ALE and AMR Mesh Refinement Techniques for Multi-material Hydrodynamics Problems

Size: px
Start display at page:

Download "ALE and AMR Mesh Refinement Techniques for Multi-material Hydrodynamics Problems"

Transcription

1 ALE and AMR Mesh Refinement Techniques for Multi-material Hydrodynamics Problems A. J. Barlow, AWE. ICFD Workshop on Mesh Refinement Techniques 7th December 2005

2 Acknowledgements Thanks to Chris Powell, Wayne Gaudin, Alan Dawes, Graham Ball, Dave Youngs and Andy Giles who have all supplied results of simulations and details of some of the methods they use.

3 Introduction Outline of talk Hydrodynamics problems The need for high resolution simulations Parallel computing v mesh refinement techniques Mesh movement v mesh topology change Mesh refinement techniques for Hydrodynamics problems ALE Eulerian AMR ALE/AMR Conclusions

4 Hydrodynamics problems AWE needs to be able to model shock hydrodynamics problems which involve solid materials under high strain rates generated by either high explosives or high power lasers. The numerical methods used need to be robust for high material deformation, capable of accurately modeling shocks and material interfaces, and preserve cylindrical symmetry. Mesh refinement techniques have been found to be important in delivering this capability. The main part of this talk will focus on these methods and how well they perform for hydrodynamics problems.

5 The need for high resolution Greater reliance is now being placed on simulation. Reduce cost experiments, some experiments can no longer be performed, to gain greater insight of physics involved etc This requires more predictive simulation codes and material models. The codes must be capable of performing simulations at significantly higher mesh resolution, both to improve accuracy and to fully exploit new material models. High resolution direct numerical simulations are also being used increasingly as part of a multi-scale modeling approach to develop more predictive material models for these simulation codes.

6 2 phase flow - Turbulence & Mixing 2D shock tube experiment Richtmyer - Meshkov instability at perturbed air/sf 6 interface Experiment 3D Calculation 2D Model

7 2 phase flow - turbulence & mixing 3D LES results - evolution of the mixing layer 1.6ms 2.5ms

8 Dynamic Friction 0.5 mm Deflection Micrograph 1 mm Simulation z z Plastic deformation confined to a thin layer at interface Thermal softening exceeds work hardening: strength decays

9 Dynamic Friction 0.5 mm Deflection Micrograph 2 mm Simulation z z Plastic deformation penetrates more deeply into aluminium Shear stress and elastic deformation also increase

10 Fracture Damage - 5 mm thick shell Plastic strain - 5 mm thick shell

11 Parallel v Mesh refinement Parallel computing Needs access to large HPC platform! Results identical however many processors are used. Significant gains for explicit algorithms provided sufficient work to do. Implicit algorithms required for some multi-physics simulations can limit parallel scalability. Mesh Refinement Techniques Significant gains possible without need for large HPC platform. Need to demonstrate results agree with uniform fine mesh simulations. Can limit parallel scalability. Both implicit and explicit algorithms benefit.

12 Parallel computing (1) Example: Freund problem on PEGASUS (3D SALE with slide)

13 Parallel computing (2) Example: Freund problem on HYDRA (3D Eulerian) Speed up 1024 Ideal 54M M 1 850k Processors

14 Mesh movement v mesh topology change Mesh movement Fixed mesh topology. Nodes moved to to refine some areas of problem at the expense of other parts of the problem. Easy to parallelise. No impact on parallel performance. Increase in mesh resolution limited (penalty method). Can degrade mesh quality and produce robustness problems. Mesh topology change Mesh topology changed by either changing mesh connectivity or adding and removing zones as required to focus resolution where and when it is required. Mesh resolution increase is effectively unlimited. Parallel performance can be degraded due to more complex data structures required and load balancing problems.

15 Arbitrary Lagrangian Eulerian (ALE) (1) CORVUS 2D multi-material ALE code Flexible multi-block unstructured mesh Distributed parallel Radiation hydro code Staggered grid Lagrange plus remap scheme. Predictor corrector time discretization. Finite element spacial discretization for Lagrangian step. Monotonic artificial viscosity.

