Computational Methods for Finding Probabilities of Intervals

Size: px
Start display at page:

Download "Computational Methods for Finding Probabilities of Intervals"

Transcription

1 Computational Methods for Finding Probabilities of Intervals Often the standard normal density function is denoted ϕ(z) = (2π) 1/2 exp( z 2 /2) and its CDF by Φ(z). Because Φ cannot be expressed in closed form, areas under the normal curve corresponding to probabilities of the form P{a < Z b} are found by numerical integration, simulation or rational approximation. Here we use R to illustrate some of these methods, evaluating J = P{0 < Z 1} as an example, where Z ~ NORM(0, 1). A slight modification of the first method below is used in the pnorm function of R. This function can be used to evaluate J as pnorm(1) - pnorm(0), which returns

2 Depending on their format, standard printed tables can be used to get P{0 < Z < 1} = directly or to find it after a simple computation, such as = For many practical applications, accuracy beyond 2 or 3 decimal places is not required. The methods illustrated here for the standard normal distribution can also be used for other continuous distributions where direct integration is not possible. Note: In R the CDFs of some other families of distributions are called punif, pbeta, pexp, pgamma, and pweibull. Use?punif, and so on, for an explanation of syntax, default parameters, and specification of parameters.

3 Numerical integration. By selecting a grid of a large number n of evenly spaced points z i in (a, b], one may approximate J by J Σ i w i h i, where w i = (b a)/n is the width of the base of a small rectangle containing z i and h i = ϕ(z i ) is its height. n <- 100; a <- 0; b <- 1; w <- (b - a)/n z <- seq(a + w/2, b - w/2, length=n) h <- dnorm(z) j <- sum(w*h); j [1] Using n = 1000 grid points, we obtain [Note that dnorm(z) could be replaced by exp(-z^2/2)/sqrt(2*pi).] This is a deterministic computation; every run with the same n will give the same result. Exercise 1: Use numerical integration to evaluate P{0 < Z < 1/2}.

4 Monte Carlo integration. Sometimes, especially in the approximation of integrals over high dimensional regions, it is easier and more accurate to select the z i at random on (a, b], rather than to use an evenly spaced grid. In one dimension, as here, this method tends to be less efficient than numerical integration and so we use a larger n = n < ; a <- 0; b <- 1; w <- (b - a)/n z <- runif(n, a, b); h <- dnorm(z) j <- sum(w*h); j [1] Because this is a simulation, each result will be a little different. Here it is reasonable to expect 2 or 3 place accuracy on each run. Other runs gave: , , , Exercise 2: (a) Use Monte Carlo integration to evaluate P{0 < Z < 1/2}. (b) Let X have the density f(x) = 6x(1 x), for 0 x 1. Use calculus, numerical integration, and Monte Carlo integration to evaluate or approximate P{X < 1/3}. What are your options if f(x) = x 0.9 (1 x) 1.1, for 0 x 1?

5 Acceptance-Rejection method. The desired area J above (0, 1] and beneath ϕ is wholly contained in the rectangle with base (0, 1) and height 0.4. We can generate many points randomly distributed in this interval, find the proportion of them in the desired area (the "accepted" points) and multiply that proportion by 0.4. With n = , this method gives 2 or 3 place accuracy for our example. n < ; y <- runif(n, 0,.4); z <- runif(n, 0, 1) j <- mean(y < dnorm(z)) * 0.4; j [1] Other runs gave: , , ,

6 A similar method can be used to get an approximation to π. The first quadrant of the unit circle, which has area π/4, is entirely contained in a square that has area 1. So π can be approximated if we multiply by 4 the fraction of random points in the square that falls in the first quadrant of the circle. n < x <- runif(n, 0, 1); y <- runif(n, 0, 1) pie <- mean(y < sqrt(1 - x^2)) * 4; pie [1] Other runs gave: , , Exercise 3: The Taylor expansion of e x is 1 x + x 2 /2! x 3 /3! + x 4 /4! Show that the area above the curve f(x) = 1 x + x 2 /2! x 3 /3! + x 4 /4! x 5 /5! + x 6 /6! within the unit square [vertices at (0, 0), (0, 1), (1, 0), and (1,1)] is approximately 1/e. Use this fact and the acceptance-rejection method to approximate 1/e thence e. Where is the greater error: (i) in using f(x) for e x or (ii) in the random sampling of points? Explain.

7 Sampling method. We can also simulate a sample from NORM(0, 1) and take the proportion lying in the desired interval (0, 1]. n < ; z <- rnorm(n, 0, 1) j <- mean(z > 0 & z < 1); j [1] Even with larger n, we can expect only about 2 place accuracy in our example. Other runs gave: , , , This method is useful in cases where we do not know the density function of the distribution under consideration, but can find a way to simulate it. For example, it is tedious to find the density function of the random variable X = U + V + W, where U ~ UNIF(0,2), V ~ EXPM(1), and W ~ NORM(2, 1/2), are independent random variables. But it wouldn't be difficult to simulate a sample of several thousand from the distribution of X.

