Mechanism and Robot Kinematics, Part II: Numerical Algebraic Geometry

Size: px
Start display at page:

Download "Mechanism and Robot Kinematics, Part II: Numerical Algebraic Geometry"

Transcription

1 Mechanism and Robot Kinematics, Part II: Numerical Algebraic Geometry Charles Wampler General Motors R&D Center Including joint work with Andrew Sommese, University of Notre Dame Jan Verschelde, Univ. Illinois Chicago Alexander Morgan, GM R&D

2 Outline Zero-dimensional solution sets Numerical solution by polynomial continuation Root counts and homotopies Parameter homotopies Positive-dimensional solution sets Basic constructs Witness sets Numerical irreducible decomposition Basic operations Intersection of algebraic sets Deflation of nonreduced sets Higher-level operations Equation-by-equation intersections Fiber products Extracting real points from a complex set Applications 2

3 Numerical Algebraic Geometry Purpose Numerically represent & manipulate algebraic sets Approach Numerical continuation operating on witness sets Basic Constructs Witness sets Irreducible decomposition Basic Operations Witness generate Witness decomposition Membership tests Intersection Deflation 3

4 Why study polynomial systems? Application areas Economics & finance Chemical equilibrium Computer-aided Geometric Design (CAGD) Control theory Kinematics Constrained mechanical motion Linkages for motion constraint & transformation Suspensions, engines, swing panels, etc. Computer-controlled motion devices Robots, human-assist devices, etc. 4

5 Zero-Dimensional Sets Solving by polynomial continuation

6 What is Continuation? For some class of parameterized problems: H(x;p) = 0 Want solutions at p final We have solutions x start,i for parameters p start H(x start,i ;p start ) = 0 Form a parameter path p(t) = t p start + (1-t) p final This defines a homotopy H(x;p(t)) = 0 Numerically follow solution path from t=1 to t=0 6

7 Example: Ellipse & Hyperbola Wish to solve F(x,y) a 1 x 2 +b 1 xy+c 1 y 2 +d 1 x+e 1 y+f 1 = 0 a 2 x 2 +b 2 xy+c 2 y 2 +d 2 x+e 2 y+f 2 = 0 Know how to solve G(x,y) a 1 x 2 +f 1 = 0 c 2 y 2 +f 2 = 0 Homotopy H(x,y,t)=0 t(b 1 xy+c 1 y 2 +d 1 x+e 1 y)+a 1 x 2 +f 1 = 0 t(a 2 x 2 +b 2 xy+d 2 x+e 2 y)+c 2 y 2 +f 2 = 0 Follow 4 solution paths from t=0 to t=1. 7

8 Solution paths Implicitly defined by H(x(t);p(t)) = 0 x Nongeneric Parameter space p start t p final 8

9 An Ill-Conceived Homotopy x Parameter space (real) p start p final Parameters for which H(x,p) has fewer solutions Q: How do we make sure this doesn t happen? A: Use complex space exceptions are complex co-dimension 1 = real codimension 2 General 1-dim parameter path miss exceptions with probability 1 9

10 Polynomial Structures Landmarks Landmarks (C) Start system solved via (A) or (B) initial run Polytopes (B) Start system all isolated (BKK) solutions multi-homogeneous Verschelde, solved via Garcia & Zangwill, Verlinden 77 & Cools, 94 Huber Morgan convex hulls, Drexler, & 77 Sturmfels, & Sommese, polytope theory total Gao parameterized degree & Li, 03 systems Polynomial Li, Chow, products Sauer & Yorke, 88 Mallet-Paret & Yorke, 78 Morgan & Sommese, 89 projective Morgan,Sommese space & Wampler, 95 Set Wright, structures 85 Verschelde (A) Start system Morgan, 86; & book, Cools, solved with linear algebra 10

11 Parameter Continuation initial parameter space target parameter space Start system easy in initial parameter space Root count may be much lower in target parameter space Initial run is 1-time investment for cheaper target runs 11

12 Positive-Dimensional Sets Basic Constructs Witness Sets Irreducible Decomposition

13 Slicing & the Witness Cascade Fundamental theorem of algebra A degree N square-free polynomial p(x,y)=0 hits a general horizontal line y=c in N isolated points Slicing theorem An degree N reduced algebraic set of dimension m in n variables hits a general (n-m)- dimensional linear space in N isolated points Witness generation algorithm Witness points at every dimension Relies on traditional homotopy properties to get all isolated solutions at each dimension Sommese & Wampler, 95 Sommese & Verschelde, 00 13

14 Witness Set Suppose A C n is pure-m-dimensional algebraic set that is a solution of F(x)=0 Witness set for A consists of: F(x) the system a system of polynomials (straight-line function) L(x) generic slicing plane a linear space of dimension (n-m) W = {x 1,..., x d } Witness points solution points of {F(x),L(x)}=0 d = degree of A 14

15 Decomposed Witness Set Pure-dimensional A={A 1,..., A k } where each A i is irreducible Decomposed witness set for A System, F(x) Slice, L(x) Decomposed witness point set W={W 1,..., W k }, where W i ={x 1,..., x di } is witness point set for A i d d k =d 15

16 Irreducible Decomposition Mixed-dimensional A={A 0,...,A k } where each A i is pure-i-dimensional A i ={A i1,...,a ik i }, each A ij irreducible Decomposed witness set for A System, F(x) Slice, L(x) Decomposed witness point set W={W 0,..., W k }, W i ={W i1,...,w ik i }, where W ij ={x 1,..., x di } is witness point set for A ij 16