16 Arbitrary Lagrangian Eulerian (ALE) (2) Two types of interface treatment slide lines and a multimaterial cell or VOF based treatment. Van Leer advection in volume coordinates for single material cells. Improved SLIC interface reconstruction method. Mesh adapted by moving nodes to improve mesh quality at the end of the Lagrangian step.

17 Mesh Movement Algorithms (1) Mesh Movement Philosophy Mesh movement philosophy applied to most applications is to strive to move the mesh with as close to Lagrangian mesh motion as possible. This naturally follows most flow features of interest such as shocks, material interfaces and steep gradients. Allows users to focus zoning in materials of interest. Mesh relaxation is then used in regions of high material deformation to improve mesh quality.

18 Mesh Movement Algorithms (2) The user defines how the mesh will move by applying a mesh movement algorithm to each mesh block. Winslow s equipotential relaxation method is used in most cases. Constraints can also be applied which typically keep a node Lagrangian until some condition is reached e.g. element quality criterian or physical condition is reached in surrounding elements. Separate movement algorithms are applied to nodes along sliding material boundaries.

19 Mesh Movement (1) Initial mesh for ICF capsule calculation

20 Mesh Movement (2) ICF capsule implosion with symmetric drive at 16.8 ns

21 Mesh Movement (3) ICF capsule implosion with asymmetric drive at 16.8 ns

22 Mesh Movement (4) Tantalum or aluminium foil Steel Aluminium Steel Dynamic Friction Experiment

23 Mesh Movement (5)

24 Mesh Movement (6) Dynamic Friction Experiment at s

25 Weighted Mesh movement Mesh movement can also be used to pull resolution into features of high importance. In CORVUS this is done by apply weights to materials or regions of high importance or applying weights to a particular flow variable such as density. The weights are applied to all the nodes within this material or region. A buffer zone is usually created by propagating the weights out a few zones then averaging the weights with neighbouring elements. This typically works well in delivering a doubling in resolution. But more extreme changes in resolution can lead to robustness problems.

26 Material weighted Mesh movement (1) Initial mesh for UK 10 Shaped Charge calculation

27 Material weighted Mesh movement (2) ALE calculation of UK 10 Shaped charge at s

28 Material weighted Mesh movement (3) Example - CORVUS simulation of projectile puncturing a water-filled container. Mesh deforms, but less than in Lagrangian case.

29 Density weighted mesh movement Example - CORVUS simulation of laser-driven flow

30 Parallel ALE mesh refinement Good parallel performance obtained for ALE mesh motion. Multi-material ALE calculation running to 4002s on a element mesh (1mm mesh resolution). Takes 16 hours CPU time on BlueOak to complete serial. Takes 40 CPU minutes to complete on BlueOak using 30 processors.

31 Dynamic friction recovery experiments FN6a - Explosively Driven Shear Measure subsurface deformation HE Aluminium Stainless Steel

32 Parallel ALE with anisotropic mesh refinement 60 2m calculations of FN6 ( elements) takes 18.5 hours to run serial, but can now be completed in 1438 CPU seconds using 60 processors on Blue OAK.

33 Parallel ALE with anisotropic mesh refinement mm background mesh with 4:1 refinement provides 60 2m resolution normal to the interface.

34 Eulerian Adaptive Mesh Refinement (AMR) (1) SHAMROCK 2D multi-material Eulerian AMR code Distributed parallel Builds on block patch AMR strategy developed by Berger and Quirk Staggered grid Lagrange plus remap scheme with VOF multi-material cell scheme and Youngs interface reconstruction and van Leer advection Radiation diffusion Solve for each patch iterate to converge temperatures on patch boundaries

