Optical flow. Cordelia Schmid

Size: px
Start display at page:

Download "Optical flow. Cordelia Schmid"

Transcription

1 Optical flow Cordelia Schmid

2 Motion field The motion field is the projection of the 3D scene motion into the image

3 Optical flow Definition: optical flow is the apparent motion of brightness patterns in the image deall, optical flow would be the same as the motion field Have to be careful: apparent motion can be caused b lighting changes without an actual motion Think of a uniform rotating sphere under fied lighting vs. a stationar sphere under moving illumination

4 Estimating optical flow,,t 1 Given two subsequent frames, estimate the apparent motion field u, and v, between them Ke assumptions,,t Brightness constanc: projection of the same point looks the same in ever frame Small motion: points do not move ver far Spatial coherence: points move like their neighbors

5 Brightness Constanc Equation:, 1,,,,, t v u t,,,, 1,, v u t t Linearizing the right side using Talor epansion: The brightness constanc constraint,,t 1,,t 0 t v u Hence,

6 The brightness constanc constraint 0 How man equations and unknowns per piel? One equation, two unknowns What does this constraint mean? u v The component of the flow perpendicular to the gradient i.e., parallel to the edge is unknown f u, v satisfies the equation, so does u+u, v+v if u, v t t 0 u', v' 0 gradient edge u,v u,v u+u,v+v

7 The aperture problem Perceived motion

8 The aperture problem Actual motion

9 Solving the aperture problem How to get more equations for a piel? Spatial coherence constraint: pretend the piel s neighbors have the same u,v E.g., if we use a 55 window, that gives us 25 equations per piel B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. n nternational Joint Conference on Artificial ntelligence, n t t t n n v u

10 Lucas-Kanade flow Linear least squares problem The summations are over all piels in the window Solution given b n t t t n n v u n n b A d b A Ad A T T t t v u

11 Lucas-Kanade flow Recall the Harris corner detector: M = A T Ais the second moment matri When is the sstem solvable? B looking at the eigenvalues of the second moment matri The eigenvectors and eigenvalues of M relate to edge direction and magnitude The eigenvector associated with the larger eigenvalue points in the direction of fastest intensit change, and the other eigenvector is orthogonal to it t t v u

12 Uniform region gradients have small magnitude small 1, small 2 sstem is ill-conditioned

13 Edge gradients have one dominant direction large 1, small 2 sstem is ill-conditioned

14 High-teture or corner region gradients have different directions, large magnitudes large 1, large 2 sstem is well-conditioned

15 Optical Flow Results

16 Multi-resolution registration

17 Coarse to fine optical flow estimation

18 Optical Flow Results

19 Horn & Schunck algorithm Additional smoothness constraint : nearb point have similar optical flow Addition constraint e s u 2 u 2 v 2 v 2 dd, B.K.P. Horn and B.G. Schunck, "Determining optical flow." Artificial ntelligence,1981

20 Horn & Schunck algorithm Additional smoothness constraint : e s u 2 u 2 v 2 v 2 dd, besides OF constraint equation term e c u v t 2 dd, minimize es+ec λ regularization parameter B.K.P. Horn and B.G. Schunck, "Determining optical flow." Artificial ntelligence,1981

21 Horn & Schunck algorithm Coupled PDEs solved using iterative methods and finite differences

22 Horn & Schunck Works well for small displacements For eample Middlebur sequence

23 Large displacement estimation in optical flow Large displacement is still an open problem in optical flow estimation MP Sintel dataset

24 Large displacement optical flow Classical optical flow [Horn and Schunck 1981] energ: color/gradient constanc smoothness constraint minimization using a coarse-to-fine scheme Large displacement approaches: LDOF [Bro and Malik 2011] a matching term, penalizing the difference between flow and HOG matches MDP-Flow2 [Xu et al. 2012] epensive fusion of matches SFT + PatchMatch and estimated flow at each level DeepFlow [Weinzaepfel et al. 2013] deep matching + flow refinement with variational approach

25 CNN to estimate optical flow: FlowNet [A. Dosovitski et al. CCV 15]

26 Architecture FlowNetSimple

27 Architecture FlowNetCorrelation

28 Snthetic dataset for training: Fling chairs A dataset of appro. 23k image pairs

29 Eperimental results S: simple, C: correlation, v: variational refinement, ft:fine-tuning

30 Eperimental results

31 FlowNet2.0 [lg et al. CVPR 17]

32 FlingThings3D [Maer et al., CVPR 16]

33 Comparison training data Best: pretraining on a simpler dataset, then fine tuning on a more comple set FlowNetC better than FlowNetS

34 mportance of warping Stacking of networks

35 Comparison to the state of the art

36 Optical flow results on Sintel

37 Video object segmentation Segment the moving object in all the frames of a video DAVS ground-truth [Tokmakov et al., CVPR 2017]

38 Challenges Strong camera or background motion LDOF flow DAVS

39 Network architecture MP-Net Convolutional/deconvolutional network, similar to U-Net

40 Training data FlingThings3D dataset [Maer et al., CVPR 16] 2700 snthetic, 10-frame stereo videos of random object fling in random trajectories 2250/450 training/test split Ground-truth optical flow and camera data available Labels for moving object can be obtained from the data