17 Basic Operations Irreducible Decomposition Witness generate Witness decomposition Membership tests Intersection Deflation

18 Irreducible Decomposition Witness Generation Algorithm gives points organized by dimension may include junk points Witness Classify eliminates junk groups points by irreducible components 18

19 Membership Test 19

20 Irreducible Decomposition Step 1: eliminate junk points They lie on higher-dimensional sets Use membership test A local dimension test would be better! Step 2: break the rest into components Monodromy finds points that are connected Like the membership test, but around a closed path in the space of slicing planes Linear trace verifies that groups are complete Exhaustive trace testing is feasible on small sets 20

21 Linear Traces Track witness paths as slice translates parallel to itself. Centroid of witness points for an algebraic set must move on a line. Sasaki, 2001 Rupprecht, 2004 Sommese, Verschelde & Wampler,

22 Intersecting Components Witness Cascade treats a system all at once Witness Classify breaks solution into its irreducible pieces What if we want to intersect two pieces found in this way? set A solution of F(x)=0 set B solution of G(x)=0 Find A B 22

23 Diagonal Homotopy for A B Given: Witness sets W A,W B for irreducibles A and B Find: Witness set for A Consider the set AxB It is a solution component of {F(x),G(y)}=0 AxB is irreducible Diagonal Homotopy finds irreducible decomposition of (AxB) {(x,y) x=y} B Start points (a i, b j ) from W A xw B Sommese, Vershelde & Wampler,

24 Deflation Some irreducible component of f -1 (0), say Z, may be nonreduced This makes path tracking on Z difficult How can we do monodromy, traces, etc? Wish to replace f(x) with some g(x) such that Z is a component of g -1 (0) Deflation generates a g(x,u) such that a component of g -1 (0) projects naturally one-to-one to Z 24

25 How to Deflate a Point Suppose z is an isolated root of square system f(x)=0 f J ( z) = ( z) is singular, say rank r<n x Append new equations fˆ ( x, u) : = J( x)( Bu n r n 1 random B R, b R New system has isolated root of lower multiplicity multiplicity m point can be deflated in (m-1) or fewer iterations Initial ideas: Ojika 1987 Algorithm: Leykin, Verschelde & Zhao 2004 See also, Dayton & Zeng b) = 0 25

26 How to Deflate a Component Slice to get a witness set A generic slice isolates a generic point Deflate the witness point The same deflation equations work on a Zariski open subset of the component Done! Sommese & Wampler

27 Higher-Level Algorithms Equation-by-equation intersections Finding the real points in a complex component Finding sets of exceptional dimension

28 Subsystem-by-Subsystem Intersection Solving A B on C n \Q A & B not irreducible 28

29 Equation-by-Equation Solving f 1 (x)=0 Co-dim 1 f 2 (x)=0 Co-dim 1 Co-dim 1,2 f 3 (x)=0 Co-dim 1 Co-dim 1,2,3 Diagonal homotopy Diagonal homotopy N equations, n variables Special case: N=n nonsingular solutions only initial results show promise Similar diagonal intersections Co-dim 1,2,...,N-1 f N (x)=0 Co-dim 1 Diagonal homotopy Final Result Co-dim 1,2,...,min(n,N) 29

30 Some Application Examples

31 Example: 7-bar Structure Problem: Assemble these 7 pieces, as labeled. 31

32 Result for Generic Links 18 rigid structures 8 real, 10 complex for this set of links. All isolated can be found with traditional homotopy 32

33 Special Links (Roberts Cognates) Dimension 1: 6 th degree four-bar motion Dimension 0: 1 of 6 isolated (rigid) assemblies 33

34 Example: Griffis-Duffy Platform Special Stewart- Gough platform Studied by: Husty & Karger, 2000 Degree 28 motion curve (in Study coordinates) if legs are equal & plates congruent: factors as 6+(6+6+6)+4 34

35 Finding Exceptional Mechanisms (S&W 2006, preprint) for high enough j, the j th fiber product j Π L PM = M P P M 43 j times contains an irreducible component that is the main component of the fiber product j Π P where Z is an exceptional mechanism in M Efficient algorithms for computing fiber products are under study More to come: Industrial Problems Seminar 9/29 Z 35

36 Extracting Real Points Numerical irreducible decomposition finds complex solution components Applications care about real solutions 0-dimensional components Just check the magnitude of imaginary parts Higher-dimensional components More difficult Real dimension = complex dimension # of real connected pieces can be high For the case of curves, two procedures required: Find singular points of self-conjugate complex components Find intersections of conjugate pairs of components Lu, Bates, Sommese, Wampler 2006 see next week s workshop! 36

37 Further Reading World Scientific

38 Summary Polynomials arise in applications Especially kinematics Continuation methods for isolated solutions Highly developed in 1980 s, 1990 s Numerical algebraic geometry Builds on the methods for isolated roots Treats positive-dimensional sets Witness sets are the key construct Open problems Local dimension test Multihomogeneous or BKK w/higher dimen l sets Real sets of higher dimension Efficient algorithm for exceptional sets 38

Finding All Real Points of a Complex Algebraic Curve

Finding All Real Points of a Complex Algebraic Curve Finding All Real Points of a Complex Algebraic Curve Charles Wampler General Motors R&D Center In collaboration with Ye Lu (MIT), Daniel Bates (IMA), & Andrew Sommese (University of Notre Dame) Outline