35 Eulerian AMR (2) Error estimators used to drive mesh refinement Shocks and material interface kept at finest level initially. Now have option to derefine material interfaces later in problem. Artificial viscosity used to detect shock, second derivative for density and internal energy, burn fraction for reactive flow, pressure relative to Pcj for program burn. Significant gains in serial (~4-6 speed up) Parallel scalability is degraded by AMR Example - SHAMROCK AMR mesh showing patches added at material interfaces (initial configuration)

36 Eulerian AMR schemes (3) T=0 2s T=19 2s Example: shaped charge simulated by SHAMROCK T=100 2s

37 Eulerian AMR schemes (4) Example: laser-driven AGEX 2 experiment simulated on SHAMROCK (2D axisymmetric AMR) Shock wave with dynamic mesh adaption

38 ALE/AMR (1) ALE mesh movement techniques clearly provide a degree of mesh refinement. However, this is limited because the mesh topology is fixed and if it is used to agressively mesh quality and robustness will be reduced. A hybrid ALE/AMR method is under development for CORVUS to address this issue. Currently this is compatible with HE burn, slide, elasto-plastic flow and SALE.

39 ALE/AMR (2) A cell by cell refinement strategy has been adopted in contrast to the block patch approach that has been employed for AWE s Eulerian AMR code. Efficient data structures based on existing connectivity arrays. Disjoint nodes used at refinement boundaries for Lagrangian step and in applying mesh relaxation. Only solve on finest level. Advection uses ghosts to catch fluxes from fine to coarse.

40 ALE/AMR (3) Freund problem calculated with ALE/AMR at s.

41 ALE/AMR (4) Freund problem calculated with ALE/AMR at s.

42 Conclusions Mesh refinement techniques are clearly vital in moving towards more predictive simulation codes for simulating shock hydrodynamics problems. Some of the relative merits of the different mesh refinement techniques has been discussed. Recent progress at AWE in developing ALE mesh movement techniques and adaptive mesh refinement techniques and recent work to produce a hydrid code which exploits both techniques. The importance of being able to parallelise codes which exploit these techniques without loosing parallel efficiency has also been discussed.

Challenges and recent progress in developing numerical methods for multi-material ALE Hydrocodes

Challenges and recent progress in developing numerical methods for multi-material ALE Hydrocodes Challenges and recent progress in developing numerical methods for multi-material ALE Hydrocodes ICFD 25 year Anniversary Conference 15-16 th September 2008 Oxford University Andrew Barlow AWE Introduction

More information

Metafor FE Software. 2. Operator split. 4. Rezoning methods 5. Contact with friction

Metafor FE Software. 2. Operator split. 4. Rezoning methods 5. Contact with friction ALE simulations ua sus using Metafor eao 1. Introduction 2. Operator split 3. Convection schemes 4. Rezoning methods 5. Contact with friction 1 Introduction EULERIAN FORMALISM Undistorted mesh Ideal for

More information

A cell by cell anisotropic adaptive mesh Arbitrary Lagrangian Eulerian method for the numerical solution of the Euler equations. J. M.

A cell by cell anisotropic adaptive mesh Arbitrary Lagrangian Eulerian method for the numerical solution of the Euler equations. J. M. THE UNIVERSITY OF READING DEPARTMENT OF MATHEMATICS A cell by cell anisotropic adaptive mesh Arbitrary Lagrangian Eulerian method for the numerical solution of the Euler equations. J. M. Morrell Thesis

More information

Lagrangian methods and Smoothed Particle Hydrodynamics (SPH) Computation in Astrophysics Seminar (Spring 2006) L. J. Dursi

Lagrangian methods and Smoothed Particle Hydrodynamics (SPH) Computation in Astrophysics Seminar (Spring 2006) L. J. Dursi Lagrangian methods and Smoothed Particle Hydrodynamics (SPH) Eulerian Grid Methods The methods covered so far in this course use an Eulerian grid: Prescribed coordinates In `lab frame' Fluid elements flow

More information

LS-DYNA 980 : Recent Developments, Application Areas and Validation Process of the Incompressible fluid solver (ICFD) in LS-DYNA.

