Statistics I Practice 2 Notes Probability and probabilistic models; Introduction of the statistical inference

Size: px
Start display at page:

Download "Statistics I Practice 2 Notes Probability and probabilistic models; Introduction of the statistical inference"

Transcription

1 Statistics I Practice 2 Notes Probability and probabilistic models; Introduction of the statistical inference 1. Simulation of random variables In Excel we can simulate values from random variables (discrete or continuous). The simulation tool is in the data analysis complement that we have already installed in the first computer class. The steps for simulating values of random variables are similar for all types of variables. First, we open Excel and select Datos in the Menu above, where we can look for the Análisis de datos complement: Now, we can look for a function called Generación de números aleatorios. Once this is selected, a new window opens: Número de variables: the number of variables that we want to simulate. Usually 1. Cantidad de números aleatorios: the sample size. Distribución: the distribution of our variable: either discrete (Bernoulli, Binomial) or continuous (Uniforme, Normal). Parámetros: the parameters of the distribution. Iniciar con: left unfilled. 1

2 Opciones de salida: this command is useful for selecting the range of the output in the actual sheet or in a new sheet. Moreover, we can give it a name that may depends of the distribution that we are using Discrete random variables: Bernoulli and Binomial First, we simulate from a sample of n = 50 observations of the Bernoulli distribution. We open the simulation window as we have seen before, fill the following fields and click on Aceptar: In column A we get a simple random sample of a Bernoulli distribution with parameter p = 0.4. We know that and, then and. We compute the sample mean and variance using the Excel functions PROMEDIO and VAR, and compare the sample quantities with their population counterparts: Important: each student will have different results because the simulated values are random Following the same steps, we simulate a sample of size n = 100 from a Binomial distribution:. 2

3 We compute the population mean and variance and compare with the sample mean and variance: 1.2. Continuous random variables: Normal We want to generate a sample of size n = 20 from a Normal:, where and. We follow the same steps as it was explained before, and compute the sample mean and standard deviation: Are the sample parameters close to the population parameters? What would happen if, instead of n = 20, we take n = 1000? 2. Point estimation and adjustment 2.1. Quantile-quantile Plot (QQ - plot) for a Normal distribution We use the same data that we have generated from a Normal. First, we insert an additional row at the top with the names of the columns. After that, we select all the data and sort them from lowest to biggest through Datos in the above Menu and obtain the following: 3

4 The next step is to compute the sample quantiles. For that purpose, it is necessary to assign first the range of each observation. Put on the cell B2 and write 1, which means that the number in A2 is the first observation. In B3, we introduce the formula =B2+1 and copy the formula till the end of the column. Finally, we compute the sample quantiles in the third column. Put in cell C2 and introduce the formula =(B2-0.5)/20 (remain that 20 is the sample size). Copy this formula till the end of the column. To check if the sample quantiles have been obtained properly, we can compute the median that should be at position (20+1)/2=10.5, between 10 and 11. As we can see, the Q50% appears just between the positions 10 and 11. Finally, we have to compute the values of the estimated Normal distribution, associated with each quantile:, where and are the sample mean and standard deviation. Before that, we compute the z-scores, which are the values of the standard Normal distribution associated with each quantile. Put on cell D2 and introduce the following Excel function =DISTR.NORM.ESTAND.INV(C2), and copy this formula till the end of the column. To convert these z-scores in the associated values with the original sample, it is necessary to perform the inverse operation, i.e. the inverse standarization: multiply each score with the sample standard deviation and add the estimated mean of X (called x-scores): 4

5 Now, we have all the information needed to graph the QQ-plot. Before that, it is necessary to copy the column A with the original data at the right of column E of x-scores, because Excel can now recognize which data are on axis x and which data are on axis y. Now, we select the two columns and click on Insertar in the above Menu. Then click on Dispersión in the above Menu where we select the type of plot that we want (only points): To change the size and style of the points, it is necessary to put on one point, right click on the mouse and select Dar formato a serie de datos, Opciones de marcador. If the data have been generated from the considered distribution, then the points in the plot should be along a straight line. To plot this line, we copy in column G the x-scores, select the three columns and repeat: Insertar, Dispersión Then, Excel plots the straight line (be careful when copying and pasting the x-scores because there are formulas copied. Then, right click on the mouse and select Pegado Especial and then select Sólo Valores). 5

6 When the following plot appears, we change the style of the points of the x-scores to convert them in a straight line: put the mouse on a point, right click on the mouse and select Dar formato a series de datos, Opciones de marcador: ninguno, Color de línea: Línea Sólida. Finally, we obtain the following plot: As we can see, the points of the plot are along the straight line. This means that the distribution fits well the data Graphical fitting: histograms with area of 1 (on a density scale) and density curves We use the same data that we have generated from a Normal. For this example, we are interested in generating again 20 observations. In order to create the histogram with area of 1 (on a density scale), we need to use the following information as explained in Lab 1,: Number of observations: 20 Minimum value: -3, approximate -3,4 Maximum value: 3, approximate 3,8 Range: 7,2 Number of classes: 20^(1/2)= 4, approximate 4 or 5 classes. The steps would be the following: 1.- Imagine that we are going to use 5 classes. Following the steps explained in laboratory 1, the length of the intervals (range / number of classes = 1.44) and the upper limits of the classes starting with the minimum value are established and then adding the amplitude to the previous limit. 2.- Once the upper limits of the classes are obtained, we create the histogram by selecting Análisis de datos in Datos; Histograma and click on Aceptar. So, we obtain the absolute frequency of each interval. 6