More information

Mechanism and Robot Kinematics, Part I: Algebraic Foundations

Mechanism and Robot Kinematics, Part I: Algebraic Foundations Mechanism and Robot Kinematics, Part I: Algebraic Foundations Charles Wampler General Motors R&D Center In collaboration with Andrew Sommese University of Notre Dame Overview Why kinematics is (mostly)

More information

Describing algebraic varieties to a computer

Describing algebraic varieties to a computer Describing algebraic varieties to a computer Jose Israel Rodriguez University of Chicago String Pheno 2017 July 6, 2017 Outline Degree of a curve Component membership test Monodromy and trace test Witness

More information

Solving Polynomial Systems with PHCpack and phcpy

Solving Polynomial Systems with PHCpack and phcpy Solving Polynomial Systems with PHCpack and phcpy Jan Verschelde University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science http://www.math.uic.edu/ jan jan@math.uic.edu

More information

Gift Wrapping for Pretropisms

Gift Wrapping for Pretropisms Gift Wrapping for Pretropisms Jan Verschelde University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science http://www.math.uic.edu/ jan jan@math.uic.edu Graduate Computational

More information

Software for numerical algebraic geometry: a paradigm and progress towards its implementation

Software for numerical algebraic geometry: a paradigm and progress towards its implementation Software for numerical algebraic geometry: a paradigm and progress towards its implementation Daniel J. Bates Jonathan D. Hauenstein Andrew J. Sommese Charles W. Wampler II February 16, 2007 Abstract Though

More information

Cell decomposition of almost smooth real algebraic surfaces

Cell decomposition of almost smooth real algebraic surfaces Cell decomposition of almost smooth real algebraic surfaces Gian Mario Besana Sandra Di Rocco Jonathan D. Hauenstein Andrew J. Sommese Charles W. Wampler April 16, 2012 Abstract Let Z be a two dimensional

More information

Solving the Kinematics of Planar Mechanisms. Jassim Alhor

Solving the Kinematics of Planar Mechanisms. Jassim Alhor Solving the Kinematics of Planar Mechanisms Jassim Alhor Table of Contents 1.0 Introduction 3 2.0 Methodology 3 2.1 Modeling in the Complex Plane 4 2.2 Writing the Loop Closure Equations 4 2.3 Solving

More information

Software Index. Page numbers in boldface indicate where configuration settings can be found in the users manual portion of this book.

Software Index. Page numbers in boldface indicate where configuration settings can be found in the users manual portion of this book. Software Index Page numbers in boldface indicate where configuration settings can be found in the users manual portion of this book. alphacertified, 226, 227, 248, 328, 332 AMPMaxPrec, 180, 305 AMPSafetyDigits1,

More information

Some algebraic geometry problems arising in the field of mechanism theory. J-P. Merlet INRIA, BP Sophia Antipolis Cedex France

Some algebraic geometry problems arising in the field of mechanism theory. J-P. Merlet INRIA, BP Sophia Antipolis Cedex France Some algebraic geometry problems arising in the field of mechanism theory J-P. Merlet INRIA, BP 93 06902 Sophia Antipolis Cedex France Abstract Mechanism theory has always been a favorite field of study

More information

Tropical Implicitization

Tropical Implicitization Tropical Implicitization Jan Verschelde University of Illinois at Chicago Department of Mathematics Statistics and Computer Science http://www.math.uic.edu/ jan jan@math.uic.edu Graduate Computational

More information

Simplified Voronoi diagrams for motion planning of quadratically-solvable Gough-Stewart platforms

Simplified Voronoi diagrams for motion planning of quadratically-solvable Gough-Stewart platforms Simplified Voronoi diagrams for motion planning of quadratically-solvable Gough-Stewart platforms Rubén Vaca, Joan Aranda, and Federico Thomas Abstract The obstacles in Configuration Space of quadratically-solvable

More information

Structure from Motion. Prof. Marco Marcon

Structure from Motion. Prof. Marco Marcon Structure from Motion Prof. Marco Marcon Summing-up 2 Stereo is the most powerful clue for determining the structure of a scene Another important clue is the relative motion between the scene and (mono)

More information

Computing all Space Curve Solutions of Polynomial Systems by Polyhedral Methods

Computing all Space Curve Solutions of Polynomial Systems by Polyhedral Methods Computing all Space Curve Solutions of Polynomial Systems by Polyhedral Methods Nathan Bliss Jan Verschelde University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science

More information

Hw 4 Due Feb 22. D(fg) x y z (

Hw 4 Due Feb 22. D(fg) x y z ( Hw 4 Due Feb 22 2.2 Exercise 7,8,10,12,15,18,28,35,36,46 2.3 Exercise 3,11,39,40,47(b) 2.4 Exercise 6,7 Use both the direct method and product rule to calculate where f(x, y, z) = 3x, g(x, y, z) = ( 1

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES YINGYING REN Abstract. In this paper, the applications of homogeneous coordinates are discussed to obtain an efficient model

More information

Polyhedral Homotopies

Polyhedral Homotopies Polyhedral Homotopies Polyhedral homotopies provide proof that mixed volumes count the roots of random coefficient polynomial systems. Mixed-cell configurations store the supports of all start systems

More information

Kinematics and synthesis of cams-coupled parallel robots

Kinematics and synthesis of cams-coupled parallel robots Proceeding of CK2005, International Workshop on Computational Kinematics Cassino, May 4-6, 2005 Paper XX-CK2005 Kinematics and synthesis of cams-coupled parallel robots J-P. Merlet INRIA Sophia Antipolis,

More information

Chapter 3. Quadric hypersurfaces. 3.1 Quadric hypersurfaces Denition.