41 Results on FlingThings3D test set

42 Motion estimation in real videos Flow estimation inaccuracies DAVS LDOF MP-Net Background motion DAVS LDOF MP-Net

43 Addition of an objectness measure Etract 100 object proposals per frame with SharpMask [Pinheiro et al., ECCV 16] Aggregate to obtain piel-level objectness scores o i Combine with the motion predictions m i DAVS LDOF MP-Net Objectness Result

44 FlowNet 2.0 Evaluation Setting LDOF flow FLowNet 2.0 flow MP-Net MP-Net + Obj MP-Net + Obj + CRF Mean ou on DAVS trainval set

Optical flow. Cordelia Schmid

Optical flow. Cordelia Schmid Optical flow Cordelia Schmid Motion field The motion field is the projection of the 3D scene motion into the image Optical flow Definition: optical flow is the apparent motion of brightness patterns in

More information

Visual motion. Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys

Visual motion. Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys Visual motion Man slides adapted from S. Seitz, R. Szeliski, M. Pollefes Motion and perceptual organization Sometimes, motion is the onl cue Motion and perceptual organization Sometimes, motion is the

More information

Computer Vision Lecture 20

Computer Vision Lecture 20 Computer Vision Lecture 2 Motion and Optical Flow Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de 28.1.216 Man slides adapted from K. Grauman, S. Seitz, R. Szeliski,

More information

Peripheral drift illusion

Peripheral drift illusion Peripheral drift illusion Does it work on other animals? Computer Vision Motion and Optical Flow Many slides adapted from J. Hays, S. Seitz, R. Szeliski, M. Pollefeys, K. Grauman and others Video A video

More information

EECS 556 Image Processing W 09

EECS 556 Image Processing W 09 EECS 556 Image Processing W 09 Motion estimation Global vs. Local Motion Block Motion Estimation Optical Flow Estimation (normal equation) Man slides of this lecture are courtes of prof Milanfar (UCSC)

More information

Ninio, J. and Stevens, K. A. (2000) Variations on the Hermann grid: an extinction illusion. Perception, 29,

Ninio, J. and Stevens, K. A. (2000) Variations on the Hermann grid: an extinction illusion. Perception, 29, Ninio, J. and Stevens, K. A. (2000) Variations on the Hermann grid: an extinction illusion. Perception, 29, 1209-1217. CS 4495 Computer Vision A. Bobick Sparse to Dense Correspodence Building Rome in

More information

Feature Tracking and Optical Flow

Feature Tracking and Optical Flow Feature Tracking and Optical Flow Prof. D. Stricker Doz. G. Bleser Many slides adapted from James Hays, Derek Hoeim, Lana Lazebnik, Silvio Saverse, who 1 in turn adapted slides from Steve Seitz, Rick Szeliski,

More information

Feature Tracking and Optical Flow

Feature Tracking and Optical Flow Feature Tracking and Optical Flow Prof. D. Stricker Doz. G. Bleser Many slides adapted from James Hays, Derek Hoeim, Lana Lazebnik, Silvio Saverse, who in turn adapted slides from Steve Seitz, Rick Szeliski,

More information

CS 4495 Computer Vision Motion and Optic Flow

CS 4495 Computer Vision Motion and Optic Flow CS 4495 Computer Vision Aaron Bobick School of Interactive Computing Administrivia PS4 is out, due Sunday Oct 27 th. All relevant lectures posted Details about Problem Set: You may *not* use built in Harris

More information

Multi-stable Perception. Necker Cube

Multi-stable Perception. Necker Cube Multi-stable Perception Necker Cube Spinning dancer illusion, Nobuyuki Kayahara Multiple view geometry Stereo vision Epipolar geometry Lowe Hartley and Zisserman Depth map extraction Essential matrix

More information

Motion and Optical Flow. Slides from Ce Liu, Steve Seitz, Larry Zitnick, Ali Farhadi

Motion and Optical Flow. Slides from Ce Liu, Steve Seitz, Larry Zitnick, Ali Farhadi Motion and Optical Flow Slides from Ce Liu, Steve Seitz, Larry Zitnick, Ali Farhadi We live in a moving world Perceiving, understanding and predicting motion is an important part of our daily lives Motion

More information

Computer Vision Lecture 20

Computer Vision Lecture 20 Computer Perceptual Vision and Sensory WS 16/17 Augmented Computing Computer Perceptual Vision and Sensory WS 16/17 Augmented Computing Computer Perceptual Vision and Sensory WS 16/17 Augmented Computing

More information

Computer Vision Lecture 20

Computer Vision Lecture 20 Computer Perceptual Vision and Sensory WS 16/76 Augmented Computing Many slides adapted from K. Grauman, S. Seitz, R. Szeliski, M. Pollefeys, S. Lazebnik Computer Vision Lecture 20 Motion and Optical Flow

More information

Optical flow and tracking

Optical flow and tracking EECS 442 Computer vision Optical flow and tracking Intro Optical flow and feature tracking Lucas-Kanade algorithm Motion segmentation Segments of this lectures are courtesy of Profs S. Lazebnik S. Seitz,

More information

Comparison between Motion Analysis and Stereo

Comparison between Motion Analysis and Stereo MOTION ESTIMATION The slides are from several sources through James Hays (Brown); Silvio Savarese (U. of Michigan); Octavia Camps (Northeastern); including their own slides. Comparison between Motion Analysis