LS-DYNA 980 : Recent Developments, Application Areas and Validation Process of the Incompressible fluid solver (ICFD) in LS-DYNA. 12 th International LS-DYNA Users Conference FSI/ALE(1) LS-DYNA 980 : Recent Developments, Application Areas and Validation Process of the Incompressible fluid solver (ICFD) in LS-DYNA Part 1 Facundo Del

More information

Modelling of Impact on a Fuel Tank Using Smoothed Particle Hydrodynamics

Modelling of Impact on a Fuel Tank Using Smoothed Particle Hydrodynamics Modelling of Impact on a Fuel Tank Using Smoothed Particle Hydrodynamics R. Vignjevic a, T. De Vuyst a, J. Campbell a, N. Bourne b School of Engineering, Cranfield University, Bedfordshire, MK43 0AL, UK.

More information

Sliding and multi-fluid velocities in Staggered Mesh Eulerian and MMALE codes

Sliding and multi-fluid velocities in Staggered Mesh Eulerian and MMALE codes Sliding and multi-fluid velocities in Staggered Mesh Eulerian and MMALE codes Gabi Luttwak 1 1 Rafael, P.O. Box 2250, Haifa 31021, Israel The Velocity in Eulerian and MMALE Codes Most Eulerian and MMALE

More information

Example 24 Spring-back

Example 24 Spring-back Example 24 Spring-back Summary The spring-back simulation of sheet metal bent into a hat-shape is studied. The problem is one of the famous tests from the Numisheet 93. As spring-back is generally a quasi-static

More information

SIMULATION OF A DETONATION CHAMBER TEST CASE

SIMULATION OF A DETONATION CHAMBER TEST CASE SIMULATION OF A DETONATION CHAMBER TEST CASE Daniel Hilding Engineering Research Nordic AB Garnisonen I4, Byggnad 5 SE-582 10 Linköping www.erab.se daniel.hilding@erab.se Abstract The purpose of a detonation

More information

A Novel Approach to High Speed Collision

A Novel Approach to High Speed Collision A Novel Approach to High Speed Collision Avril Slone University of Greenwich Motivation High Speed Impact Currently a very active research area. Generic projectile- target collision 11 th September 2001.

More information

Applications of ICFD /SPH Solvers by LS-DYNA to Solve Water Splashing Impact to Automobile Body. Abstract

Applications of ICFD /SPH Solvers by LS-DYNA to Solve Water Splashing Impact to Automobile Body. Abstract Applications of ICFD /SPH Solvers by LS-DYNA to Solve Water Splashing Impact to Automobile Body George Wang (1 ), Kevin Gardner (3), Eric DeHoff (1), Facundo del Pin (2), Inaki Caldichoury (2), Edouard

More information

Example 13 - Shock Tube

Example 13 - Shock Tube Example 13 - Shock Tube Summary This famous experiment is interesting for observing the shock-wave propagation. Moreover, this case uses the representation of perfect gas and compares the different formulations:

More information

Heat generation analysis of a rubber wheel using the steady-state transport analysis capability in Abaqus

Heat generation analysis of a rubber wheel using the steady-state transport analysis capability in Abaqus Heat generation analysis of a rubber wheel using the steady-state transport analysis capability in Abaqus R. K. Luo 1, X. P. Wu 2 and A. Spinks 1 1 Trelleborg IAVS, 1 Hoods Close, Leicester, UK, LE4 2BN

More information

CTH: A Software Family for Multi-Dimensional Shock Physics Analysis E. S. Hertel, Jr., R. L. Bell, M. G. Elrick, A. V. Farnsworth, G. I. Kerley, J.