Chapter 3. Quadric hypersurfaces. 3.1 Quadric hypersurfaces Denition. Chapter 3 Quadric hypersurfaces 3.1 Quadric hypersurfaces. 3.1.1 Denition. Denition 1. In an n-dimensional ane space A; given an ane frame fo;! e i g: A quadric hypersurface in A is a set S consisting

More information

The end of affine cameras

The end of affine cameras The end of affine cameras Affine SFM revisited Epipolar geometry Two-view structure from motion Multi-view structure from motion Planches : http://www.di.ens.fr/~ponce/geomvis/lect3.pptx http://www.di.ens.fr/~ponce/geomvis/lect3.pdf

More information

Chapter 15 Introduction to Linear Programming

Chapter 15 Introduction to Linear Programming Chapter 15 Introduction to Linear Programming An Introduction to Optimization Spring, 2015 Wei-Ta Chu 1 Brief History of Linear Programming The goal of linear programming is to determine the values of

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

Special Quartics with Triple Points

Special Quartics with Triple Points Journal for Geometry and Graphics Volume 6 (2002), No. 2, 111 119. Special Quartics with Triple Points Sonja Gorjanc Faculty of Civil Engineering, University of Zagreb V. Holjevca 15, 10010 Zagreb, Croatia

More information

Lecture 3. Planar Kinematics

Lecture 3. Planar Kinematics Matthew T. Mason Mechanics of Manipulation Outline Where are we? s 1. Foundations and general concepts. 2.. 3. Spherical and spatial kinematics. Readings etc. The text: By now you should have read Chapter

More information

The Gift Wrapping Method in PHCpack

The Gift Wrapping Method in PHCpack The Gift Wrapping Method in PHCpack Jan Verschelde University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science http://www.math.uic.edu/ jan jan@math.uic.edu Graduate Computational

More information

Algorithms to Compute Chern-Schwartz-Macpherson and Segre Classes and the Euler Characteristic

Algorithms to Compute Chern-Schwartz-Macpherson and Segre Classes and the Euler Characteristic Algorithms to Compute Chern-Schwartz-Macpherson and Segre Classes and the Euler Characteristic Martin Helmer University of Western Ontario mhelmer2@uwo.ca Abstract Let V be a closed subscheme of a projective

More information

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

The Convex Hull of a Space Curve

The Convex Hull of a Space Curve The Convex Hull of a Space Curve Bernd Sturmfels, UC Berkeley (joint work with Kristian Ranestad) The Mathematics of Klee & Grünbaum: 100 Years in Seattle Friday, July 30, 2010 Convex Hull of a Trigonometric

More information

Kinematics, Polynomials, and Computers A Brief History

Kinematics, Polynomials, and Computers A Brief History Kinematics, Polynomials, and Computers A Brief History J. Michael McCarthy Department of Mechanical and Aerospace Engineering University of California, Irvine Irvine, CA 92697 JMR Editorial February 2011

More information

Some Advanced Topics in Linear Programming

Some Advanced Topics in Linear Programming Some Advanced Topics in Linear Programming Matthew J. Saltzman July 2, 995 Connections with Algebra and Geometry In this section, we will explore how some of the ideas in linear programming, duality theory,

More information

2.2 Graphs Of Functions. Copyright Cengage Learning. All rights reserved.

2.2 Graphs Of Functions. Copyright Cengage Learning. All rights reserved. 2.2 Graphs Of Functions Copyright Cengage Learning. All rights reserved. Objectives Graphing Functions by Plotting Points Graphing Functions with a Graphing Calculator Graphing Piecewise Defined Functions

More information

Constraint and velocity analysis of mechanisms

Constraint and velocity analysis of mechanisms Constraint and velocity analysis of mechanisms Matteo Zoppi Dimiter Zlatanov DIMEC University of Genoa Genoa, Italy Su S ZZ-2 Outline Generalities Constraint and mobility analysis Examples of geometric

More information

Lecture «Robot Dynamics»: Kinematic Control

Lecture «Robot Dynamics»: Kinematic Control Lecture «Robot Dynamics»: Kinematic Control 151-0851-00 V lecture: CAB G11 Tuesday 10:15 12:00, every week exercise: HG E1.2 Wednesday 8:15 10:00, according to schedule (about every 2nd week) Marco Hutter,

More information

Directed acyclic decomposition of Kuramoto equations

Directed acyclic decomposition of Kuramoto equations Directed acyclic decomposition of Kuramoto equations Tianran Chen Abstract. The Kuramoto model is one of the most widely studied model for describing synchronization behaviors in a network of coupled oscillators,

More information

we wish to minimize this function; to make life easier, we may minimize

we wish to minimize this function; to make life easier, we may minimize Optimization and Lagrange Multipliers We studied single variable optimization problems in Calculus 1; given a function f(x), we found the extremes of f relative to some constraint. Our ability to find