7 3.- The relative frequencies associated with each interval (relative frequency -fi- = absolute frequency / n) are calculated. 4.- To create a histogram with area of 1 (on a density scale), it is necessary to divide the relative frequencies by the amplitude of the intervals (fi / ai) obtaining the height of the bars. So, the histogram with area of 1 (on a density scale) is plotted changing the data of the column of absolute frequencies by the heights. We also remove the space between bars. 7

8 5.- Once the histogram with area of 1 is obtained, the normal density curve can be added. In order to perform the graph of the N(, ), the values of the axis OX are obtained as the center point between upper and lower limits of the intervals. 6.- We calculate and add the value of the normal density in the histogram as the density curve. It is necessary to calculate the mean and standard deviation of the simulated values. We can use, for example, the PROMEDIO and DESVEST statistics functions. The density would be calculated using DISTR.NORM function. DISTR.NORM( punto central ;PROMEDIO(A$2:A$21);DESVEST(A$2:A$21);0) In order to add the density curve to the histogram with area of 1 (on a density scale), you have to position the graph, right button, Seleccionar datos, Agregar, nombre de la serie (for example, curva) and valores de la serie (we select the density values). So, the bars corresponding to the densities are added in another color. In order to be drawn as a curve, you must change chart type into lines by selecting a line type without points (Cambiar tipo de gráfico, Líneas). 8

9 3. Confidence Intervals In order to calculate a confidence interval we can use statistical function INTERVALO.CONFIANZA INTERVALO.CONFIANZA Returns the confidence interval for the mean μ of a population distributed as a normal distribution. Alfa: significance level used to calculate the confidence level. The confidence level is equal to 100 * (1 - alpha)%, ie, an alpha of 0.05 indicates a 95% confidence level. Desv_estándar: standard deviation of the population. It is assumed that it is known. Tamaño: sample size. The confidence interval for the population mean, given the level of significance, is calculated by adding (and subtracting) to the sample mean the value calculated with this formula thus obtaining the upper limit and the lower limit of the interval. 9

10 Example In order to estimate the average grade of a given subject in a University, a sample of 35 marks of students has been obtained. It is known from other courses that the grade of this subject follow a Normal distribution, N(, ). The standard deviation of the grades is 2.41 points. Considering that the average score obtained in the sample has been of 5,02, find: a) A 90% confidence interval for the mean based on the sample INTERVALO.CONFIANZA(0.1;2,41;35) = 0, So, confidence interval will be: 5,02 0, ; 5,02 + 0, (4, ; 5, ) b) A 95% confidence interval for the mean based on the sample INTERVALO.CONFIANZA(0.05;2,41;35) = 0, So, confidence interval: 5,02 0, ; 5,02 + 0, (4, ; 5, ) 10

11 4. Exercises (give to the professor at the end of the class with the answers written in the last page) 4.1. Simulate a random variable of size n = 150 from the Uniform distribution X U(3,12), compute the sample mean, variance and standard deviation and their sample counterparts and write the results in Table Simulate a random variable of size n = 50 from the Normal X N(4,2) a. Compute the sample mean, variance and standard deviation and their sample counterparts and write the results in Table 2. b. Draw the QQ plot of this approximation and explain the results. c. Draw the corresponding histogram with area of 1 and density curve. d. Find a 98% confidence interval considering a random sample size =

12 Answers to part 4. Name: NIU: Degree: Group Table 1. Results for n = 150, X U(3,12) X Sample Population Mean Variance Standard deviation Table 2. Results for n = 50, X N(4,2) X Sample Population Mean Variance Standard deviation Explain the results from the QQ plot: A 98% confidence interval (CI) considering a random sample size = 250 Fill in the statistical function and the results: INTERVALO.CONFIANZA( ; ; ; ) = So, CI will be (, ). 12

Statistics I 2011/2012 Notes about the third Computer Class: Simulation of samples and goodness of fit; Central Limit Theorem; Confidence intervals.

Statistics I 2011/2012 Notes about the third Computer Class: Simulation of samples and goodness of fit; Central Limit Theorem; Confidence intervals. Statistics I 2011/2012 Notes about the third Computer Class: Simulation of samples and goodness of fit; Central Limit Theorem; Confidence intervals. In this Computer Class we are going to use Statgraphics

More information

IT 403 Practice Problems (1-2) Answers

IT 403 Practice Problems (1-2) Answers IT 403 Practice Problems (1-2) Answers #1. Using Tukey's Hinges method ('Inclusionary'), what is Q3 for this dataset? 2 3 5 7 11 13 17 a. 7 b. 11 c. 12 d. 15 c (12) #2. How do quartiles and percentiles

More information

CHAPTER 2 Modeling Distributions of Data

CHAPTER 2 Modeling Distributions of Data CHAPTER 2 Modeling Distributions of Data 2.2 Density Curves and Normal Distributions The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers Density Curves

More information

Unit 7 Statistics. AFM Mrs. Valentine. 7.1 Samples and Surveys

Unit 7 Statistics. AFM Mrs. Valentine. 7.1 Samples and Surveys Unit 7 Statistics AFM Mrs. Valentine 7.1 Samples and Surveys v Obj.: I will understand the different methods of sampling and studying data. I will be able to determine the type used in an example, and