CTH: A Software Family for Multi-Dimensional Shock Physics Analysis E. S. Hertel, Jr., R. L. Bell, M. G. Elrick, A. V. Farnsworth, G. I. Kerley, J. CTH: A Software Family for Multi-Dimensional Shock Physics Analysis E. S. Hertel, Jr., R. L. Bell, M. G. Elrick, A. V. Farnsworth, G. I. Kerley, J. M. McGlaun, S. V. Petney, S. A. Silling, P. A. Taylor,

More information

Vector Image Polygon (VIP) limiters in ALE Hydrodynamics

Vector Image Polygon (VIP) limiters in ALE Hydrodynamics New Models and Hydrocodes, Paris, France,24-28 May 2010 Vector Image Polygon (VIP) limiters in ALE Hydrodynamics 6 4 8 3 5 2 79 1 2 1 1 1 Gabi Luttwak 1 and Joseph Falcovitz 2 1 Rafael, P.O. Box 2250,

More information

Bubble Dynamics using Free Surfaces in a VOF framework

Bubble Dynamics using Free Surfaces in a VOF framework Bubble Dynamics using Free Surfaces in a VOF framework Sevilla Meeting: Numerical Challenges in two-phase flows 27 October 2014 Léon MALAN Supervisor: Prof. Stéphane ZALESKI 1 Contents Introduction: Simulation

More information

Contents Metal Forming and Machining Processes Review of Stress, Linear Strain and Elastic Stress-Strain Relations 3 Classical Theory of Plasticity

Contents Metal Forming and Machining Processes Review of Stress, Linear Strain and Elastic Stress-Strain Relations 3 Classical Theory of Plasticity Contents 1 Metal Forming and Machining Processes... 1 1.1 Introduction.. 1 1.2 Metal Forming...... 2 1.2.1 Bulk Metal Forming.... 2 1.2.2 Sheet Metal Forming Processes... 17 1.3 Machining.. 23 1.3.1 Turning......

More information

Recent Advances on Higher Order 27-node Hexahedral Element in LS-DYNA

Recent Advances on Higher Order 27-node Hexahedral Element in LS-DYNA 14 th International LS-DYNA Users Conference Session: Simulation Recent Advances on Higher Order 27-node Hexahedral Element in LS-DYNA Hailong Teng Livermore Software Technology Corp. Abstract This paper

More information

Modeling Strategies for Dynamic Finite Element Cask Analyses

Modeling Strategies for Dynamic Finite Element Cask Analyses Session A Package Analysis: Structural Analysis - Modeling Modeling Strategies for Dynamic Finite Element Cask Analyses Uwe Zencker, Günter Wieser, Linan Qiao, Christian Protz BAM Federal Institute for

More information

Using three-dimensional CURVIC contact models to predict stress concentration effects in an axisymmetric model

Using three-dimensional CURVIC contact models to predict stress concentration effects in an axisymmetric model Boundary Elements XXVII 245 Using three-dimensional CURVIC contact models to predict stress concentration effects in an axisymmetric model J. J. Rencis & S. R. Pisani Department of Mechanical Engineering,

More information

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 First-Order Hyperbolic System Method If you have a CFD book for hyperbolic problems, you have a CFD book for all problems.

More information

VALIDATE SIMULATION TECHNIQUES OF A MOBILE EXPLOSIVE CONTAINMENT VESSEL

VALIDATE SIMULATION TECHNIQUES OF A MOBILE EXPLOSIVE CONTAINMENT VESSEL VALIDATE SIMULATION TECHNIQUES OF A MOBILE EXPLOSIVE CONTAINMENT VESSEL David Karlsson DYNAmore Nordic AB, Sweden KEYWORDS Hexa, Map, Explosive, LS-DYNA ABSTRACT A Mobile Explosive Containment Vessel (MECV)

More information

COMPUTER AIDED ENGINEERING. Part-1

COMPUTER AIDED ENGINEERING. Part-1 COMPUTER AIDED ENGINEERING Course no. 7962 Finite Element Modelling and Simulation Finite Element Modelling and Simulation Part-1 Modeling & Simulation System A system exists and operates in time and space.