More information

Review and Recent Results on Stewart Gough Platforms with Self-motions

Review and Recent Results on Stewart Gough Platforms with Self-motions Review and Recent Results on Stewart Gough Platforms with Self-motions Georg Nawratil Institute of Geometry, TU Dresden, Germany Research was supported by FWF (I 408-N13) MTM & Robotics 2012, Clermont-Ferrand

More information

Graphics and Interaction Transformation geometry and homogeneous coordinates

Graphics and Interaction Transformation geometry and homogeneous coordinates 433-324 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

Projective spaces and Bézout s theorem

Projective spaces and Bézout s theorem Projective spaces and Bézout s theorem êaû{0 Mijia Lai 5 \ laimijia@sjtu.edu.cn Outline 1. History 2. Projective spaces 3. Conics and cubics 4. Bézout s theorem and the resultant 5. Cayley-Bacharach theorem

More information

3D reconstruction class 11

3D reconstruction class 11 3D reconstruction class 11 Multiple View Geometry Comp 290-089 Marc Pollefeys Multiple View Geometry course schedule (subject to change) Jan. 7, 9 Intro & motivation Projective 2D Geometry Jan. 14, 16

More information

The Convex Hull of a Space Curve. Bernd Sturmfels, UC Berkeley (two papers with Kristian Ranestad)

The Convex Hull of a Space Curve. Bernd Sturmfels, UC Berkeley (two papers with Kristian Ranestad) The Convex Hull of a Space Curve Bernd Sturmfels, UC Berkeley (two papers with Kristian Ranestad) Convex Hull of a Trigonometric Curve { (cos(θ), sin(2θ), cos(3θ) ) R 3 : θ [0, 2π] } = { (x, y, z) R 3

More information

Slider-Cranks as Compatibility Linkages for Parametrizing Center-Point Curves

Slider-Cranks as Compatibility Linkages for Parametrizing Center-Point Curves David H. Myszka e-mail: dmyszka@udayton.edu Andrew P. Murray e-mail: murray@notes.udayton.edu University of Dayton, Dayton, OH 45469 Slider-Cranks as Compatibility Linkages for Parametrizing Center-Point

More information

solving polynomial systems in the cloud with phc

solving polynomial systems in the cloud with phc solving polynomial systems in the cloud with phc Jan Verschelde University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science http://www.math.uic.edu/ jan jan@math.uic.edu

More information

Stewart Gough platforms with linear singularity surface

Stewart Gough platforms with linear singularity surface Stewart Gough platforms with linear singularity surface Georg Nawratil Institute of Discrete Mathematics and Geometry Differential Geometry and Geometric Structures 19th IEEE International Workshop on

More information

Straight Line motion with rigid sets

Straight Line motion with rigid sets Straight ine motion with rigid sets arxiv:40.4743v [math.mg] 9 Jan 04 Robert Connelly and uis Montejano January 7, 08 Abstract If one is given a rigid triangle in the plane or space, we show that the only

More information

Accelerating Polynomial Homotopy Continuation on a Graphics Processing Unit with Double Double and Quad Double Arithmetic

Accelerating Polynomial Homotopy Continuation on a Graphics Processing Unit with Double Double and Quad Double Arithmetic Accelerating Polynomial Homotopy Continuation on a Graphics Processing Unit with Double Double and Quad Double Arithmetic Jan Verschelde joint work with Xiangcheng Yu University of Illinois at Chicago

More information

Chapter 5 Partial Differentiation

Chapter 5 Partial Differentiation Chapter 5 Partial Differentiation For functions of one variable, y = f (x), the rate of change of the dependent variable can dy be found unambiguously by differentiation: f x. In this chapter we explore

More information

Conics on the Cubic Surface

Conics on the Cubic Surface MAAC 2004 George Mason University Conics on the Cubic Surface Will Traves U.S. Naval Academy USNA Trident Project This talk is a preliminary report on joint work with MIDN 1/c Andrew Bashelor and my colleague

More information

WEEKS 1-2 MECHANISMS

WEEKS 1-2 MECHANISMS References WEEKS 1-2 MECHANISMS (METU, Department of Mechanical Engineering) Text Book: Mechanisms Web Page: http://www.me.metu.edu.tr/people/eres/me301/in dex.ht Analitik Çözümlü Örneklerle Mekanizma

More information

EXTRA-CREDIT PROBLEMS ON SURFACES, MULTIVARIABLE FUNCTIONS AND PARTIAL DERIVATIVES

EXTRA-CREDIT PROBLEMS ON SURFACES, MULTIVARIABLE FUNCTIONS AND PARTIAL DERIVATIVES EXTRA-CREDIT PROBLEMS ON SURFACES, MULTIVARIABLE FUNCTIONS AND PARTIAL DERIVATIVES A. HAVENS These problems are for extra-credit, which is counted against lost points on quizzes or WebAssign. You do not

More information

240AR059 - Geometric Fundamentals for Robot Design

240AR059 - Geometric Fundamentals for Robot Design Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2018 240 - ETSEIB - Barcelona School of Industrial Engineering 707 - ESAII - Department of Automatic Control MASTER'S DEGREE IN AUTOMATIC

More information

Bezier Curves. An Introduction. Detlef Reimers

Bezier Curves. An Introduction. Detlef Reimers Bezier Curves An Introduction Detlef Reimers detlefreimers@gmx.de http://detlefreimers.de September 1, 2011 Chapter 1 Bezier Curve Basics 1.1 Linear Interpolation This section will give you a basic introduction