More information

CHAPTER 6. The Normal Probability Distribution

CHAPTER 6. The Normal Probability Distribution The Normal Probability Distribution CHAPTER 6 The normal probability distribution is the most widely used distribution in statistics as many statistical procedures are built around it. The central limit

More information

Measures of Dispersion

Measures of Dispersion Lesson 7.6 Objectives Find the variance of a set of data. Calculate standard deviation for a set of data. Read data from a normal curve. Estimate the area under a curve. Variance Measures of Dispersion

More information

Chapter 5snow year.notebook March 15, 2018

Chapter 5snow year.notebook March 15, 2018 Chapter 5: Statistical Reasoning Section 5.1 Exploring Data Measures of central tendency (Mean, Median and Mode) attempt to describe a set of data by identifying the central position within a set of data

More information

Part I, Chapters 4 & 5. Data Tables and Data Analysis Statistics and Figures

Part I, Chapters 4 & 5. Data Tables and Data Analysis Statistics and Figures Part I, Chapters 4 & 5 Data Tables and Data Analysis Statistics and Figures Descriptive Statistics 1 Are data points clumped? (order variable / exp. variable) Concentrated around one value? Concentrated

More information

Data Management Project Using Software to Carry Out Data Analysis Tasks

Data Management Project Using Software to Carry Out Data Analysis Tasks Data Management Project Using Software to Carry Out Data Analysis Tasks This activity involves two parts: Part A deals with finding values for: Mean, Median, Mode, Range, Standard Deviation, Max and Min

More information

CHAPTER 2 Modeling Distributions of Data

CHAPTER 2 Modeling Distributions of Data CHAPTER 2 Modeling Distributions of Data 2.2 Density Curves and Normal Distributions The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers HW 34. Sketch

More information

Fathom Dynamic Data TM Version 2 Specifications

Fathom Dynamic Data TM Version 2 Specifications Data Sources Fathom Dynamic Data TM Version 2 Specifications Use data from one of the many sample documents that come with Fathom. Enter your own data by typing into a case table. Paste data from other

More information

MAT 142 College Mathematics. Module ST. Statistics. Terri Miller revised July 14, 2015

MAT 142 College Mathematics. Module ST. Statistics. Terri Miller revised July 14, 2015 MAT 142 College Mathematics Statistics Module ST Terri Miller revised July 14, 2015 2 Statistics Data Organization and Visualization Basic Terms. A population is the set of all objects under study, a sample

More information

Lecture 3 Questions that we should be able to answer by the end of this lecture:

Lecture 3 Questions that we should be able to answer by the end of this lecture: Lecture 3 Questions that we should be able to answer by the end of this lecture: Which is the better exam score? 67 on an exam with mean 50 and SD 10 or 62 on an exam with mean 40 and SD 12 Is it fair

More information

The first few questions on this worksheet will deal with measures of central tendency. These data types tell us where the center of the data set lies.

The first few questions on this worksheet will deal with measures of central tendency. These data types tell us where the center of the data set lies. Instructions: You are given the following data below these instructions. Your client (Courtney) wants you to statistically analyze the data to help her reach conclusions about how well she is teaching.

More information

Experiment 3 Microsoft Excel in Scientific Applications I

Experiment 3 Microsoft Excel in Scientific Applications I Experiment 3 Microsoft Excel in Scientific Applications I OUTCOMES After completing this experiment, the student should be able to: demonstrate basic computer survival skills (opening, closing, printing

More information

Lecture 3 Questions that we should be able to answer by the end of this lecture:

Lecture 3 Questions that we should be able to answer by the end of this lecture: Lecture 3 Questions that we should be able to answer by the end of this lecture: Which is the better exam score? 67 on an exam with mean 50 and SD 10 or 62 on an exam with mean 40 and SD 12 Is it fair

More information

Confidence Intervals: Estimators

Confidence Intervals: Estimators Confidence Intervals: Estimators Point Estimate: a specific value at estimates a parameter e.g., best estimator of e population mean ( ) is a sample mean problem is at ere is no way to determine how close

More information

Chapter 3: Data Description Calculate Mean, Median, Mode, Range, Variation, Standard Deviation, Quartiles, standard scores; construct Boxplots.

Chapter 3: Data Description Calculate Mean, Median, Mode, Range, Variation, Standard Deviation, Quartiles, standard scores; construct Boxplots. MINITAB Guide PREFACE Preface This guide is used as part of the Elementary Statistics class (Course Number 227) offered at Los Angeles Mission College. It is structured to follow the contents of the textbook

More information

Excel 2010 with XLSTAT

Excel 2010 with XLSTAT Excel 2010 with XLSTAT J E N N I F E R LE W I S PR I E S T L E Y, PH.D. Introduction to Excel 2010 with XLSTAT The layout for Excel 2010 is slightly different from the layout for Excel 2007. However, with

More information

Instructions for Using ABCalc James Alan Fox Northeastern University Updated: August 2009

Instructions for Using ABCalc James Alan Fox Northeastern University Updated: August 2009 Instructions for Using ABCalc James Alan Fox Northeastern University Updated: August 2009 Thank you for using ABCalc, a statistical calculator to accompany several introductory statistics texts published