8 n < u <- runif(n, 0, 2) v <- rexp(n, 1) w <- rnorm(n, 2, 1/2) x <- u + v + w hist(x) mean(x < 2) mean(x) var(x) sqrt(var(x)) > mean(x < 2) [1] Exact answer:????? > mean(x) [1] Exact answer: 4 > var(x) [1] Exact answer: > sqrt(var(x)) [1] Exact answer: Exercise 4: Approximate P{X < 3}.

9 Rational approximation. This method involves expanding the integrand, for example into an infinite series, the first few terms of which are integrated to give an approximation. Stegun and Abramowitz (Handbook of Mathematical Functions, 8th printing, National Bureau of Standards, 1970, page 932) show a rational approximation, which they claim is good to 6 or 7 places. Coding this approximation into R, we get an approximation of P{0 < Z < b}: c1 < ; c2 < ; c3 < ; c4 < ; c5 < ; d < b <- 1; t <- 1/(1 + d*b) j <-.5 - dnorm(b)*(c1*t + c2*t^2 + c3*t^3 + c4*t^4 + c5*t^5) j [1] This is a deterministic approximation; every run gives the same answer. There are many other rational approximations for Φ, and also for other continuous CDFs that do not have closed form. Exercise 5: For z in [0,.5), why is it reasonable to approximate Φ(z) by (2π) 1/2 (z z 3 /6 + z 5 /40 z 7 /168 + z 9 /3456 z 11 /42528) + 1/2? With R or a hand calculator, use this approximation to find Φ(1/4). Copyright 2004 by Bruce E. Trumbo. All rights reserved. Department of Statistics, CSU Hayward.

Monte Carlo Simula/on and Copula Func/on. by Gerardo Ferrara

Monte Carlo Simula/on and Copula Func/on. by Gerardo Ferrara Monte Carlo Simula/on and Copula Func/on by Gerardo Ferrara Introduc)on A Monte Carlo method is a computational algorithm that relies on repeated random sampling to compute its results. In a nutshell,

More information

Grade 6 Mathematics Item Specifications Florida Standards Assessments

Grade 6 Mathematics Item Specifications Florida Standards Assessments Content Standard MAFS.6.G Geometry MAFS.6.G.1 Solve real-world and mathematical problems involving area, surface area, and volume. Assessment Limits Calculator s Context A shape is shown. MAFS.6.G.1.1

More information

Measurement and Geometry: Area and Volume of Geometric Figures and Objects *

Measurement and Geometry: Area and Volume of Geometric Figures and Objects * OpenStax-CNX module: m35023 1 Measurement and Geometry: and Volume of Geometric Figures and Objects * Wade Ellis Denny Burzynski This work is produced by OpenStax-CNX and licensed under the Creative Commons

More information

Monte Carlo Integration

Monte Carlo Integration Lab 18 Monte Carlo Integration Lab Objective: Implement Monte Carlo integration to estimate integrals. Use Monte Carlo Integration to calculate the integral of the joint normal distribution. Some multivariable

More information

Unit 8: Normal Calculations

Unit 8: Normal Calculations Unit 8: Normal Calculations Prerequisites This unit requires familiarity with basic facts about normal distributions, which are covered in Unit 7, Normal Curves. In addition, students need some background

More information

Imperfections and Errors (Chapter 6)

Imperfections and Errors (Chapter 6) Imperfections and Errors (Chapter 6) EC4630 Radar and Laser Cross Section Fall 011 Prof. D. Jenn jenn@nps.navy.mil www.nps.navy.mil/jenn AY011 1 Imperfections and Errors Imperfections and errors are deviations

More information

VARIANCE REDUCTION TECHNIQUES IN MONTE CARLO SIMULATIONS K. Ming Leung

VARIANCE REDUCTION TECHNIQUES IN MONTE CARLO SIMULATIONS K. Ming Leung POLYTECHNIC UNIVERSITY Department of Computer and Information Science VARIANCE REDUCTION TECHNIQUES IN MONTE CARLO SIMULATIONS K. Ming Leung Abstract: Techniques for reducing the variance in Monte Carlo

More information

Integration. Volume Estimation

Integration. Volume Estimation Monte Carlo Integration Lab Objective: Many important integrals cannot be evaluated symbolically because the integrand has no antiderivative. Traditional numerical integration techniques like Newton-Cotes

More information

Learning Objectives. Continuous Random Variables & The Normal Probability Distribution. Continuous Random Variable

Learning Objectives. Continuous Random Variables & The Normal Probability Distribution. Continuous Random Variable Learning Objectives Continuous Random Variables & The Normal Probability Distribution 1. Understand characteristics about continuous random variables and probability distributions 2. Understand the uniform

More information

6-1 THE STANDARD NORMAL DISTRIBUTION

6-1 THE STANDARD NORMAL DISTRIBUTION 6-1 THE STANDARD NORMAL DISTRIBUTION The major focus of this chapter is the concept of a normal probability distribution, but we begin with a uniform distribution so that we can see the following two very