More information

Algorithms to Compute Chern-Schwartz-Macpherson and Segre Classes and the Euler Characteristic

Algorithms to Compute Chern-Schwartz-Macpherson and Segre Classes and the Euler Characteristic Algorithms to Compute Chern-Schwartz-Macpherson and Segre Classes and the Euler Characteristic Martin Helmer University of Western Ontario London, Canada mhelmer2@uwo.ca July 14, 2014 Overview Let V be

More information

The Geometry of Singular Foci of Planar Linkages

The Geometry of Singular Foci of Planar Linkages The Geometry of Singular Foci of Planar Linkages Charles W. Wampler General Motors Research Laboratories, Mail Code 480-106-359, 30500 Mound Road, Warren, MI 48090-9055, USA Abstract The focal points of

More information

Honors Precalculus: Solving equations and inequalities graphically and algebraically. Page 1

Honors Precalculus: Solving equations and inequalities graphically and algebraically. Page 1 Solving equations and inequalities graphically and algebraically 1. Plot points on the Cartesian coordinate plane. P.1 2. Represent data graphically using scatter plots, bar graphs, & line graphs. P.1

More information

Curves and Surfaces Computer Graphics I Lecture 10

Curves and Surfaces Computer Graphics I Lecture 10 15-462 Computer Graphics I Lecture 10 Curves and Surfaces Parametric Representations Cubic Polynomial Forms Hermite Curves Bezier Curves and Surfaces [Angel 10.1-10.6] September 30, 2003 Doug James Carnegie

More information

Functions. Copyright Cengage Learning. All rights reserved.

Functions. Copyright Cengage Learning. All rights reserved. Functions Copyright Cengage Learning. All rights reserved. 2.2 Graphs Of Functions Copyright Cengage Learning. All rights reserved. Objectives Graphing Functions by Plotting Points Graphing Functions with

More information

Lagrangian Multipliers

Lagrangian Multipliers Università Ca Foscari di Venezia - Dipartimento di Economia - A.A.2016-2017 Mathematics (Curriculum Economics, Markets and Finance) Lagrangian Multipliers Luciano Battaia November 15, 2017 1 Two variables

More information

Homogeneous coordinates, lines, screws and twists

Homogeneous coordinates, lines, screws and twists Homogeneous coordinates, lines, screws and twists In lecture 1 of module 2, a brief mention was made of homogeneous coordinates, lines in R 3, screws and twists to describe the general motion of a rigid

More information

Machine vision. Summary # 11: Stereo vision and epipolar geometry. u l = λx. v l = λy

Machine vision. Summary # 11: Stereo vision and epipolar geometry. u l = λx. v l = λy 1 Machine vision Summary # 11: Stereo vision and epipolar geometry STEREO VISION The goal of stereo vision is to use two cameras to capture 3D scenes. There are two important problems in stereo vision:

More information

Polynomial Homotopy Continuation on Graphics Processing Units

Polynomial Homotopy Continuation on Graphics Processing Units Polynomial Homotopy Continuation on Graphics Processing Units Jan Verschelde joint work with Xiangcheng Yu University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science

More information

Kinematic Synthesis. October 6, 2015 Mark Plecnik

Kinematic Synthesis. October 6, 2015 Mark Plecnik Kinematic Synthesis October 6, 2015 Mark Plecnik Classifying Mechanisms Several dichotomies Serial and Parallel Few DOFS and Many DOFS Planar/Spherical and Spatial Rigid and Compliant Mechanism Trade-offs

More information

Optimal Design of a 6-DOF 4-4 Parallel Manipulator with Uncoupled Singularities

Optimal Design of a 6-DOF 4-4 Parallel Manipulator with Uncoupled Singularities Optimal Design of a 6-DOF 4-4 Parallel Manipulator with Uncoupled Singularities Júlia Borràs (1), Erika Ottaviano (2), Marco Ceccarelli (2) and Federico Thomas (1) (1) Institut de Robòtica i Informàtica

More information

Chapter 15: Functions of Several Variables

Chapter 15: Functions of Several Variables Chapter 15: Functions of Several Variables Section 15.1 Elementary Examples a. Notation: Two Variables b. Example c. Notation: Three Variables d. Functions of Several Variables e. Examples from the Sciences

More information

Reliable Location with Respect to the Projection of a Smooth Space Curve

Reliable Location with Respect to the Projection of a Smooth Space Curve Reliable Location with Respect to the Projection of a Smooth Space Curve Rémi Imbach Marc Pouget INRIA Nancy Grand Est, LORIA laboratory, Nancy, France. firstname.name@inria.fr Guillaume Moroz Abstract

More information

A NEW VIEW ON THE CAYLEY TRICK

A NEW VIEW ON THE CAYLEY TRICK A NEW VIEW ON THE CAYLEY TRICK KONRAD-ZUSE-ZENTRUM FÜR INFORMATIONSTECHNIK (ZIB) TAKUSTR. 7 D-14195 BERLIN GERMANY email: rambau@zib.de joint work with: BIRKETT HUBER, FRANCISCO SANTOS, Mathematical Sciences

More information

Dubna 2018: lines on cubic surfaces

Dubna 2018: lines on cubic surfaces Dubna 2018: lines on cubic surfaces Ivan Cheltsov 20th July 2018 Lecture 1: projective plane Complex plane Definition A line in C 2 is a subset that is given by ax + by + c = 0 for some complex numbers