More information

Lab 7 Statistics I LAB 7 QUICK VIEW

Lab 7 Statistics I LAB 7 QUICK VIEW Lab 7 Statistics I This lab will cover how to do statistical calculations in excel using formulas. (Note that your version of excel may have additional formulas to calculate statistics, but these formulas

More information

The Normal Distribution & z-scores

The Normal Distribution & z-scores & z-scores Distributions: Who needs them? Why are we interested in distributions? Important link between distributions and probabilities of events If we know the distribution of a set of events, then we

More information

IQC monitoring in laboratory networks

IQC monitoring in laboratory networks IQC for Networked Analysers Background and instructions for use IQC monitoring in laboratory networks Modern Laboratories continue to produce large quantities of internal quality control data (IQC) despite

More information

Lecture 6: Chapter 6 Summary

Lecture 6: Chapter 6 Summary 1 Lecture 6: Chapter 6 Summary Z-score: Is the distance of each data value from the mean in standard deviation Standardizes data values Standardization changes the mean and the standard deviation: o Z

More information

INSTRUCTIONS FOR USING MICROSOFT EXCEL PERFORMING DESCRIPTIVE AND INFERENTIAL STATISTICS AND GRAPHING

INSTRUCTIONS FOR USING MICROSOFT EXCEL PERFORMING DESCRIPTIVE AND INFERENTIAL STATISTICS AND GRAPHING APPENDIX INSTRUCTIONS FOR USING MICROSOFT EXCEL PERFORMING DESCRIPTIVE AND INFERENTIAL STATISTICS AND GRAPHING (Developed by Dr. Dale Vogelien, Kennesaw State University) ** For a good review of basic

More information

Pre-Lab Excel Problem

Pre-Lab Excel Problem Pre-Lab Excel Problem Read and follow the instructions carefully! Below you are given a problem which you are to solve using Excel. If you have not used the Excel spreadsheet a limited tutorial is given

More information

CHAPTER 2 Modeling Distributions of Data

CHAPTER 2 Modeling Distributions of Data CHAPTER 2 Modeling Distributions of Data 2.2 Density Curves and Normal Distributions The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers Density Curves

More information

Page 1. Graphical and Numerical Statistics

Page 1. Graphical and Numerical Statistics TOPIC: Description Statistics In this tutorial, we show how to use MINITAB to produce descriptive statistics, both graphical and numerical, for an existing MINITAB dataset. The example data come from Exercise

More information

Using Large Data Sets Workbook Version A (MEI)

Using Large Data Sets Workbook Version A (MEI) Using Large Data Sets Workbook Version A (MEI) 1 Index Key Skills Page 3 Becoming familiar with the dataset Page 3 Sorting and filtering the dataset Page 4 Producing a table of summary statistics with

More information

IQR = number. summary: largest. = 2. Upper half: Q3 =

IQR = number. summary: largest. = 2. Upper half: Q3 = Step by step box plot Height in centimeters of players on the 003 Women s Worldd Cup soccer team. 157 1611 163 163 164 165 165 165 168 168 168 170 170 170 171 173 173 175 180 180 Determine the 5 number

More information

Density Curve (p52) Density curve is a curve that - is always on or above the horizontal axis.

Density Curve (p52) Density curve is a curve that - is always on or above the horizontal axis. 1.3 Density curves p50 Some times the overall pattern of a large number of observations is so regular that we can describe it by a smooth curve. It is easier to work with a smooth curve, because the histogram

More information

The Normal Distribution & z-scores

The Normal Distribution & z-scores & z-scores Distributions: Who needs them? Why are we interested in distributions? Important link between distributions and probabilities of events If we know the distribution of a set of events, then we

More information

Excel Simulations - 1

Excel Simulations - 1 Excel Simulations - [] We are going to look at a number of ways Excel can be used to create worksheet simulations that help students visualize concepts. The first type of simulation we will create will

More information

Learning Log Title: CHAPTER 7: PROPORTIONS AND PERCENTS. Date: Lesson: Chapter 7: Proportions and Percents

Learning Log Title: CHAPTER 7: PROPORTIONS AND PERCENTS. Date: Lesson: Chapter 7: Proportions and Percents Chapter 7: Proportions and Percents CHAPTER 7: PROPORTIONS AND PERCENTS Date: Lesson: Learning Log Title: Date: Lesson: Learning Log Title: Chapter 7: Proportions and Percents Date: Lesson: Learning Log

More information

Chapter 2 Modeling Distributions of Data

Chapter 2 Modeling Distributions of Data Chapter 2 Modeling Distributions of Data Section 2.1 Describing Location in a Distribution Describing Location in a Distribution Learning Objectives After this section, you should be able to: FIND and

More information

So..to be able to make comparisons possible, we need to compare them with their respective distributions.

So..to be able to make comparisons possible, we need to compare them with their respective distributions. Unit 3 ~ Modeling Distributions of Data 1 ***Section 2.1*** Measures of Relative Standing and Density Curves (ex) Suppose that a professional soccer team has the money to sign one additional player and

More information

CMPF124 Microsoft Excel Tutorial

CMPF124 Microsoft Excel Tutorial Lab 5: Microsoft Excel Tutorial Excel Worksheet Microsoft Excel works as account ledger. An Excel Workbook (1) could have multiple Worksheets (2). A cell in Excel is referred by its Column and Row naming

More information

The Normal Distribution & z-scores

The Normal Distribution & z-scores & z-scores Distributions: Who needs them? Why are we interested in distributions? Important link between distributions and probabilities of events If we know the distribution of a set of events, then we

More information

Frequency Distributions

Frequency Distributions Displaying Data Frequency Distributions After collecting data, the first task for a researcher is to organize and summarize the data so that it is possible to get a general overview of the results. Remember,

More information

Minitab Study Card J ENNIFER L EWIS P RIESTLEY, PH.D.