More information

APPENDIX K MONTE CARLO SIMULATION

APPENDIX K MONTE CARLO SIMULATION APPENDIX K MONTE CARLO SIMULATION K-1. Introduction. Monte Carlo simulation is a method of reliability analysis that should be used only when the system to be analyzed becomes too complex for use of simpler

More information

STAT 725 Notes Monte Carlo Integration

STAT 725 Notes Monte Carlo Integration STAT 725 Notes Monte Carlo Integration Two major classes of numerical problems arise in statistical inference: optimization and integration. We have already spent some time discussing different optimization

More information

Prime Time (Factors and Multiples)

Prime Time (Factors and Multiples) CONFIDENCE LEVEL: Prime Time Knowledge Map for 6 th Grade Math Prime Time (Factors and Multiples). A factor is a whole numbers that is multiplied by another whole number to get a product. (Ex: x 5 = ;

More information

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier Calculus I Review Handout 1.3 Introduction to Calculus - Limits by Kevin M. Chevalier We are now going to dive into Calculus I as we take a look at the it process. While precalculus covered more static

More information

Notes for Unit 1 Part A: Rational vs. Irrational

Notes for Unit 1 Part A: Rational vs. Irrational Notes for Unit 1 Part A: Rational vs. Irrational Natural Number: Whole Number: Integer: Rational Number: Irrational Number: Rational Numbers All are Real Numbers Integers Whole Numbers Irrational Numbers

More information

6 th Grade Math Cylinder Task. c) Draw a net (pattern) for the manufacturer to use to make the can.

6 th Grade Math Cylinder Task. c) Draw a net (pattern) for the manufacturer to use to make the can. 6 th Grade Math a) Explain what is meant by surface area. What steps would you take to find the surface area of a cylinder? b) One of the major expenses in manufacturing a can is the amount of metal that

More information

2 Computation with Floating-Point Numbers

2 Computation with Floating-Point Numbers 2 Computation with Floating-Point Numbers 2.1 Floating-Point Representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However, real numbers

More information

CSAP Achievement Levels Mathematics Grade 7 March, 2006

CSAP Achievement Levels Mathematics Grade 7 March, 2006 Advanced Performance Level 4 (Score range: 614 to 860) Students apply equivalent representations of decimals, factions, percents; apply congruency to multiple polygons, use fractional parts of geometric

More information

ISyE 6416: Computational Statistics Spring Lecture 13: Monte Carlo Methods

ISyE 6416: Computational Statistics Spring Lecture 13: Monte Carlo Methods ISyE 6416: Computational Statistics Spring 2017 Lecture 13: Monte Carlo Methods Prof. Yao Xie H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology Determine area

More information

MATH 2650/ Intro to Scientific Computation - Fall Lab 1: Starting with MATLAB. Script Files

MATH 2650/ Intro to Scientific Computation - Fall Lab 1: Starting with MATLAB. Script Files MATH 2650/3670 - Intro to Scientific Computation - Fall 2017 Lab 1: Starting with MATLAB. Script Files Content - Overview of Course Objectives - Use of MATLAB windows; the Command Window - Arithmetic operations

More information

An Introduction to Markov Chain Monte Carlo

An Introduction to Markov Chain Monte Carlo An Introduction to Markov Chain Monte Carlo Markov Chain Monte Carlo (MCMC) refers to a suite of processes for simulating a posterior distribution based on a random (ie. monte carlo) process. In other

More information

R Programming Basics - Useful Builtin Functions for Statistics

R Programming Basics - Useful Builtin Functions for Statistics R Programming Basics - Useful Builtin Functions for Statistics Vectorized Arithmetic - most arthimetic operations in R work on vectors. Here are a few commonly used summary statistics. testvect = c(1,3,5,2,9,10,7,8,6)

More information

Supplemental Material for Spatially-Balanced Designs that Incorporate Legacy Sites

Supplemental Material for Spatially-Balanced Designs that Incorporate Legacy Sites Supplemental Material for Spatially-Balanced Designs that Incorporate Legacy Sites S.D. Foster, G.R. Hosack, E. Lawrence, R. Przeslawski, P. Hedge, M.J. Caley, N.S. Barrett, A. Williams, J. Li, T. Lynch,

More information

2 Computation with Floating-Point Numbers

2 Computation with Floating-Point Numbers 2 Computation with Floating-Point Numbers 2.1 Floating-Point Representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However, real numbers

More information

Applications of Integration. Copyright Cengage Learning. All rights reserved.