More information

phcpy: an API for PHCpack

phcpy: an API for PHCpack phcpy: an API for PHCpack Jan Verschelde University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science http://www.math.uic.edu/ jan jan@math.uic.edu Graduate Computational

More information

Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction

Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction Carsten Rother 09/12/2013 Computer Vision I: Multi-View 3D reconstruction Roadmap this lecture Computer Vision I: Multi-View

More information

Curves and Surfaces Computer Graphics I Lecture 9

Curves and Surfaces Computer Graphics I Lecture 9 15-462 Computer Graphics I Lecture 9 Curves and Surfaces Parametric Representations Cubic Polynomial Forms Hermite Curves Bezier Curves and Surfaces [Angel 10.1-10.6] February 19, 2002 Frank Pfenning Carnegie

More information

Motion Planning 2D. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo

Motion Planning 2D. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Motion Planning 2D Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Tratto dai corsi: CS 326A: Motion Planning ai.stanford.edu/~latombe/cs326/2007/index.htm Prof. J.C. Latombe Stanford

More information

Lagrangian Multipliers

Lagrangian Multipliers Università Ca Foscari di Venezia - Dipartimento di Management - A.A.2017-2018 Mathematics Lagrangian Multipliers Luciano Battaia November 15, 2017 1 Two variables functions and constraints Consider a two

More information

In what follows, we will focus on Voronoi diagrams in Euclidean space. Later, we will generalize to other distance spaces.

In what follows, we will focus on Voronoi diagrams in Euclidean space. Later, we will generalize to other distance spaces. Voronoi Diagrams 4 A city builds a set of post offices, and now needs to determine which houses will be served by which office. It would be wasteful for a postman to go out of their way to make a delivery

More information

Robot Vision: Projective Geometry

Robot Vision: Projective Geometry Robot Vision: Projective Geometry Ass.Prof. Friedrich Fraundorfer SS 2018 1 Learning goals Understand homogeneous coordinates Understand points, line, plane parameters and interpret them geometrically

More information

Generalized Stewart Platforms and their Direct Kinematics 1)

Generalized Stewart Platforms and their Direct Kinematics 1) MM Research Preprints, 6 85 MMRC, AMSS, Academia, Sinica, Beijing No., December 003 Generalized Stewart Platforms and their Direct Kinematics ) Xiao-Shan Gao and Deli Lei Key Laboratory of Mathematics

More information

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives In general, if f is a function of two variables x and y, suppose we let only x vary while keeping y fixed, say y = b, where b is a constant. By the definition of a derivative, we have Then we are really

More information

The point (x, y) lies on the circle of radius r and center (h, k) iff. x h y k r

The point (x, y) lies on the circle of radius r and center (h, k) iff. x h y k r NOTES +: ANALYTIC GEOMETRY NAME LESSON. GRAPHS OF EQUATIONS IN TWO VARIABLES (CIRCLES). Standard form of a Circle The point (x, y) lies on the circle of radius r and center (h, k) iff x h y k r Center:

More information

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute Jane Li Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute (3 pts) Compare the testing methods for testing path segment and finding first

More information

10/11/07 1. Motion Control (wheeled robots) Representing Robot Position ( ) ( ) [ ] T

10/11/07 1. Motion Control (wheeled robots) Representing Robot Position ( ) ( ) [ ] T 3 3 Motion Control (wheeled robots) Introduction: Mobile Robot Kinematics Requirements for Motion Control Kinematic / dynamic model of the robot Model of the interaction between the wheel and the ground

More information

Generation of lattices of points for bivariate interpolation

Generation of lattices of points for bivariate interpolation Generation of lattices of points for bivariate interpolation J. M. Carnicer and M. Gasca Departamento de Matemática Aplicada. University of Zaragoza, Spain Abstract. Principal lattices in the plane are

More information

Parallel Robots. Mechanics and Control H AMID D. TAG HI RAD. CRC Press. Taylor & Francis Group. Taylor & Francis Croup, Boca Raton London NewYoric

Parallel Robots. Mechanics and Control H AMID D. TAG HI RAD. CRC Press. Taylor & Francis Group. Taylor & Francis Croup, Boca Raton London NewYoric Parallel Robots Mechanics and Control H AMID D TAG HI RAD CRC Press Taylor & Francis Group Boca Raton London NewYoric CRC Press Is an Imprint of the Taylor & Francis Croup, an informs business Contents

More information

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if POLYHEDRAL GEOMETRY Mathematical Programming Niels Lauritzen 7.9.2007 Convex functions and sets Recall that a subset C R n is convex if {λx + (1 λ)y 0 λ 1} C for every x, y C and 0 λ 1. A function f :

More information

A Simulation Tool to Study the Kinematics and Control of 2RPR-PR Parallel Robots

A Simulation Tool to Study the Kinematics and Control of 2RPR-PR Parallel Robots Preprints of the 11th IFAC Symposium on Advances in Control Education, Bratislava, Slovakia, June 1-3, 2016 FrParallel D1.6 A Simulation Tool to Study the Kinematics and Control of 2RPR-PR Parallel Robots

More information

Reachability on a region bounded by two attached squares

Reachability on a region bounded by two attached squares Reachability on a region bounded by two attached squares Ali Mohades mohades@cic.aku.ac.ir AmirKabir University of Tech., Math. and Computer Sc. Dept. Mohammadreza Razzazi razzazi@ce.aku.ac.ir AmirKabir