More information

Lecture 16: Computer Vision

Lecture 16: Computer Vision CS442/542b: Artificial ntelligence Prof. Olga Veksler Lecture 16: Computer Vision Motion Slides are from Steve Seitz (UW), David Jacobs (UMD) Outline Motion Estimation Motion Field Optical Flow Field Methods

More information

Motion estimation. Lihi Zelnik-Manor

Motion estimation. Lihi Zelnik-Manor Motion estimation Lihi Zelnik-Manor Optical Flow Where did each piel in image 1 go to in image 2 Optical Flow Pierre Kornprobst's Demo ntroduction Given a video sequence with camera/objects moving we can

More information

Lecture 16: Computer Vision

Lecture 16: Computer Vision CS4442/9542b: Artificial Intelligence II Prof. Olga Veksler Lecture 16: Computer Vision Motion Slides are from Steve Seitz (UW), David Jacobs (UMD) Outline Motion Estimation Motion Field Optical Flow Field

More information

Computer Vision Lecture 18

Computer Vision Lecture 18 Course Outline Computer Vision Lecture 8 Motion and Optical Flow.0.009 Bastian Leibe RWTH Aachen http://www.umic.rwth-aachen.de/multimedia leibe@umic.rwth-aachen.de Man slides adapted from K. Grauman,

More information

Lecture 19: Motion. Effect of window size 11/20/2007. Sources of error in correspondences. Review Problem set 3. Tuesday, Nov 20

Lecture 19: Motion. Effect of window size 11/20/2007. Sources of error in correspondences. Review Problem set 3. Tuesday, Nov 20 Lecture 19: Motion Review Problem set 3 Dense stereo matching Sparse stereo matching Indexing scenes Tuesda, Nov 0 Effect of window size W = 3 W = 0 Want window large enough to have sufficient intensit

More information

ECE Digital Image Processing and Introduction to Computer Vision

ECE Digital Image Processing and Introduction to Computer Vision ECE592-064 Digital Image Processing and Introduction to Computer Vision Depart. of ECE, NC State University Instructor: Tianfu (Matt) Wu Spring 2017 Recap, SIFT Motion Tracking Change Detection Feature

More information

Fundamental matrix. Let p be a point in left image, p in right image. Epipolar relation. Epipolar mapping described by a 3x3 matrix F

Fundamental matrix. Let p be a point in left image, p in right image. Epipolar relation. Epipolar mapping described by a 3x3 matrix F Fundamental matrix Let p be a point in left image, p in right image l l Epipolar relation p maps to epipolar line l p maps to epipolar line l p p Epipolar mapping described by a 3x3 matrix F Fundamental

More information

Finally: Motion and tracking. Motion 4/20/2011. CS 376 Lecture 24 Motion 1. Video. Uses of motion. Motion parallax. Motion field

Finally: Motion and tracking. Motion 4/20/2011. CS 376 Lecture 24 Motion 1. Video. Uses of motion. Motion parallax. Motion field Finally: Motion and tracking Tracking objects, video analysis, low level motion Motion Wed, April 20 Kristen Grauman UT-Austin Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys, and S. Lazebnik

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 19: Optical flow http://en.wikipedia.org/wiki/barberpole_illusion Readings Szeliski, Chapter 8.4-8.5 Announcements Project 2b due Tuesday, Nov 2 Please sign

More information

CAP5415-Computer Vision Lecture 8-Mo8on Models, Feature Tracking, and Alignment. Ulas Bagci

CAP5415-Computer Vision Lecture 8-Mo8on Models, Feature Tracking, and Alignment. Ulas Bagci CAP545-Computer Vision Lecture 8-Mo8on Models, Feature Tracking, and Alignment Ulas Bagci bagci@ucf.edu Readings Szeliski, R. Ch. 7 Bergen et al. ECCV 92, pp. 237-252. Shi, J. and Tomasi, C. CVPR 94, pp.593-6.

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 14 130307 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Stereo Dense Motion Estimation Translational

More information

Lucas-Kanade Motion Estimation. Thanks to Steve Seitz, Simon Baker, Takeo Kanade, and anyone else who helped develop these slides.

Lucas-Kanade Motion Estimation. Thanks to Steve Seitz, Simon Baker, Takeo Kanade, and anyone else who helped develop these slides. Lucas-Kanade Motion Estimation Thanks to Steve Seitz, Simon Baker, Takeo Kanade, and anyone else who helped develop these slides. 1 Why estimate motion? We live in a 4-D world Wide applications Object

More information

Dense Image-based Motion Estimation Algorithms & Optical Flow

Dense Image-based Motion Estimation Algorithms & Optical Flow Dense mage-based Motion Estimation Algorithms & Optical Flow Video A video is a sequence of frames captured at different times The video data is a function of v time (t) v space (x,y) ntroduction to motion

More information

SURVEY OF LOCAL AND GLOBAL OPTICAL FLOW WITH COARSE TO FINE METHOD

SURVEY OF LOCAL AND GLOBAL OPTICAL FLOW WITH COARSE TO FINE METHOD SURVEY OF LOCAL AND GLOBAL OPTICAL FLOW WITH COARSE TO FINE METHOD M.E-II, Department of Computer Engineering, PICT, Pune ABSTRACT: Optical flow as an image processing technique finds its applications