Minitab Study Card J ENNIFER L EWIS P RIESTLEY, PH.D. Minitab Study Card J ENNIFER L EWIS P RIESTLEY, PH.D. Introduction to Minitab The interface for Minitab is very user-friendly, with a spreadsheet orientation. When you first launch Minitab, you will see

More information

Graphing with Microsoft Excel

Graphing with Microsoft Excel Graphing with Microsoft Excel As an AP Physics 1 student, you must be prepared to interpret and construct relationships found in physical laws and experimental data. This exercise is meant to familiarize

More information

Chapter 3: Data Description - Part 3. Homework: Exercises 1-21 odd, odd, odd, 107, 109, 118, 119, 120, odd

Chapter 3: Data Description - Part 3. Homework: Exercises 1-21 odd, odd, odd, 107, 109, 118, 119, 120, odd Chapter 3: Data Description - Part 3 Read: Sections 1 through 5 pp 92-149 Work the following text examples: Section 3.2, 3-1 through 3-17 Section 3.3, 3-22 through 3.28, 3-42 through 3.82 Section 3.4,

More information

Goals. The Normal Probability Distribution. A distribution. A Discrete Probability Distribution. Results of Tossing Two Dice. Probabilities involve

Goals. The Normal Probability Distribution. A distribution. A Discrete Probability Distribution. Results of Tossing Two Dice. Probabilities involve Goals The Normal Probability Distribution Chapter 7 Dr. Richard Jerz Understand the difference between discrete and continuous distributions. Compute the mean, standard deviation, and probabilities for

More information

Chapter 5: The standard deviation as a ruler and the normal model p131

Chapter 5: The standard deviation as a ruler and the normal model p131 Chapter 5: The standard deviation as a ruler and the normal model p131 Which is the better exam score? 67 on an exam with mean 50 and SD 10 62 on an exam with mean 40 and SD 12? Is it fair to say: 67 is

More information

BIOL Gradation of a histogram (a) into the normal curve (b)

BIOL Gradation of a histogram (a) into the normal curve (b) (التوزيع الطبيعي ( Distribution Normal (Gaussian) One of the most important distributions in statistics is a continuous distribution called the normal distribution or Gaussian distribution. Consider the

More information

The Normal Probability Distribution. Goals. A distribution 2/27/16. Chapter 7 Dr. Richard Jerz

The Normal Probability Distribution. Goals. A distribution 2/27/16. Chapter 7 Dr. Richard Jerz The Normal Probability Distribution Chapter 7 Dr. Richard Jerz 1 2016 rjerz.com Goals Understand the difference between discrete and continuous distributions. Compute the mean, standard deviation, and

More information

Spreadsheet and Graphing Exercise Biology 210 Introduction to Research

Spreadsheet and Graphing Exercise Biology 210 Introduction to Research 1 Spreadsheet and Graphing Exercise Biology 210 Introduction to Research There are many good spreadsheet programs for analyzing data. In this class we will use MS Excel. Below are a series of examples

More information

MAT 102 Introduction to Statistics Chapter 6. Chapter 6 Continuous Probability Distributions and the Normal Distribution

MAT 102 Introduction to Statistics Chapter 6. Chapter 6 Continuous Probability Distributions and the Normal Distribution MAT 102 Introduction to Statistics Chapter 6 Chapter 6 Continuous Probability Distributions and the Normal Distribution 6.2 Continuous Probability Distributions Characteristics of a Continuous Probability

More information

Key Terms. Symbology. Categorical attributes. Style. Layer file

Key Terms. Symbology. Categorical attributes. Style. Layer file Key Terms Symbology Categorical attributes Style Layer file Review Questions POP-RANGE is a string field of the Cities feature class with the following entries: 0-9,999, 10,000-49,999, 50,000-99,000 This

More information

CHAPTER 2: Describing Location in a Distribution

CHAPTER 2: Describing Location in a Distribution CHAPTER 2: Describing Location in a Distribution 2.1 Goals: 1. Compute and use z-scores given the mean and sd 2. Compute and use the p th percentile of an observation 3. Intro to density curves 4. More

More information

Section 2.2 Normal Distributions. Normal Distributions

Section 2.2 Normal Distributions. Normal Distributions Section 2.2 Normal Distributions Normal Distributions One particularly important class of density curves are the Normal curves, which describe Normal distributions. All Normal curves are symmetric, single-peaked,

More information

Stat 528 (Autumn 2008) Density Curves and the Normal Distribution. Measures of center and spread. Features of the normal distribution

Stat 528 (Autumn 2008) Density Curves and the Normal Distribution. Measures of center and spread. Features of the normal distribution Stat 528 (Autumn 2008) Density Curves and the Normal Distribution Reading: Section 1.3 Density curves An example: GRE scores Measures of center and spread The normal distribution Features of the normal

More information

CHAPTER 1. Introduction. Statistics: Statistics is the science of collecting, organizing, analyzing, presenting and interpreting data.