Applications of Integration. Copyright Cengage Learning. All rights reserved. Applications of Integration Copyright Cengage Learning. All rights reserved. Area of a Region Between Two Curves Copyright Cengage Learning. All rights reserved. Objectives Find the area of a region between

More information

CHAPTER 8: INTEGRALS 8.1 REVIEW: APPROXIMATING INTEGRALS WITH RIEMANN SUMS IN 2-D

CHAPTER 8: INTEGRALS 8.1 REVIEW: APPROXIMATING INTEGRALS WITH RIEMANN SUMS IN 2-D CHAPTER 8: INTEGRALS 8.1 REVIEW: APPROXIMATING INTEGRALS WITH RIEMANN SUMS IN 2-D In two dimensions we have previously used Riemann sums to approximate ( ) following steps: with the 1. Divide the region

More information

Length and Area. Charles Delman. April 20, 2010

Length and Area. Charles Delman. April 20, 2010 Length and Area Charles Delman April 20, 2010 What is the length? Unit Solution Unit 5 (linear) units What is the length? Unit Solution Unit 5 2 = 2 1 2 (linear) units What is the perimeter of the shaded

More information

EXERCISE Which of the following is irrational? (C) 7 (D) 81 (A) (B)

EXERCISE Which of the following is irrational? (C) 7 (D) 81 (A) (B) EXERCISE Write the correct answer in each of the following:. Every rational number is a natural number an integer (C) a real number (D) a whole number. Between two rational numbers there is no rational

More information

Sixth Grade SOL Tracker Name:

Sixth Grade SOL Tracker Name: Sixth Grade SOL Tracker Name: % https://i.ytimg.com/vihttps://i.ytimg.com/vi/rinaa-jx0u8/maxresdefault.jpg/rinaajx0u8/maxresdefault.jpg g x A COLONIAL HEIGHTS PUBLIC SCHOOLS Mathematics Department I Can

More information

ESTIMATING AND CALCULATING AREAS OF REGIONS BETWEEN THE X-AXIS AND THE GRAPH OF A CONTINUOUS FUNCTION v.07

ESTIMATING AND CALCULATING AREAS OF REGIONS BETWEEN THE X-AXIS AND THE GRAPH OF A CONTINUOUS FUNCTION v.07 ESTIMATING AND CALCULATING AREAS OF REGIONS BETWEEN THE X-AXIS AND THE GRAPH OF A CONTINUOUS FUNCTION v.7 In this activity, you will explore techniques to estimate the "area" etween a continuous function

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction A Monte Carlo method is a compuational method that uses random numbers to compute (estimate) some quantity of interest. Very often the quantity we want to compute is the mean of

More information

Behavior of the sample mean. varx i = σ 2

Behavior of the sample mean. varx i = σ 2 Behavior of the sample mean We observe n independent and identically distributed (iid) draws from a random variable X. Denote the observed values by X 1, X 2,..., X n. Assume the X i come from a population

More information

Monte Carlo Integration and Random Numbers

Monte Carlo Integration and Random Numbers Monte Carlo Integration and Random Numbers Higher dimensional integration u Simpson rule with M evaluations in u one dimension the error is order M -4! u d dimensions the error is order M -4/d u In general

More information

TIMSS 2011 Fourth Grade Mathematics Item Descriptions developed during the TIMSS 2011 Benchmarking

TIMSS 2011 Fourth Grade Mathematics Item Descriptions developed during the TIMSS 2011 Benchmarking TIMSS 2011 Fourth Grade Mathematics Item Descriptions developed during the TIMSS 2011 Benchmarking Items at Low International Benchmark (400) M01_05 M05_01 M07_04 M08_01 M09_01 M13_01 Solves a word problem

More information

Rectangle Sums

Rectangle Sums Rectangle Sums --208 You can approximate the area under a curve using rectangles. To do this, divide the base interval into pieces subintervals). Then on each subinterval, build a rectangle that goes up

More information

Math 113 Exam 1 Practice

Math 113 Exam 1 Practice Math Exam Practice January 6, 00 Exam will cover sections 6.-6.5 and 7.-7.5 This sheet has three sections. The first section will remind you about techniques and formulas that you should know. The second

More information

Page 129 Exercise 5: Suppose that the joint p.d.f. of two random variables X and Y is as follows: { c(x. 0 otherwise. ( 1 = c. = c

Page 129 Exercise 5: Suppose that the joint p.d.f. of two random variables X and Y is as follows: { c(x. 0 otherwise. ( 1 = c. = c Stat Solutions for Homework Set Page 9 Exercise : Suppose that the joint p.d.f. of two random variables X and Y is as follows: { cx fx, y + y for y x, < x < otherwise. Determine a the value of the constant

More information

4.7 Approximate Integration

4.7 Approximate Integration 4.7 Approximate Integration Some anti-derivatives are difficult to impossible to find. For example, 1 0 e x2 dx or 1 1 1 + x3 dx We came across this situation back in calculus I when we introduced the

More information

Calculators ARE NOT Permitted On This Portion Of The Exam 28 Questions - 55 Minutes

Calculators ARE NOT Permitted On This Portion Of The Exam 28 Questions - 55 Minutes 1 of 11 1) Give f(g(1)), given that Calculators ARE NOT Permitted On This Portion Of The Exam 28 Questions - 55 Minutes 2) Find the slope of the tangent line to the graph of f at x = 4, given that 3) Determine