More information

VC 11/12 T11 Optical Flow

VC 11/12 T11 Optical Flow VC 11/12 T11 Optical Flow Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos Miguel Tavares Coimbra Outline Optical Flow Constraint Equation Aperture

More information

COMPUTER VISION > OPTICAL FLOW UTRECHT UNIVERSITY RONALD POPPE

COMPUTER VISION > OPTICAL FLOW UTRECHT UNIVERSITY RONALD POPPE COMPUTER VISION 2017-2018 > OPTICAL FLOW UTRECHT UNIVERSITY RONALD POPPE OUTLINE Optical flow Lucas-Kanade Horn-Schunck Applications of optical flow Optical flow tracking Histograms of oriented flow Assignment

More information

Particle Tracking. For Bulk Material Handling Systems Using DEM Models. By: Jordan Pease

Particle Tracking. For Bulk Material Handling Systems Using DEM Models. By: Jordan Pease Particle Tracking For Bulk Material Handling Systems Using DEM Models By: Jordan Pease Introduction Motivation for project Particle Tracking Application to DEM models Experimental Results Future Work References

More information

MOTION ESTIMATION USING CONVOLUTIONAL NEURAL NETWORKS. Mustafa Ozan Tezcan

MOTION ESTIMATION USING CONVOLUTIONAL NEURAL NETWORKS. Mustafa Ozan Tezcan MOTION ESTIMATION USING CONVOLUTIONAL NEURAL NETWORKS Mustafa Ozan Tezcan Boston University Department of Electrical and Computer Engineering 8 Saint Mary s Street Boston, MA 2215 www.bu.edu/ece Dec. 19,

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 11 140311 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Motion Analysis Motivation Differential Motion Optical

More information

Mariya Zhariy. Uttendorf Introduction to Optical Flow. Mariya Zhariy. Introduction. Determining. Optical Flow. Results. Motivation Definition

Mariya Zhariy. Uttendorf Introduction to Optical Flow. Mariya Zhariy. Introduction. Determining. Optical Flow. Results. Motivation Definition to Constraint to Uttendorf 2005 Contents to Constraint 1 Contents to Constraint 1 2 Constraint Contents to Constraint 1 2 Constraint 3 Visual cranial reflex(vcr)(?) to Constraint Rapidly changing scene

More information

Motion and Tracking. Andrea Torsello DAIS Università Ca Foscari via Torino 155, Mestre (VE)

Motion and Tracking. Andrea Torsello DAIS Università Ca Foscari via Torino 155, Mestre (VE) Motion and Tracking Andrea Torsello DAIS Università Ca Foscari via Torino 155, 30172 Mestre (VE) Motion Segmentation Segment the video into multiple coherently moving objects Motion and Perceptual Organization

More information

Overview. Video. Overview 4/7/2008. Optical flow. Why estimate motion? Motion estimation: Optical flow. Motion Magnification Colorization.

Overview. Video. Overview 4/7/2008. Optical flow. Why estimate motion? Motion estimation: Optical flow. Motion Magnification Colorization. Overview Video Optical flow Motion Magnification Colorization Lecture 9 Optical flow Motion Magnification Colorization Overview Optical flow Combination of slides from Rick Szeliski, Steve Seitz, Alyosha

More information

Comparison between Optical Flow and Cross-Correlation Methods for Extraction of Velocity Fields from Particle Images

Comparison between Optical Flow and Cross-Correlation Methods for Extraction of Velocity Fields from Particle Images Comparison between Optical Flow and Cross-Correlation Methods for Extraction of Velocity Fields from Particle Images (Optical Flow vs Cross-Correlation) Tianshu Liu, Ali Merat, M. H. M. Makhmalbaf Claudia

More information

UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss

UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss AAAI 2018, New Orleans, USA Simon Meister, Junhwa Hur, and Stefan Roth Department of Computer Science, TU Darmstadt 2 Deep

More information

Automatic Image Alignment (direct) with a lot of slides stolen from Steve Seitz and Rick Szeliski

Automatic Image Alignment (direct) with a lot of slides stolen from Steve Seitz and Rick Szeliski Automatic Image Alignment (direct) with a lot of slides stolen from Steve Seitz and Rick Szeliski 15-463: Computational Photography Alexei Efros, CMU, Fall 2005 Today Go over Midterm Go over Project #3

More information

Capturing, Modeling, Rendering 3D Structures

Capturing, Modeling, Rendering 3D Structures Computer Vision Approach Capturing, Modeling, Rendering 3D Structures Calculate pixel correspondences and extract geometry Not robust Difficult to acquire illumination effects, e.g. specular highlights

More information

Matching. Compare region of image to region of image. Today, simplest kind of matching. Intensities similar.

Matching. Compare region of image to region of image. Today, simplest kind of matching. Intensities similar. Matching Compare region of image to region of image. We talked about this for stereo. Important for motion. Epipolar constraint unknown. But motion small. Recognition Find object in image. Recognize object.

More information

Optic Flow and Basics Towards Horn-Schunck 1

Optic Flow and Basics Towards Horn-Schunck 1 Optic Flow and Basics Towards Horn-Schunck 1 Lecture 7 See Section 4.1 and Beginning of 4.2 in Reinhard Klette: Concise Computer Vision Springer-Verlag, London, 2014 1 See last slide for copyright information.