CHAPTER 1. Introduction. Statistics: Statistics is the science of collecting, organizing, analyzing, presenting and interpreting data. 1 CHAPTER 1 Introduction Statistics: Statistics is the science of collecting, organizing, analyzing, presenting and interpreting data. Variable: Any characteristic of a person or thing that can be expressed

More information

MAT 110 WORKSHOP. Updated Fall 2018

MAT 110 WORKSHOP. Updated Fall 2018 MAT 110 WORKSHOP Updated Fall 2018 UNIT 3: STATISTICS Introduction Choosing a Sample Simple Random Sample: a set of individuals from the population chosen in a way that every individual has an equal chance

More information

ECLT 5810 Data Preprocessing. Prof. Wai Lam

ECLT 5810 Data Preprocessing. Prof. Wai Lam ECLT 5810 Data Preprocessing Prof. Wai Lam Why Data Preprocessing? Data in the real world is imperfect incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate

More information

Math 227 EXCEL / MEGASTAT Guide

Math 227 EXCEL / MEGASTAT Guide Math 227 EXCEL / MEGASTAT Guide Introduction Introduction: Ch2: Frequency Distributions and Graphs Construct Frequency Distributions and various types of graphs: Histograms, Polygons, Pie Charts, Stem-and-Leaf

More information

LAB #2: SAMPLING, SAMPLING DISTRIBUTIONS, AND THE CLT

LAB #2: SAMPLING, SAMPLING DISTRIBUTIONS, AND THE CLT NAVAL POSTGRADUATE SCHOOL LAB #2: SAMPLING, SAMPLING DISTRIBUTIONS, AND THE CLT Statistics (OA3102) Lab #2: Sampling, Sampling Distributions, and the Central Limit Theorem Goal: Use R to demonstrate sampling

More information

Data Analysis and Solver Plugins for KSpread USER S MANUAL. Tomasz Maliszewski

Data Analysis and Solver Plugins for KSpread USER S MANUAL. Tomasz Maliszewski Data Analysis and Solver Plugins for KSpread USER S MANUAL Tomasz Maliszewski tmaliszewski@wp.pl Table of Content CHAPTER 1: INTRODUCTION... 3 1.1. ABOUT DATA ANALYSIS PLUGIN... 3 1.3. ABOUT SOLVER PLUGIN...

More information

Chapter 6 Normal Probability Distributions

Chapter 6 Normal Probability Distributions Chapter 6 Normal Probability Distributions 6-1 Review and Preview 6-2 The Standard Normal Distribution 6-3 Applications of Normal Distributions 6-4 Sampling Distributions and Estimators 6-5 The Central

More information

Probability Models.S4 Simulating Random Variables

Probability Models.S4 Simulating Random Variables Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard Probability Models.S4 Simulating Random Variables In the fashion of the last several sections, we will often create probability

More information

Processing, representing and interpreting data

Processing, representing and interpreting data Processing, representing and interpreting data 21 CHAPTER 2.1 A head CHAPTER 17 21.1 polygons A diagram can be drawn from grouped discrete data. A diagram looks the same as a bar chart except that the

More information

Introduction to CS databases and statistics in Excel Jacek Wiślicki, Laurent Babout,

Introduction to CS databases and statistics in Excel Jacek Wiślicki, Laurent Babout, One of the applications of MS Excel is data processing and statistical analysis. The following exercises will demonstrate some of these functions. The base files for the exercises is included in http://lbabout.iis.p.lodz.pl/teaching_and_student_projects_files/files/us/lab_04b.zip.

More information

Descriptive Statistics, Standard Deviation and Standard Error

Descriptive Statistics, Standard Deviation and Standard Error AP Biology Calculations: Descriptive Statistics, Standard Deviation and Standard Error SBI4UP The Scientific Method & Experimental Design Scientific method is used to explore observations and answer questions.

More information

Plotting Graphs. Error Bars

Plotting Graphs. Error Bars E Plotting Graphs Construct your graphs in Excel using the method outlined in the Graphing and Error Analysis lab (in the Phys 124/144/130 laboratory manual). Always choose the x-y scatter plot. Number

More information

Ms Nurazrin Jupri. Frequency Distributions

Ms Nurazrin Jupri. Frequency Distributions Frequency Distributions Frequency Distributions After collecting data, the first task for a researcher is to organize and simplify the data so that it is possible to get a general overview of the results.

More information

Data can be in the form of numbers, words, measurements, observations or even just descriptions of things.

Data can be in the form of numbers, words, measurements, observations or even just descriptions of things. + What is Data? Data is a collection of facts. Data can be in the form of numbers, words, measurements, observations or even just descriptions of things. In most cases, data needs to be interpreted and

More information

Chapter 2: The Normal Distribution

Chapter 2: The Normal Distribution Chapter 2: The Normal Distribution 2.1 Density Curves and the Normal Distributions 2.2 Standard Normal Calculations 1 2 Histogram for Strength of Yarn Bobbins 15.60 16.10 16.60 17.10 17.60 18.10 18.60

More information

Working with Microsoft Excel. Touring Excel. Selecting Data. Presented by: Brian Pearson

Working with Microsoft Excel. Touring Excel. Selecting Data. Presented by: Brian Pearson Working with Microsoft Excel Presented by: Brian Pearson Touring Excel Menu bar Name box Formula bar Ask a Question box Standard and Formatting toolbars sharing one row Work Area Status bar Task Pane 2