More information

On the computation of the n'th decimal digit of various transcendental numbers. Abstract

On the computation of the n'th decimal digit of various transcendental numbers. Abstract 08 avril 2001 The n'th decimal digit of Pi Page: 1 On the computation of the n'th decimal digit of various transcendental numbers. by Simon Plouffe November 30, 1996 Abstract We outline a method for computing

More information

AP * Calculus Review. Area and Volume

AP * Calculus Review. Area and Volume AP * Calculus Review Area and Volume Student Packet Advanced Placement and AP are registered trademark of the College Entrance Examination Board. The College Board was not involved in the production of,

More information

Computational modeling

Computational modeling Computational modeling Lecture 8 : Monte Carlo Instructor : Cedric Weber Course : 4CCP1000 Integrals, how to calculate areas? 2 Integrals, calculate areas There are different ways to calculate areas Integration

More information

1. Practice the use of the C ++ repetition constructs of for, while, and do-while. 2. Use computer-generated random numbers.

1. Practice the use of the C ++ repetition constructs of for, while, and do-while. 2. Use computer-generated random numbers. 1 Purpose This lab illustrates the use of looping structures by introducing a class of programming problems called numerical algorithms. 1. Practice the use of the C ++ repetition constructs of for, while,

More information

Chapter 6 Normal Probability Distributions

Chapter 6 Normal Probability Distributions Chapter 6 Normal Probability Distributions 6-1 Review and Preview 6-2 The Standard Normal Distribution 6-3 Applications of Normal Distributions 6-4 Sampling Distributions and Estimators 6-5 The Central

More information

The Plan: Basic statistics: Random and pseudorandom numbers and their generation: Chapter 16.

The Plan: Basic statistics: Random and pseudorandom numbers and their generation: Chapter 16. Scientific Computing with Case Studies SIAM Press, 29 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit IV Monte Carlo Computations Dianne P. O Leary c 28 What is a Monte-Carlo method?

More information

MULTI-DIMENSIONAL MONTE CARLO INTEGRATION

MULTI-DIMENSIONAL MONTE CARLO INTEGRATION CS580: Computer Graphics KAIST School of Computing Chapter 3 MULTI-DIMENSIONAL MONTE CARLO INTEGRATION 2 1 Monte Carlo Integration This describes a simple technique for the numerical evaluation of integrals

More information

lecture 19: monte carlo methods

lecture 19: monte carlo methods lecture 19: monte carlo methods STAT 598z: Introduction to computing for statistics Vinayak Rao Department of Statistics, Purdue University April 3, 2019 Monte Carlo integration We want to calculate integrals/summations

More information

Exercises C-Programming

Exercises C-Programming Exercises C-Programming Claude Fuhrer (claude.fuhrer@bfh.ch) 0 November 016 Contents 1 Serie 1 1 Min function.................................. Triangle surface 1............................... 3 Triangle

More information

Probability and Statistics for Final Year Engineering Students

Probability and Statistics for Final Year Engineering Students Probability and Statistics for Final Year Engineering Students By Yoni Nazarathy, Last Updated: April 11, 2011. Lecture 1: Introduction and Basic Terms Welcome to the course, time table, assessment, etc..

More information

Numerical Integration

Numerical Integration Lecture 12: Numerical Integration (with a focus on Monte Carlo integration) Computer Graphics CMU 15-462/15-662, Fall 2015 Review: fundamental theorem of calculus Z b f(x)dx = F (b) F (a) a f(x) = d dx

More information

6th Grade Math. Parent Handbook

6th Grade Math. Parent Handbook 6th Grade Math Benchmark 3 Parent Handbook This handbook will help your child review material learned this quarter, and will help them prepare for their third Benchmark Test. Please allow your child to

More information

Mathematics - LV 5 (with QuickTables)

Mathematics - LV 5 (with QuickTables) Mathematics - LV 5 (with QuickTables) Correlation of the ALEKS Course Mathematics LV 5 to the California Mathematics Content Standards for Grade 5 (1998) Number Sense: NS1.1: NS1.2: NS1.3: NS1.4: TD =

More information

A Random Number Based Method for Monte Carlo Integration

A Random Number Based Method for Monte Carlo Integration A Random Number Based Method for Monte Carlo Integration J Wang and G Harrell Department Math and CS, Valdosta State University, Valdosta, Georgia, USA Abstract - A new method is proposed for Monte Carlo

More information

Computer exercise 1 Introduction to Matlab.