More information

CS 565 Computer Vision. Nazar Khan PUCIT Lectures 15 and 16: Optic Flow

CS 565 Computer Vision. Nazar Khan PUCIT Lectures 15 and 16: Optic Flow CS 565 Computer Vision Nazar Khan PUCIT Lectures 15 and 16: Optic Flow Introduction Basic Problem given: image sequence f(x, y, z), where (x, y) specifies the location and z denotes time wanted: displacement

More information

Computer Vision II Lecture 4

Computer Vision II Lecture 4 Course Outline Computer Vision II Lecture 4 Single-Object Tracking Background modeling Template based tracking Color based Tracking Color based tracking Contour based tracking Tracking by online classification

More information

Visual Tracking (1) Feature Point Tracking and Block Matching

Visual Tracking (1) Feature Point Tracking and Block Matching Intelligent Control Systems Visual Tracking (1) Feature Point Tracking and Block Matching Shingo Kagami Graduate School of Information Sciences, Tohoku University swk(at)ic.is.tohoku.ac.jp http://www.ic.is.tohoku.ac.jp/ja/swk/

More information

Visual Tracking (1) Tracking of Feature Points and Planar Rigid Objects

Visual Tracking (1) Tracking of Feature Points and Planar Rigid Objects Intelligent Control Systems Visual Tracking (1) Tracking of Feature Points and Planar Rigid Objects Shingo Kagami Graduate School of Information Sciences, Tohoku University swk(at)ic.is.tohoku.ac.jp http://www.ic.is.tohoku.ac.jp/ja/swk/

More information

Lecture 14: Tracking mo3on features op3cal flow

Lecture 14: Tracking mo3on features op3cal flow Lecture 14: Tracking mo3on features op3cal flow Dr. Juan Carlos Niebles Stanford AI Lab Professor Fei- Fei Li Stanford Vision Lab Lecture 14-1 What we will learn today? Introduc3on Op3cal flow Feature

More information

Kanade Lucas Tomasi Tracking (KLT tracker)

Kanade Lucas Tomasi Tracking (KLT tracker) Kanade Lucas Tomasi Tracking (KLT tracker) Tomáš Svoboda, svoboda@cmp.felk.cvut.cz Czech Technical University in Prague, Center for Machine Perception http://cmp.felk.cvut.cz Last update: November 26,

More information

Lecture 20: Tracking. Tuesday, Nov 27

Lecture 20: Tracking. Tuesday, Nov 27 Lecture 20: Tracking Tuesday, Nov 27 Paper reviews Thorough summary in your own words Main contribution Strengths? Weaknesses? How convincing are the experiments? Suggestions to improve them? Extensions?

More information

Midterm Wed. Local features: detection and description. Today. Last time. Local features: main components. Goal: interest operator repeatability

Midterm Wed. Local features: detection and description. Today. Last time. Local features: main components. Goal: interest operator repeatability Midterm Wed. Local features: detection and description Monday March 7 Prof. UT Austin Covers material up until 3/1 Solutions to practice eam handed out today Bring a 8.5 11 sheet of notes if you want Review

More information

Optical Flow-Based Motion Estimation. Thanks to Steve Seitz, Simon Baker, Takeo Kanade, and anyone else who helped develop these slides.

Optical Flow-Based Motion Estimation. Thanks to Steve Seitz, Simon Baker, Takeo Kanade, and anyone else who helped develop these slides. Optical Flow-Based Motion Estimation Thanks to Steve Seitz, Simon Baker, Takeo Kanade, and anyone else who helped develop these slides. 1 Why estimate motion? We live in a 4-D world Wide applications Object

More information

Motion. 1 Introduction. 2 Optical Flow. Sohaib A Khan. 2.1 Brightness Constancy Equation

Motion. 1 Introduction. 2 Optical Flow. Sohaib A Khan. 2.1 Brightness Constancy Equation Motion Sohaib A Khan 1 Introduction So far, we have dealing with single images of a static scene taken by a fixed camera. Here we will deal with sequence of images taken at different time intervals. Motion

More information

Nonparametric Multiscale Multimodal Models for Detection/Recognition John Fisher & John Reif Eagle Eye Software (919)

Nonparametric Multiscale Multimodal Models for Detection/Recognition John Fisher & John Reif Eagle Eye Software (919) Rochester Y 05-07 October 999 onparametric Multiscale Multimodal Models for Detection/Recognition John Fisher & John Reif Eagle Ee Software (99) 493-7978 reif@cs.duke.edu Multiscale Multimodal Models for

More information

Marcel Worring Intelligent Sensory Information Systems

Marcel Worring Intelligent Sensory Information Systems Marcel Worring worring@science.uva.nl Intelligent Sensory Information Systems University of Amsterdam Information and Communication Technology archives of documentaries, film, or training material, video

More information

EE 264: Image Processing and Reconstruction. Image Motion Estimation II. EE 264: Image Processing and Reconstruction. Outline

EE 264: Image Processing and Reconstruction. Image Motion Estimation II. EE 264: Image Processing and Reconstruction. Outline Peman Milanar Image Motion Estimation II Peman Milanar Outline. Introduction to Motion. Wh Estimate Motion? 3. Global s. Local Motion 4. Block Motion Estimation 5. Optical Flow Estimation Basics 6. Optical