More information

Learner Expectations UNIT 1: GRAPICAL AND NUMERIC REPRESENTATIONS OF DATA. Sept. Fathom Lab: Distributions and Best Methods of Display

Learner Expectations UNIT 1: GRAPICAL AND NUMERIC REPRESENTATIONS OF DATA. Sept. Fathom Lab: Distributions and Best Methods of Display CURRICULUM MAP TEMPLATE Priority Standards = Approximately 70% Supporting Standards = Approximately 20% Additional Standards = Approximately 10% HONORS PROBABILITY AND STATISTICS Essential Questions &

More information

Survey of Math: Excel Spreadsheet Guide (for Excel 2016) Page 1 of 9

Survey of Math: Excel Spreadsheet Guide (for Excel 2016) Page 1 of 9 Survey of Math: Excel Spreadsheet Guide (for Excel 2016) Page 1 of 9 Contents 1 Introduction to Using Excel Spreadsheets 2 1.1 A Serious Note About Data Security.................................... 2 1.2

More information

6-1 THE STANDARD NORMAL DISTRIBUTION

6-1 THE STANDARD NORMAL DISTRIBUTION 6-1 THE STANDARD NORMAL DISTRIBUTION The major focus of this chapter is the concept of a normal probability distribution, but we begin with a uniform distribution so that we can see the following two very

More information

15 Wyner Statistics Fall 2013

15 Wyner Statistics Fall 2013 15 Wyner Statistics Fall 2013 CHAPTER THREE: CENTRAL TENDENCY AND VARIATION Summary, Terms, and Objectives The two most important aspects of a numerical data set are its central tendencies and its variation.

More information

CHAPTER 2: SAMPLING AND DATA

CHAPTER 2: SAMPLING AND DATA CHAPTER 2: SAMPLING AND DATA This presentation is based on material and graphs from Open Stax and is copyrighted by Open Stax and Georgia Highlands College. OUTLINE 2.1 Stem-and-Leaf Graphs (Stemplots),

More information

Quantitative - One Population

Quantitative - One Population Quantitative - One Population The Quantitative One Population VISA procedures allow the user to perform descriptive and inferential procedures for problems involving one population with quantitative (interval)

More information

Software Reference Sheet: Inserting and Organizing Data in a Spreadsheet

Software Reference Sheet: Inserting and Organizing Data in a Spreadsheet Inserting and formatting text Software Reference Sheet: Inserting and Organizing Data in a Spreadsheet Column headings are very important to include in your spreadsheet so that you can remember what the

More information

Week 7: The normal distribution and sample means

Week 7: The normal distribution and sample means Week 7: The normal distribution and sample means Goals Visualize properties of the normal distribution. Learning the Tools Understand the Central Limit Theorem. Calculate sampling properties of sample

More information

THIS IS NOT REPRESNTATIVE OF CURRENT CLASS MATERIAL. STOR 455 Midterm 1 September 28, 2010

THIS IS NOT REPRESNTATIVE OF CURRENT CLASS MATERIAL. STOR 455 Midterm 1 September 28, 2010 THIS IS NOT REPRESNTATIVE OF CURRENT CLASS MATERIAL STOR 455 Midterm September 8, INSTRUCTIONS: BOTH THE EXAM AND THE BUBBLE SHEET WILL BE COLLECTED. YOU MUST PRINT YOUR NAME AND SIGN THE HONOR PLEDGE

More information

Data Presentation. Figure 1. Hand drawn data sheet

Data Presentation. Figure 1. Hand drawn data sheet Data Presentation The purpose of putting results of experiments into graphs, charts and tables is two-fold. First, it is a visual way to look at the data and see what happened and make interpretations.

More information

Statistics Lecture 6. Looking at data one variable

Statistics Lecture 6. Looking at data one variable Statistics 111 - Lecture 6 Looking at data one variable Chapter 1.1 Moore, McCabe and Craig Probability vs. Statistics Probability 1. We know the distribution of the random variable (Normal, Binomial)

More information

Normal Distribution. 6.4 Applications of Normal Distribution

Normal Distribution. 6.4 Applications of Normal Distribution Normal Distribution 6.4 Applications of Normal Distribution 1 /20 Homework Read Sec 6-4. Discussion question p316 Do p316 probs 1-10, 16-22, 31, 32, 34-37, 39 2 /20 3 /20 Objective Find the probabilities

More information

Numerical Descriptive Measures

Numerical Descriptive Measures Chapter 3 Numerical Descriptive Measures 1 Numerical Descriptive Measures Chapter 3 Measures of Central Tendency and Measures of Dispersion A sample of 40 students at a university was randomly selected,

More information

Chapter 6: DESCRIPTIVE STATISTICS

Chapter 6: DESCRIPTIVE STATISTICS Chapter 6: DESCRIPTIVE STATISTICS Random Sampling Numerical Summaries Stem-n-Leaf plots Histograms, and Box plots Time Sequence Plots Normal Probability Plots Sections 6-1 to 6-5, and 6-7 Random Sampling

More information

Data analysis using Microsoft Excel

Data analysis using Microsoft Excel Introduction to Statistics Statistics may be defined as the science of collection, organization presentation analysis and interpretation of numerical data from the logical analysis. 1.Collection of Data