More information

5. GENERALIZED INVERSE SOLUTIONS

5. GENERALIZED INVERSE SOLUTIONS 5. GENERALIZED INVERSE SOLUTIONS The Geometry of Generalized Inverse Solutions The generalized inverse solution to the control allocation problem involves constructing a matrix which satisfies the equation

More information

PHCpack, phcpy, and Sphinx

PHCpack, phcpy, and Sphinx PHCpack, phcpy, and Sphinx 1 the software PHCpack a package for Polynomial Homotopy Continuation polyhedral homotopies the Python interface phcpy 2 Documenting Software with Sphinx Sphinx generates documentation

More information

METR Robotics Tutorial 2 Week 2: Homogeneous Coordinates

METR Robotics Tutorial 2 Week 2: Homogeneous Coordinates METR4202 -- Robotics Tutorial 2 Week 2: Homogeneous Coordinates The objective of this tutorial is to explore homogenous transformations. The MATLAB robotics toolbox developed by Peter Corke might be a

More information

Jacobian: Velocities and Static Forces 1/4

Jacobian: Velocities and Static Forces 1/4 Jacobian: Velocities and Static Forces /4 Advanced Robotic - MAE 6D - Department of Mechanical & Aerospace Engineering - UCLA Kinematics Relations - Joint & Cartesian Spaces A robot is often used to manipulate

More information

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ Math 0 Prelim I Solutions Spring 010 1. Let f(x, y) = x3 y for (x, y) (0, 0). x 6 + y (4 pts) (a) Show that the cubic curves y = x 3 are level curves of the function f. Solution. Substituting y = x 3 in

More information

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;...

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;... Tutorial Class V 3-10/10/2012 1 First Order Partial Derivatives; Tutorial Class V 3-10/10/2012 1 First Order Partial Derivatives; 2 Application of Gradient; Tutorial Class V 3-10/10/2012 1 First Order

More information

The exotic dodecahedron M 0,5 (R) David P. Roberts University of Minnesota, Morris

The exotic dodecahedron M 0,5 (R) David P. Roberts University of Minnesota, Morris The exotic dodecahedron M 0,5 (R) David P. Roberts University of Minnesota, Morris J ai commencé a regarder M 0,5 à des moments perdus, c est un véritable joyau, d une géométrie très riche étroitement

More information

DETC SLIDER CRANKS AS COMPATIBILITY LINKAGES FOR PARAMETERIZING CENTER POINT CURVES

DETC SLIDER CRANKS AS COMPATIBILITY LINKAGES FOR PARAMETERIZING CENTER POINT CURVES Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information Proceedings in Engineering of IDETC/CIE Conference 2009 ASME 2009 International Design Engineering

More information

Jacobian: Velocities and Static Forces 1/4

Jacobian: Velocities and Static Forces 1/4 Jacobian: Velocities and Static Forces /4 Models of Robot Manipulation - EE 54 - Department of Electrical Engineering - University of Washington Kinematics Relations - Joint & Cartesian Spaces A robot

More information

MATH 113 Section 8.2: Two-Dimensional Figures

MATH 113 Section 8.2: Two-Dimensional Figures MATH 113 Section 8.2: Two-Dimensional Figures Prof. Jonathan Duncan Walla Walla University Winter Quarter, 2008 Outline 1 Classifying Two-Dimensional Shapes 2 Polygons Triangles Quadrilaterals 3 Other

More information

DISTANCE CONSTRAINTS SOLVED GEOMETRICALLY

DISTANCE CONSTRAINTS SOLVED GEOMETRICALLY DISTANCE CONSTRAINTS SOLVED GEOMETRICALLY F. Thomas, J.M. Porta, and L. Ros Institut de Robòtica i Informàtica Industrial (CSIC-UPC) Llorens i Artigas 4-6, 08028-Barcelona, Spain {fthomas,jporta,llros}@iri.upc.es

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Structure Computation Lecture 18 March 22, 2005 2 3D Reconstruction The goal of 3D reconstruction

More information

A Geometric Newton-Raphson Method for Gough-Stewart Platforms

A Geometric Newton-Raphson Method for Gough-Stewart Platforms A Geometric Newton-Raphson Method for Gough-Stewart Platforms J.M. Selig and Hui Li Abstract A geometric version of the well known Newton-Raphson methods is introduced. This root finding method is adapted

More information

Madison County Schools Suggested Geometry Pacing Guide,

Madison County Schools Suggested Geometry Pacing Guide, Madison County Schools Suggested Geometry Pacing Guide, 2016 2017 Domain Abbreviation Congruence G-CO Similarity, Right Triangles, and Trigonometry G-SRT Modeling with Geometry *G-MG Geometric Measurement

More information

LECTURE 13, THURSDAY APRIL 1, 2004

LECTURE 13, THURSDAY APRIL 1, 2004 LECTURE 13, THURSDAY APRIL 1, 2004 FRANZ LEMMERMEYER 1. Parametrizing Curves of Genus 0 As a special case of the theorem that curves of genus 0, in particular those with the maximal number of double points,

More information

ME 115(b): Final Exam, Spring

ME 115(b): Final Exam, Spring ME 115(b): Final Exam, Spring 2011-12 Instructions 1. Limit your total time to 5 hours. That is, it is okay to take a break in the middle of the exam if you need to ask me a question, or go to dinner,

More information