More information

Key properties of local features

Key properties of local features Key properties of local features Locality, robust against occlusions Must be highly distinctive, a good feature should allow for correct object identification with low probability of mismatch Easy to etract

More information

CS201: Computer Vision Introduction to Tracking

CS201: Computer Vision Introduction to Tracking CS201: Computer Vision Introduction to Tracking John Magee 18 November 2014 Slides courtesy of: Diane H. Theriault Question of the Day How can we represent and use motion in images? 1 What is Motion? Change

More information

Optical Flow Estimation with CUDA. Mikhail Smirnov

Optical Flow Estimation with CUDA. Mikhail Smirnov Optical Flow Estimation with CUDA Mikhail Smirnov msmirnov@nvidia.com Document Change History Version Date Responsible Reason for Change Mikhail Smirnov Initial release Abstract Optical flow is the apparent

More information

Horn-Schunck and Lucas Kanade 1

Horn-Schunck and Lucas Kanade 1 Horn-Schunck and Lucas Kanade 1 Lecture 8 See Sections 4.2 and 4.3 in Reinhard Klette: Concise Computer Vision Springer-Verlag, London, 2014 1 See last slide for copyright information. 1 / 40 Where We

More information

OPPA European Social Fund Prague & EU: We invest in your future.

OPPA European Social Fund Prague & EU: We invest in your future. OPPA European Social Fund Prague & EU: We invest in your future. Patch tracking based on comparing its piels 1 Tomáš Svoboda, svoboda@cmp.felk.cvut.cz Czech Technical University in Prague, Center for Machine

More information

Supplementary Material for "FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks"

Supplementary Material for FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks Supplementary Material for "FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks" Architecture Datasets S short S long S fine FlowNetS FlowNetC Chairs 15.58 - - Chairs - 14.60 14.28 Things3D

More information

CSCI 1290: Comp Photo

CSCI 1290: Comp Photo CSCI 1290: Comp Photo Fall 2018 @ Brown University James Tompkin Many slides thanks to James Hays old CS 129 course, along with all its acknowledgements. CS 4495 Computer Vision A. Bobick Motion and Optic

More information

Epipolar Constraint. Epipolar Lines. Epipolar Geometry. Another look (with math).

Epipolar Constraint. Epipolar Lines. Epipolar Geometry. Another look (with math). Epipolar Constraint Epipolar Lines Potential 3d points Red point - fied => Blue point lies on a line There are 3 degrees of freedom in the position of a point in space; there are four DOF for image points

More information

Spatial track: motion modeling

Spatial track: motion modeling Spatial track: motion modeling Virginio Cantoni Computer Vision and Multimedia Lab Università di Pavia Via A. Ferrata 1, 27100 Pavia virginio.cantoni@unipv.it http://vision.unipv.it/va 1 Comparison between

More information

Comparison Between The Optical Flow Computational Techniques

Comparison Between The Optical Flow Computational Techniques Comparison Between The Optical Flow Computational Techniques Sri Devi Thota #1, Kanaka Sunanda Vemulapalli* 2, Kartheek Chintalapati* 3, Phanindra Sai Srinivas Gudipudi* 4 # Associate Professor, Dept.

More information

arxiv: v1 [cs.cv] 22 Jan 2016

arxiv: v1 [cs.cv] 22 Jan 2016 UNSUPERVISED CONVOLUTIONAL NEURAL NETWORKS FOR MOTION ESTIMATION Aria Ahmadi, Ioannis Patras School of Electronic Engineering and Computer Science Queen Mary University of London Mile End road, E1 4NS,

More information

Visual Tracking. Image Processing Laboratory Dipartimento di Matematica e Informatica Università degli studi di Catania.

Visual Tracking. Image Processing Laboratory Dipartimento di Matematica e Informatica Università degli studi di Catania. Image Processing Laboratory Dipartimento di Matematica e Informatica Università degli studi di Catania 1 What is visual tracking? estimation of the target location over time 2 applications Six main areas:

More information

Announcements. Recognition I. Optical Flow: Where do pixels move to? dy dt. I + y. I = x. di dt. dx dt. = t

Announcements. Recognition I. Optical Flow: Where do pixels move to? dy dt. I + y. I = x. di dt. dx dt. = t Announcements I Introduction to Computer Vision CSE 152 Lecture 18 Assignment 4: Due Toda Assignment 5: Posted toda Read: Trucco & Verri, Chapter 10 on recognition Final Eam: Wed, 6/9/04, 11:30-2:30, WLH

More information

Scale Invariant Feature Transform (SIFT) CS 763 Ajit Rajwade

Scale Invariant Feature Transform (SIFT) CS 763 Ajit Rajwade Scale Invariant Feature Transform (SIFT) CS 763 Ajit Rajwade What is SIFT? It is a technique for detecting salient stable feature points in an image. For ever such point it also provides a set of features

More information

Visual Tracking (1) Pixel-intensity-based methods

Visual Tracking (1) Pixel-intensity-based methods Intelligent Control Systems Visual Tracking (1) Pixel-intensity-based methods Shingo Kagami Graduate School of Information Sciences, Tohoku University swk(at)ic.is.tohoku.ac.jp http://www.ic.is.tohoku.ac.jp/ja/swk/

