Decomposition in Robot Motion Planning

Roadmap Methods vs. Cell Decomposition in Robot Motion Planning Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19, 007 17 Roadmap Methods vs. Cell Decomposition in Robot Motion

More information

Coverage. Ioannis Rekleitis

Coverage. Ioannis Rekleitis Coverage Ioannis Rekleitis Coverage A task performed quite often in everyday life: Cleaning Painting Plowing/Sowing Tile setting etc. CSCE 774: Robotic Systems 2 Motivation Humanitarian Demining CSCE 774:

More information

MOBILE ROBOTICS course MOTION PLANNING. Maria Isabel Ribeiro Pedro Lima

MOBILE ROBOTICS course MOTION PLANNING. Maria Isabel Ribeiro Pedro Lima MOBILE ROBOTICS course MOTION PLANNING Maria Isabel Ribeiro Pedro Lima mir@isr.ist.utl.pt pal@isr.ist.utl.pt Instituto Superior Técnico (IST) Instituto de Sistemas e Robótica (ISR) Av.Rovisco Pais, 1 1049-001

More information

Möbius Transformations in Scientific Computing. David Eppstein

Möbius Transformations in Scientific Computing. David Eppstein Möbius Transformations in Scientific Computing David Eppstein Univ. of California, Irvine School of Information and Computer Science (including joint work with Marshall Bern from WADS 01 and SODA 03) Outline

More information

Unit 5: Motion Geometry

Unit 5: Motion Geometry Rotations Unit 5: Translations Motion Geometry Reflections 1 Translations translation is also called a "slide." When you slide a shape it keeps its original orientation. It does not turn (rotate) or flip.

More information

Introduction to Information Science and Technology (IST) Part IV: Intelligent Machines and Robotics Planning

Introduction to Information Science and Technology (IST) Part IV: Intelligent Machines and Robotics Planning Introduction to Information Science and Technology (IST) Part IV: Intelligent Machines and Robotics Planning Sören Schwertfeger / 师泽仁 ShanghaiTech University ShanghaiTech University - SIST - 10.05.2017

More information

The Art Gallery Problem: An Overview and Extension to Chromatic Coloring and Mobile Guards

The Art Gallery Problem: An Overview and Extension to Chromatic Coloring and Mobile Guards The Art Gallery Problem: An Overview and Extension to Chromatic Coloring and Mobile Guards Nicole Chesnokov May 16, 2018 Contents 1 Introduction 2 2 The Art Gallery Problem 3 2.1 Proof..................................

More information

Lecture notes: Object modeling

Lecture notes: Object modeling Lecture notes: Object modeling One of the classic problems in computer vision is to construct a model of an object from an image of the object. An object model has the following general principles: Compact

More information

Lecture 14: Path Planning II. Autonomous Robots, Carnegie Mellon University Qatar

Lecture 14: Path Planning II. Autonomous Robots, Carnegie Mellon University Qatar Lecture 14: Path Planning II Autonomous Robots, 16-200 Carnegie Mellon University Qatar Overview Logistics Movie Path Planning continued Logistics We will send you detailed feedback on your presentation

More information

The Corridor Map Method: Real-Time High-Quality Path Planning

The Corridor Map Method: Real-Time High-Quality Path Planning 27 IEEE International Conference on Robotics and Automation Roma, Italy, 1-14 April 27 WeC11.3 The Corridor Map Method: Real-Time High-Quality Path Planning Roland Geraerts and Mark H. Overmars Abstract

More information

CSG obj. oper3. obj1 obj2 obj3. obj5. obj4

CSG obj. oper3. obj1 obj2 obj3. obj5. obj4 Solid Modeling Solid: Boundary + Interior Volume occupied by geometry Solid representation schemes Constructive Solid Geometry (CSG) Boundary representations (B-reps) Space-partition representations Operations

More information

Computational Geometry

Computational Geometry Lecture 1: Introduction and convex hulls Geometry: points, lines,... Geometric objects Geometric relations Combinatorial complexity Computational geometry Plane (two-dimensional), R 2 Space (three-dimensional),

More information

Collision Detection. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering

Collision Detection. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering RBE 550 MOTION PLANNING BASED ON DR. DMITRY BERENSON S RBE 550 Collision Detection Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Euler Angle RBE

More information

Robot Motion Control Matteo Matteucci

Robot Motion Control Matteo Matteucci Robot Motion Control Open loop control A mobile robot is meant to move from one place to another Pre-compute a smooth trajectory based on motion segments (e.g., line and circle segments) from start to

More information

Physically-Based Modeling and Animation. University of Missouri at Columbia

Physically-Based Modeling and Animation. University of Missouri at Columbia Overview of Geometric Modeling Overview 3D Shape Primitives: Points Vertices. Curves Lines, polylines, curves. Surfaces Triangle meshes, splines, subdivision surfaces, implicit surfaces, particles. Solids

More information

Coverage and Search Algorithms. Chapter 10

Coverage and Search Algorithms. Chapter 10 Coverage and Search Algorithms Chapter 10 Objectives To investigate some simple algorithms for covering the area in an environment To understand how to break down an environment into simple convex pieces

More information

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute Jane Li Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute A search-algorithm prioritizes and expands the nodes in its open list items by

More information

MOBILE ROBOTS NAVIGATION, MAPPING & LOCALIZATION: PART I

MOBILE ROBOTS NAVIGATION, MAPPING & LOCALIZATION: PART I MOBILE ROBOTS NAVIGATION, MAPPING & LOCALIZATION: PART I Lee Gim Hee* CML DSO National Laboratories 20 Science Park Drive Singapore 118230 Tel: (+65) 6796 8427 Email: lgimhee@dso.org.sg Marcelo H. Ang