Computer exercise 1 Introduction to Matlab. Chalmers-University of Gothenburg Department of Mathematical Sciences Probability, Statistics and Risk MVE300 Computer exercise 1 Introduction to Matlab. Understanding Distributions In this exercise, you

More information

Guided Problem Solving

Guided Problem Solving -1 Guided Problem Solving GPS Student Page 57, Exercises 1 1: Match each rule with the correct translation. A. (x, y) (x, y 1 ) I. P(, 1) P (3, ) B. (x, y) (x 1 3, y) II. Q(3, 0) Q (3, ) C. (x, y) (x 1,

More information

Math 250A (Fall 2009) - Lab I: Estimate Integrals Numerically with Matlab. Due Date: Monday, September 21, INSTRUCTIONS

Math 250A (Fall 2009) - Lab I: Estimate Integrals Numerically with Matlab. Due Date: Monday, September 21, INSTRUCTIONS Math 250A (Fall 2009) - Lab I: Estimate Integrals Numerically with Matlab Due Date: Monday, September 21, 2009 4:30 PM 1. INSTRUCTIONS The primary purpose of this lab is to understand how go about numerically

More information

Classwork. Exercises Use long division to determine the decimal expansion of. NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 6 8 7

Classwork. Exercises Use long division to determine the decimal expansion of. NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 6 8 7 Classwork Exercises 1 5 1. Use long division to determine the decimal expansion of. 2. Use long division to determine the decimal expansion of. 3. Use long division to determine the decimal expansion of.

More information

6.8 Sine ing and Cosine ing It

6.8 Sine ing and Cosine ing It SECONDARY MATH III // MODULE 6 In the previous tasks of this module you have used the similarity of circles, the symmetry of circles, right triangle trigonometry and proportional reasoning to locate stakes

More information

Lesson 9: Decimal Expansions of Fractions, Part 1

Lesson 9: Decimal Expansions of Fractions, Part 1 Classwork Opening Exercises 1 2 1. a. We know that the fraction can be written as a finite decimal because its denominator is a product of 2 s. Which power of 10 will allow us to easily write the fraction

More information

If ( ) is approximated by a left sum using three inscribed rectangles of equal width on the x-axis, then the approximation is

If ( ) is approximated by a left sum using three inscribed rectangles of equal width on the x-axis, then the approximation is More Integration Page 1 Directions: Solve the following problems using the available space for scratchwork. Indicate your answers on the front page. Do not spend too much time on any one problem. Note:

More information

3RD GRADE COMMON CORE VOCABULARY M-Z

3RD GRADE COMMON CORE VOCABULARY M-Z o o o 3RD GRADE COMMON CORE VOCABULARY M-Z mass mass mass The amount of matter in an object. Usually measured by comparing with an object of known mass. While gravity influences weight, it does not affect

More information

Lecture 7: Monte Carlo Rendering. MC Advantages

Lecture 7: Monte Carlo Rendering. MC Advantages Lecture 7: Monte Carlo Rendering CS 6620, Spring 2009 Kavita Bala Computer Science Cornell University MC Advantages Convergence rate of O( ) Simple Sampling Point evaluation Can use black boxes General

More information

USING THE DEFINITE INTEGRAL

USING THE DEFINITE INTEGRAL Print this page Chapter Eight USING THE DEFINITE INTEGRAL 8.1 AREAS AND VOLUMES In Chapter 5, we calculated areas under graphs using definite integrals. We obtained the integral by slicing up the region,

More information

Statistics 406 Exam November 17, 2005

Statistics 406 Exam November 17, 2005 Statistics 406 Exam November 17, 2005 1. For each of the following, what do you expect the value of A to be after executing the program? Briefly state your reasoning for each part. (a) X

More information

UNIT 11 VOLUME AND THE PYTHAGOREAN THEOREM

UNIT 11 VOLUME AND THE PYTHAGOREAN THEOREM UNIT 11 VOLUME AND THE PYTHAGOREAN THEOREM INTRODUCTION In this Unit, we will use the idea of measuring volume that we studied to find the volume of various 3 dimensional figures. We will also learn about

More information

Bramhall High school Year 8 Assessment Descriptors Mathematics

Bramhall High school Year 8 Assessment Descriptors Mathematics Grade Description Calculate with negative indices in the context of standard form. 8/9 Multiply (divide) numbers written in standard form. Use inequalities to describe the range of values for a rounded

More information

7 th GRADE PLANNER Mathematics. Lesson Plan # QTR. 3 QTR. 1 QTR. 2 QTR 4. Objective

7 th GRADE PLANNER Mathematics. Lesson Plan # QTR. 3 QTR. 1 QTR. 2 QTR 4. Objective Standard : Number and Computation Benchmark : Number Sense M7-..K The student knows, explains, and uses equivalent representations for rational numbers and simple algebraic expressions including integers,

More information

Integration. Example Find x 3 dx.

Integration. Example Find x 3 dx. Integration A function F is called an antiderivative of the function f if F (x)=f(x). The set of all antiderivatives of f is called the indefinite integral of f with respect to x and is denoted by f(x)dx.

More information

Alaska Mathematics Standards Vocabulary Word List Grade 7

Alaska Mathematics Standards Vocabulary Word List Grade 7 1 estimate proportion proportional relationship rate ratio rational coefficient rational number scale Ratios and Proportional Relationships To find a number close to an exact amount; an estimate tells

More information

Choose the correct answer below. 2. Convert the angle to a decimal in degrees.