More information

Sections 4.3 and 4.4

Sections 4.3 and 4.4 Sections 4.3 and 4.4 Timothy Hanson Department of Statistics, University of South Carolina Stat 205: Elementary Statistics for the Biological and Life Sciences 1 / 32 4.3 Areas under normal densities Every

More information

MATH11400 Statistics Homepage

MATH11400 Statistics Homepage MATH11400 Statistics 1 2010 11 Homepage http://www.stats.bris.ac.uk/%7emapjg/teach/stats1/ 1.1 A Framework for Statistical Problems Many statistical problems can be described by a simple framework in which

More information

Starting Excel application

Starting Excel application MICROSOFT EXCEL 1 2 Microsoft Excel: is a special office program used to apply mathematical operations according to reading a cell automatically, just click on it. It is called electronic tables Starting

More information

a. divided by the. 1) Always round!! a) Even if class width comes out to a, go up one.

a. divided by the. 1) Always round!! a) Even if class width comes out to a, go up one. Probability and Statistics Chapter 2 Notes I Section 2-1 A Steps to Constructing Frequency Distributions 1 Determine number of (may be given to you) a Should be between and classes 2 Find the Range a The

More information

Continuous Improvement Toolkit. Normal Distribution. Continuous Improvement Toolkit.

Continuous Improvement Toolkit. Normal Distribution. Continuous Improvement Toolkit. Continuous Improvement Toolkit Normal Distribution The Continuous Improvement Map Managing Risk FMEA Understanding Performance** Check Sheets Data Collection PDPC RAID Log* Risk Analysis* Benchmarking***

More information

Descriptive and Graphical Analysis of the Data

Descriptive and Graphical Analysis of the Data Descriptive and Graphical Analysis of the Data Carlo Favero Favero () Descriptive and Graphical Analysis of the Data 1 / 10 The first database Our first database is made of 39 seasons (from 1979-1980 to

More information

9 POINTS TO A GOOD LINE GRAPH

9 POINTS TO A GOOD LINE GRAPH NAME: PD: DATE: 9 POINTS TO A GOOD LINE GRAPH - 2013 1. Independent Variable on the HORIZONTAL (X) AXIS RANGE DIVIDED BY SPACES and round up to nearest usable number to spread out across the paper. LABELED

More information

Measures of Central Tendency

Measures of Central Tendency Page of 6 Measures of Central Tendency A measure of central tendency is a value used to represent the typical or average value in a data set. The Mean The sum of all data values divided by the number of

More information

Introduction to the workbook and spreadsheet

Introduction to the workbook and spreadsheet Excel Tutorial To make the most of this tutorial I suggest you follow through it while sitting in front of a computer with Microsoft Excel running. This will allow you to try things out as you follow along.

More information

Common Core Vocabulary and Representations

Common Core Vocabulary and Representations Vocabulary Description Representation 2-Column Table A two-column table shows the relationship between two values. 5 Group Columns 5 group columns represent 5 more or 5 less. a ten represented as a 5-group

More information

2.1: Frequency Distributions and Their Graphs

2.1: Frequency Distributions and Their Graphs 2.1: Frequency Distributions and Their Graphs Frequency Distribution - way to display data that has many entries - table that shows classes or intervals of data entries and the number of entries in each

More information

Course of study- Algebra Introduction: Algebra 1-2 is a course offered in the Mathematics Department. The course will be primarily taken by

Course of study- Algebra Introduction: Algebra 1-2 is a course offered in the Mathematics Department. The course will be primarily taken by Course of study- Algebra 1-2 1. Introduction: Algebra 1-2 is a course offered in the Mathematics Department. The course will be primarily taken by students in Grades 9 and 10, but since all students must

More information

1. What specialist uses information obtained from bones to help police solve crimes?

1. What specialist uses information obtained from bones to help police solve crimes? Mathematics: Modeling Our World Unit 4: PREDICTION HANDOUT VIDEO VIEWING GUIDE H4.1 1. What specialist uses information obtained from bones to help police solve crimes? 2.What are some things that can

More information

COMPUTING AND DATA ANALYSIS WITH EXCEL. Numerical integration techniques

COMPUTING AND DATA ANALYSIS WITH EXCEL. Numerical integration techniques COMPUTING AND DATA ANALYSIS WITH EXCEL Numerical integration techniques Outline 1 Quadrature in one dimension Mid-point method Trapezium method Simpson s methods Uniform random number generation in Excel,

More information

Learning Objectives. Continuous Random Variables & The Normal Probability Distribution. Continuous Random Variable

Learning Objectives. Continuous Random Variables & The Normal Probability Distribution. Continuous Random Variable Learning Objectives Continuous Random Variables & The Normal Probability Distribution 1. Understand characteristics about continuous random variables and probability distributions 2. Understand the uniform

More information

Name: Date: Period: Chapter 2. Section 1: Describing Location in a Distribution

Name: Date: Period: Chapter 2. Section 1: Describing Location in a Distribution Name: Date: Period: Chapter 2 Section 1: Describing Location in a Distribution Suppose you earned an 86 on a statistics quiz. The question is: should you be satisfied with this score? What if it is the

More information

Z-TEST / Z-STATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown

Z-TEST / Z-STATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown Z-TEST / Z-STATISTIC: used to test hypotheses about µ when the population standard deviation is known and population distribution is normal or sample size is large T-TEST / T-STATISTIC: used to test hypotheses

More information