More information

Collision Detection. These slides are mainly from Ming Lin s course notes at UNC Chapel Hill

Collision Detection. These slides are mainly from Ming Lin s course notes at UNC Chapel Hill Collision Detection These slides are mainly from Ming Lin s course notes at UNC Chapel Hill http://www.cs.unc.edu/~lin/comp259-s06/ Computer Animation ILE5030 Computer Animation and Special Effects 2 Haptic

More information

Motion Planning. Jana Kosecka Department of Computer Science

Motion Planning. Jana Kosecka Department of Computer Science Motion Planning Jana Kosecka Department of Computer Science Discrete planning, graph search, shortest path, A* methods Road map methods Configuration space Slides thanks to http://cs.cmu.edu/~motionplanning,

More information

Introduction to Geometry

Introduction to Geometry Introduction to Geometry This course covers the topics outlined below. You can customize the scope and sequence of this course to meet your curricular needs. Curriculum (211 topics + 6 additional topics)

More information

General Pyramids. General Cone. Right Circular Cone = "Cone"

General Pyramids. General Cone. Right Circular Cone = Cone Aim #6: What are general pyramids and cones? CC Geometry H Do Now: Put the images shown below into the groups (A,B,C and D) based on their properties. Group A: General Cylinders Group B: Prisms Group C:

More information

Introduction to 2D and 3D Computer Graphics. Realistic Rendering. -- Solids Modeling --

Introduction to 2D and 3D Computer Graphics. Realistic Rendering. -- Solids Modeling -- Introduction to 2D and 3D Computer Graphics Realistic Rendering -- Solids Modeling -- CS447/547 10-1 CS447/547 10-2 Solid objects can be defined......by sweeping an object along a trajectory through space...this

More information

Simplified Voronoi diagrams for motion planning of quadratically-solvable Gough-Stewart platforms

Simplified Voronoi diagrams for motion planning of quadratically-solvable Gough-Stewart platforms Simplified Voronoi diagrams for motion planning of quadratically-solvable Gough-Stewart platforms Rubén Vaca, Joan Aranda, and Federico Thomas Abstract The obstacles in Configuration Space of quadratically-solvable

More information

Mobile Robots: An Introduction.

Mobile Robots: An Introduction. Mobile Robots: An Introduction Amirkabir University of Technology Computer Engineering & Information Technology Department http://ce.aut.ac.ir/~shiry/lecture/robotics-2004/robotics04.html Introduction

More information

4 Mathematics Curriculum. Module Overview... i Topic A: Lines and Angles... 4.A.1. Topic B: Angle Measurement... 4.B.1

4 Mathematics Curriculum. Module Overview... i Topic A: Lines and Angles... 4.A.1. Topic B: Angle Measurement... 4.B.1 New York State Common Core 4 Mathematics Curriculum G R A D E Table of Contents GRADE 4 MODULE 4 Angle Measure and Plane Figures GRADE 4 MODULE 4 Module Overview... i Topic A: Lines and Angles... 4.A.1

More information

Lecture Schedule Week Date Lecture (W: 3:05p-4:50, 7-222)

Lecture Schedule Week Date Lecture (W: 3:05p-4:50, 7-222) 2017 School of Information Technology and Electrical Engineering at the University of Queensland Lecture Schedule Week Date Lecture (W: 3:05p-4:50, 7-222) 1 26-Jul Introduction + 2 2-Aug Representing Position

More information

Robot Motion Planning Using Generalised Voronoi Diagrams

Robot Motion Planning Using Generalised Voronoi Diagrams Robot Motion Planning Using Generalised Voronoi Diagrams MILOŠ ŠEDA, VÁCLAV PICH Institute of Automation and Computer Science Brno University of Technology Technická 2, 616 69 Brno CZECH REPUBLIC Abstract:

More information

Course 16 Geometric Data Structures for Computer Graphics. Voronoi Diagrams

Course 16 Geometric Data Structures for Computer Graphics. Voronoi Diagrams Course 16 Geometric Data Structures for Computer Graphics Voronoi Diagrams Dr. Elmar Langetepe Institut für Informatik I Universität Bonn Geometric Data Structures for CG July 27 th Voronoi Diagrams San

More information

Path-planning by Tessellation of Obstacles

Path-planning by Tessellation of Obstacles Path-planning by Tessellation of Obstacles Tane Pendragon and Lyndon While School of Computer Science & Software Engineering, The University of Western Australia, Western Australia 6009 email: {pendrt01,

More information

Planning Movement of a Robotic Arm for Assembly of Products

Planning Movement of a Robotic Arm for Assembly of Products Journal of Mechanics Engineering and Automation 5 (2015) 257-262 doi: 10.17265/2159-5275/2015.04.008 D DAVID PUBLISHING Planning Movement of a Robotic Arm for Assembly of Products Jose Ismael Ojeda Campaña

More information

Geometric Modeling. Introduction

Geometric Modeling. Introduction Geometric Modeling Introduction Geometric modeling is as important to CAD as governing equilibrium equations to classical engineering fields as mechanics and thermal fluids. intelligent decision on the

More information

Composition Transformation

Composition Transformation Name: Date: 1. Describe the sequence of transformations that results in the transformation of Figure A to Figure A. 2. Describe the sequence of transformations that results in the transformation of Figure

More information

CMU-Q Lecture 4: Path Planning. Teacher: Gianni A. Di Caro

CMU-Q Lecture 4: Path Planning. Teacher: Gianni A. Di Caro CMU-Q 15-381 Lecture 4: Path Planning Teacher: Gianni A. Di Caro APPLICATION: MOTION PLANNING Path planning: computing a continuous sequence ( a path ) of configurations (states) between an initial configuration

More information