Choose the correct answer below. 2. Convert the angle to a decimal in degrees. 1. Choose the figure that shows an angle of in standard position. Choose the correct answer below. 2. Convert the angle to a decimal in degrees. (Do not round until the final answer. Then round to two

More information

WHOLE NUMBER AND DECIMAL OPERATIONS

WHOLE NUMBER AND DECIMAL OPERATIONS WHOLE NUMBER AND DECIMAL OPERATIONS Whole Number Place Value : 5,854,902 = Ten thousands thousands millions Hundred thousands Ten thousands Adding & Subtracting Decimals : Line up the decimals vertically.

More information

5 Applications of Definite Integrals

5 Applications of Definite Integrals 5 Applications of Definite Integrals The previous chapter introduced the concepts of a definite integral as an area and as a limit of Riemann sums, demonstrated some of the properties of integrals, introduced

More information

Using Number Skills. Addition and Subtraction

Using Number Skills. Addition and Subtraction Numeracy Toolkit Using Number Skills Addition and Subtraction Ensure each digit is placed in the correct columns when setting out an addition or subtraction calculation. 534 + 2678 Place the digits in

More information

York Public Schools Subject Area: Mathematics Course: 6 th Grade Math NUMBER OF DAYS TAUGHT DATE

York Public Schools Subject Area: Mathematics Course: 6 th Grade Math NUMBER OF DAYS TAUGHT DATE 6.1.1.d 6.EE.A.1 Represent large numbers using exponential notation (i.e.. 10x10x10x10x10) (Review PV chart first) Write evaluate numerical expressions involving whole number exponents 5 days August, Lesson

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 013-014 Jakob Verbeek, December 13+0, 013 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.13.14

More information

Short-Cut MCMC: An Alternative to Adaptation

Short-Cut MCMC: An Alternative to Adaptation Short-Cut MCMC: An Alternative to Adaptation Radford M. Neal Dept. of Statistics and Dept. of Computer Science University of Toronto http://www.cs.utoronto.ca/ radford/ Third Workshop on Monte Carlo Methods,

More information

MONTE CARLO EVALUATION OF DEFINITE INTEGRALS

MONTE CARLO EVALUATION OF DEFINITE INTEGRALS MISN-0-355 MONTE CARLO EVALUATION OF DEFINITE INTEGRALS by Robert Ehrlich MONTE CARLO EVALUATION OF DEFINITE INTEGRALS y 1. Integrals, 1-2 Dimensions a. Introduction.............................................1

More information

ACCURACY AND EFFICIENCY OF MONTE CARLO METHOD. Julius Goodman. Bechtel Power Corporation E. Imperial Hwy. Norwalk, CA 90650, U.S.A.

ACCURACY AND EFFICIENCY OF MONTE CARLO METHOD. Julius Goodman. Bechtel Power Corporation E. Imperial Hwy. Norwalk, CA 90650, U.S.A. - 430 - ACCURACY AND EFFICIENCY OF MONTE CARLO METHOD Julius Goodman Bechtel Power Corporation 12400 E. Imperial Hwy. Norwalk, CA 90650, U.S.A. ABSTRACT The accuracy of Monte Carlo method of simulating

More information

(Type your answer in radians. Round to the nearest hundredth as needed.)

(Type your answer in radians. Round to the nearest hundredth as needed.) 1. Find the exact value of the following expression within the interval (Simplify your answer. Type an exact answer, using as needed. Use integers or fractions for any numbers in the expression. Type N

More information

Random Numbers Random Walk

Random Numbers Random Walk Random Numbers Random Walk Computational Physics Random Numbers Random Walk Outline Random Systems Random Numbers Monte Carlo Integration Example Random Walk Exercise 7 Introduction Random Systems Deterministic

More information

CSAP Achievement Levels Mathematics Grade 6 March, 2006

CSAP Achievement Levels Mathematics Grade 6 March, 2006 Advanced Performance Level 4 (Score range: 589 to 830) Students demonstrate equivalency among fractions decimals, and percents; apply number sense; solve real-world problems using geometric and numeric

More information

The base of a solid is the region in the first quadrant bounded above by the line y = 2, below by

The base of a solid is the region in the first quadrant bounded above by the line y = 2, below by Chapter 7 1) (AB/BC, calculator) The base of a solid is the region in the first quadrant bounded above by the line y =, below by y sin 1 x, and to the right by the line x = 1. For this solid, each cross-section

More information

= f (a, b) + (hf x + kf y ) (a,b) +

= f (a, b) + (hf x + kf y ) (a,b) + Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

North Thurston Public Schools Sixth Grade Math Power Standard 1 Unit Assessment #1 and #3

North Thurston Public Schools Sixth Grade Math Power Standard 1 Unit Assessment #1 and #3 Math Power Standard 1 Unit Assessment #1 and #3 PS 1 - Estimate products and quotients of fractions and decimals (6.1.C) Big Idea: Estimating helps us decide if our answers make sense. Essential Questions:

More information

Age Related Maths Expectations

Age Related Maths Expectations Step 1 Times Tables Addition Subtraction Multiplication Division Fractions Decimals Percentage & I can count in 2 s, 5 s and 10 s from 0 to 100 I can add in 1 s using practical resources I can add in 1

More information

Math 144 Activity #3 Coterminal Angles and Reference Angles

Math 144 Activity #3 Coterminal Angles and Reference Angles 144 p 1 Math 144 Activity #3 Coterminal Angles and Reference Angles For this activity we will be referring to the unit circle. Using the unit circle below, explain how you can find the sine of any given

More information

Laplace Transform of a Lognormal Random Variable

Laplace Transform of a Lognormal Random Variable Approximations of the Laplace Transform of a Lognormal Random Variable Joint work with Søren Asmussen & Jens Ledet Jensen The University of Queensland School of Mathematics and Physics August 1, 2011 Conference

More information

AQA GCSE Maths - Higher Self-Assessment Checklist

AQA GCSE Maths - Higher Self-Assessment Checklist AQA GCSE Maths - Higher Self-Assessment Checklist Number 1 Use place value when calculating with decimals. 1 Order positive and negative integers and decimals using the symbols =,, , and. 1 Round to

More information

MATH 104 Sample problems for first exam - Fall MATH 104 First Midterm Exam - Fall (d) 256 3

MATH 104 Sample problems for first exam - Fall MATH 104 First Midterm Exam - Fall (d) 256 3 MATH 14 Sample problems for first exam - Fall 1 MATH 14 First Midterm Exam - Fall 1. Find the area between the graphs of y = 9 x and y = x + 1. (a) 4 (b) (c) (d) 5 (e) 4 (f) 81. A solid has as its base

More information

Introduction to RStudio

Introduction to RStudio First, take class through processes of: Signing in Changing password: Tools -> Shell, then use passwd command Installing packages Check that at least these are installed: MASS, ISLR, car, class, boot,

More information

Double Integration: Non-Rectangular Domains

Double Integration: Non-Rectangular Domains Double Integration: Non-Rectangular Domains Thomas Banchoff and Associates June 18, 2003 1 Introduction In calculus of one variable, all domains are intervals which are subsets of the line. In calculus

More information

An interesting related problem is Buffon s Needle which was first proposed in the mid-1700 s.

An interesting related problem is Buffon s Needle which was first proposed in the mid-1700 s. Using Monte Carlo to Estimate π using Buffon s Needle Problem An interesting related problem is Buffon s Needle which was first proposed in the mid-1700 s. Here s the problem (in a simplified form). Suppose

More information

Floating-point representation

Floating-point representation Lecture 3-4: Floating-point representation and arithmetic Floating-point representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However,

More information

Photon Maps. The photon map stores the lighting information on points or photons in 3D space ( on /near 2D surfaces)

Photon Maps. The photon map stores the lighting information on points or photons in 3D space ( on /near 2D surfaces) Photon Mapping 1/36 Photon Maps The photon map stores the lighting information on points or photons in 3D space ( on /near 2D surfaces) As opposed to the radiosity method that stores information on surface

More information

The Normal Distribution

The Normal Distribution Chapter 6 The Normal Distribution Continuous random variables are used to approximate probabilities where there are many possibilities or an infinite number of possibilities on a given trial. One of the

More information

Introduction to the Practice of Statistics using R: Chapter 6

Introduction to the Practice of Statistics using R: Chapter 6 Introduction to the Practice of Statistics using R: Chapter 6 Ben Baumer Nicholas J. Horton March 10, 2013 Contents 1 Estimating with Confidence 2 1.1 Beyond the Basics.....................................

More information

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit IV Monte Carlo

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit IV Monte Carlo Scientific Computing with Case Studies SIAM Press, 2009 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit IV Monte Carlo Computations Dianne P. O Leary c 2008 1 What is a Monte-Carlo

More information

Probability and Statistics. Copyright Cengage Learning. All rights reserved.

Probability and Statistics. Copyright Cengage Learning. All rights reserved. Probability and Statistics Copyright Cengage Learning. All rights reserved. 14.6 Descriptive Statistics (Graphical) Copyright Cengage Learning. All rights reserved. Objectives Data in Categories Histograms

More information

LECTURE 3-1 AREA OF A REGION BOUNDED BY CURVES

LECTURE 3-1 AREA OF A REGION BOUNDED BY CURVES 7 CALCULUS II DR. YOU 98 LECTURE 3- AREA OF A REGION BOUNDED BY CURVES If y = f(x) and y = g(x) are continuous on an interval [a, b] and f(x) g(x) for all x in [a, b], then the area of the region between

More information

BIOL Gradation of a histogram (a) into the normal curve (b)

BIOL Gradation of a histogram (a) into the normal curve (b) (التوزيع الطبيعي ( Distribution Normal (Gaussian) One of the most important distributions in statistics is a continuous distribution called the normal distribution or Gaussian distribution. Consider the

More information