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometr and Camera Calibration 3D Coordinate Sstems Right-handed vs. left-handed 2D Coordinate Sstems ais up vs. ais down Origin at center vs. corner Will often write (u, v) for image coordinates v

More information

Optical Flow CS 637. Fuxin Li. With materials from Kristen Grauman, Richard Szeliski, S. Narasimhan, Deqing Sun

Optical Flow CS 637. Fuxin Li. With materials from Kristen Grauman, Richard Szeliski, S. Narasimhan, Deqing Sun Optical Flow CS 637 Fuxin Li With materials from Kristen Grauman, Richard Szeliski, S. Narasimhan, Deqing Sun Motion and perceptual organization Sometimes, motion is the only cue Motion and perceptual

More information

Motion Estimation. There are three main types (or applications) of motion estimation:

Motion Estimation. There are three main types (or applications) of motion estimation: Members: D91922016 朱威達 R93922010 林聖凱 R93922044 謝俊瑋 Motion Estimation There are three main types (or applications) of motion estimation: Parametric motion (image alignment) The main idea of parametric motion

More information

Lecture 13: Tracking mo3on features op3cal flow

Lecture 13: Tracking mo3on features op3cal flow Lecture 13: Tracking mo3on features op3cal flow Professor Fei- Fei Li Stanford Vision Lab Lecture 13-1! What we will learn today? Introduc3on Op3cal flow Feature tracking Applica3ons (Problem Set 3 (Q1))

More information

An edge is not a line... Edge Detection. Finding lines in an image. Finding lines in an image. How can we detect lines?

An edge is not a line... Edge Detection. Finding lines in an image. Finding lines in an image. How can we detect lines? Edge Detection An edge is not a line... original image Cann edge detector Compute image derivatives if gradient magnitude > τ and the value is a local maimum along gradient direction piel is an edge candidate

More information

CS231A Section 6: Problem Set 3

CS231A Section 6: Problem Set 3 CS231A Section 6: Problem Set 3 Kevin Wong Review 6 -! 1 11/09/2012 Announcements PS3 Due 2:15pm Tuesday, Nov 13 Extra Office Hours: Friday 6 8pm Huang Common Area, Basement Level. Review 6 -! 2 Topics

More information

Visual Tracking. Antonino Furnari. Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania

Visual Tracking. Antonino Furnari. Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania Visual Tracking Antonino Furnari Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania furnari@dmi.unict.it 11 giugno 2015 What is visual tracking? estimation

More information

Motion Estimation (II) Ce Liu Microsoft Research New England

Motion Estimation (II) Ce Liu Microsoft Research New England Motion Estimation (II) Ce Liu celiu@microsoft.com Microsoft Research New England Last time Motion perception Motion representation Parametric motion: Lucas-Kanade T I x du dv = I x I T x I y I x T I y

More information

CS-465 Computer Vision

CS-465 Computer Vision CS-465 Computer Vision Nazar Khan PUCIT 9. Optic Flow Optic Flow Nazar Khan Computer Vision 2 / 25 Optic Flow Nazar Khan Computer Vision 3 / 25 Optic Flow Where does pixel (x, y) in frame z move to in

More information

EE 264: Image Processing and Reconstruction. Image Motion Estimation I. EE 264: Image Processing and Reconstruction. Outline

EE 264: Image Processing and Reconstruction. Image Motion Estimation I. EE 264: Image Processing and Reconstruction. Outline 1 Image Motion Estimation I 2 Outline 1. Introduction to Motion 2. Why Estimate Motion? 3. Global vs. Local Motion 4. Block Motion Estimation 5. Optical Flow Estimation Basics 6. Optical Flow Estimation

More information

Large Displacement Optical Flow & Applications

Large Displacement Optical Flow & Applications Large Displacement Optical Flow & Applications Narayanan Sundaram, Kurt Keutzer (Parlab) In collaboration with Thomas Brox (University of Freiburg) Michael Tao (University of California Berkeley) Parlab

More information

Image Metamorphosis By Affine Transformations

Image Metamorphosis By Affine Transformations Image Metamorphosis B Affine Transformations Tim Mers and Peter Spiegel December 16, 2005 Abstract Among the man was to manipulate an image is a technique known as morphing. Image morphing is a special

More information

Notes 9: Optical Flow

Notes 9: Optical Flow Course 049064: Variational Methods in Image Processing Notes 9: Optical Flow Guy Gilboa 1 Basic Model 1.1 Background Optical flow is a fundamental problem in computer vision. The general goal is to find

More information

Using temporal seeding to constrain the disparity search range in stereo matching

Using temporal seeding to constrain the disparity search range in stereo matching Using temporal seeding to constrain the disparity search range in stereo matching Thulani Ndhlovu Mobile Intelligent Autonomous Systems CSIR South Africa Email: tndhlovu@csir.co.za Fred Nicolls Department

More information

Ruch (Motion) Rozpoznawanie Obrazów Krzysztof Krawiec Instytut Informatyki, Politechnika Poznańska. Krzysztof Krawiec IDSS

Ruch (Motion) Rozpoznawanie Obrazów Krzysztof Krawiec Instytut Informatyki, Politechnika Poznańska. Krzysztof Krawiec IDSS Ruch (Motion) Rozpoznawanie Obrazów Krzysztof Krawiec Instytut Informatyki, Politechnika Poznańska 1 Krzysztof Krawiec IDSS 2 The importance of visual motion Adds entirely new (temporal) dimension to visual

More information

Image processing and features

Image processing and features Image processing and features Gabriele Bleser gabriele.bleser@dfki.de Thanks to Harald Wuest, Folker Wientapper and Marc Pollefeys Introduction Previous lectures: geometry Pose estimation Epipolar geometry

More information

Local Feature Detectors

Local Feature Detectors Local Feature Detectors Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr Slides adapted from Cordelia Schmid and David Lowe, CVPR 2003 Tutorial, Matthew Brown,

More information

Lucas-Kanade Image Registration Using Camera Parameters

Lucas-Kanade Image Registration Using Camera Parameters Lucas-Kanade Image Registration Using Camera Parameters Sunghyun Cho a, Hojin Cho a, Yu-Wing Tai b, Young Su Moon c, Junguk Cho c, Shihwa Lee c, and Seungyong Lee a a POSTECH, Pohang, Korea b KAIST, Daejeon,

More information

CS 2770: Intro to Computer Vision. Multiple Views. Prof. Adriana Kovashka University of Pittsburgh March 14, 2017

CS 2770: Intro to Computer Vision. Multiple Views. Prof. Adriana Kovashka University of Pittsburgh March 14, 2017 CS 277: Intro to Computer Vision Multiple Views Prof. Adriana Kovashka Universit of Pittsburgh March 4, 27 Plan for toda Affine and projective image transformations Homographies and image mosaics Stereo

More information

Leow Wee Kheng CS4243 Computer Vision and Pattern Recognition. Motion Tracking. CS4243 Motion Tracking 1

Leow Wee Kheng CS4243 Computer Vision and Pattern Recognition. Motion Tracking. CS4243 Motion Tracking 1 Leow Wee Kheng CS4243 Computer Vision and Pattern Recognition Motion Tracking CS4243 Motion Tracking 1 Changes are everywhere! CS4243 Motion Tracking 2 Illumination change CS4243 Motion Tracking 3 Shape

More information

CS664 Lecture #18: Motion

CS664 Lecture #18: Motion CS664 Lecture #18: Motion Announcements Most paper choices were fine Please be sure to email me for approval, if you haven t already This is intended to help you, especially with the final project Use

More information

Disguised Face Identification (DFI) with Facial KeyPoints using Spatial Fusion Convolutional Network. Nathan Sun CIS601

Disguised Face Identification (DFI) with Facial KeyPoints using Spatial Fusion Convolutional Network. Nathan Sun CIS601 Disguised Face Identification (DFI) with Facial KeyPoints using Spatial Fusion Convolutional Network Nathan Sun CIS601 Introduction Face ID is complicated by alterations to an individual s appearance Beard,

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 7.1: 2D Motion Estimation in Images Jürgen Sturm Technische Universität München 3D to 2D Perspective Projections

More information

C18 Computer vision. C18 Computer Vision. This time... Introduction. Outline.

C18 Computer vision. C18 Computer Vision. This time... Introduction. Outline. C18 Computer Vision. This time... 1. Introduction; imaging geometry; camera calibration. 2. Salient feature detection edges, line and corners. 3. Recovering 3D from two images I: epipolar geometry. C18

More information

Final Exam Study Guide CSE/EE 486 Fall 2007

Final Exam Study Guide CSE/EE 486 Fall 2007 Final Exam Study Guide CSE/EE 486 Fall 2007 Lecture 2 Intensity Sufaces and Gradients Image visualized as surface. Terrain concepts. Gradient of functions in 1D and 2D Numerical derivatives. Taylor series.

More information

P-CNN: Pose-based CNN Features for Action Recognition. Iman Rezazadeh

P-CNN: Pose-based CNN Features for Action Recognition. Iman Rezazadeh P-CNN: Pose-based CNN Features for Action Recognition Iman Rezazadeh Introduction automatic understanding of dynamic scenes strong variations of people and scenes in motion and appearance Fine-grained

More information

Supplementary Material for Zoom and Learn: Generalizing Deep Stereo Matching to Novel Domains

Supplementary Material for Zoom and Learn: Generalizing Deep Stereo Matching to Novel Domains Supplementary Material for Zoom and Learn: Generalizing Deep Stereo Matching to Novel Domains Jiahao Pang 1 Wenxiu Sun 1 Chengxi Yang 1 Jimmy Ren 1 Ruichao Xiao 1 Jin Zeng 1 Liang Lin 1,2 1 SenseTime Research

More information

Tracking of Dynamic Objects Based on Optical Flow

Tracking of Dynamic Objects Based on Optical Flow Tracking of Dnamic Objects Based on Optical Flow Torsten Radtke, Volker Zerbe Facult of Informatics and Automation Ilmenau Technical Universit P.O.Bo 10 05 65, 98684 Ilmenau German Abstract In this paper

More information

Single-view 3D Reconstruction

Single-view 3D Reconstruction Single-view 3D Reconstruction 10/12/17 Computational Photography Derek Hoiem, University of Illinois Some slides from Alyosha Efros, Steve Seitz Notes about Project 4 (Image-based Lighting) You can work

More information