More information

A mass-conservative version of the semi- Lagrangian semi-implicit HIRLAM using Lagrangian vertical coordinates

A mass-conservative version of the semi- Lagrangian semi-implicit HIRLAM using Lagrangian vertical coordinates A mass-conservative version of the semi- Lagrangian semi-implicit HIRLAM using Lagrangian vertical coordinates Peter Hjort Lauritzen Atmospheric Modeling & Predictability Section National Center for Atmospheric

More information

This tutorial illustrates how to set up and solve a problem involving solidification. This tutorial will demonstrate how to do the following:

This tutorial illustrates how to set up and solve a problem involving solidification. This tutorial will demonstrate how to do the following: Tutorial 22. Modeling Solidification Introduction This tutorial illustrates how to set up and solve a problem involving solidification. This tutorial will demonstrate how to do the following: Define a

More information

SPH: Why and what for?

SPH: Why and what for? SPH: Why and what for? 4 th SPHERIC training day David Le Touzé, Fluid Mechanics Laboratory, Ecole Centrale de Nantes / CNRS SPH What for and why? How it works? Why not for everything? Duality of SPH SPH

More information

Presented by: Terry L. Wilmarth

Presented by: Terry L. Wilmarth C h a l l e n g e s i n D y n a m i c a l l y E v o l v i n g M e s h e s f o r L a r g e - S c a l e S i m u l a t i o n s Presented by: Terry L. Wilmarth Parallel Programming Laboratory and Center for

More information

midas NFX 2017R1 Release Note

midas NFX 2017R1 Release Note Total Solution for True Analysis-driven Design midas NFX 2017R1 Release Note 1 midas NFX R E L E A S E N O T E 2 0 1 7 R 1 Major Improvements Midas NFX is an integrated finite element analysis program

More information

Print Depth Prediction in Hot Forming Process with a Reconfigurable Die

Print Depth Prediction in Hot Forming Process with a Reconfigurable Die Print Depth Prediction in Hot Forming Process with a Reconfigurable Die Jonathan Boisvert* Thibaut Bellizzi* Henri Champliaud Patrice Seers École de Technologie supérieure, Montréal, Québec *Master students,

More information

Abstract. Die Geometry. Introduction. Mesh Partitioning Technique for Coextrusion Simulation

Abstract. Die Geometry. Introduction. Mesh Partitioning Technique for Coextrusion Simulation OPTIMIZATION OF A PROFILE COEXTRUSION DIE USING A THREE-DIMENSIONAL FLOW SIMULATION SOFTWARE Kim Ryckebosh 1 and Mahesh Gupta 2, 3 1. Deceuninck nv, BE-8830 Hooglede-Gits, Belgium 2. Michigan Technological

More information

Multiphase flow metrology in oil and gas production: Case study of multiphase flow in horizontal tube

Multiphase flow metrology in oil and gas production: Case study of multiphase flow in horizontal tube Multiphase flow metrology in oil and gas production: Case study of multiphase flow in horizontal tube Deliverable 5.1.2 of Work Package WP5 (Creating Impact) Authors: Stanislav Knotek Czech Metrology Institute

More information

ALE and Fluid-Structure Interaction in LS-DYNA March 2004

ALE and Fluid-Structure Interaction in LS-DYNA March 2004 ALE and Fluid-Structure Interaction in LS-DYNA March 2004 Workshop Models 1. Taylor bar impact 2. One-dimensional advection test 3. Channel 4. Underwater explosion 5. Bar impacting water surface 6. Sloshing

More information

Engineering Analysis

Engineering Analysis Engineering Analysis with SOLIDWORKS Simulation 2018 Paul M. Kurowski SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit the following websites

More information

SIMULATION CAPABILITIES IN CREO

SIMULATION CAPABILITIES IN CREO SIMULATION CAPABILITIES IN CREO Enhance Your Product Design with Simulation & Using digital prototypes to understand how your designs perform in real-world conditions is vital to your product development

More information

ENHANCED FRAGMENTATION MODELING

ENHANCED FRAGMENTATION MODELING ENHANCED FRAGMENTATION MODELING Peter Rottinger*, Richard Fong, William Ng U.S. ARMY ARDEC Picatinny Arsenal, NJ, 07806 ABSTRACT Enhancing the fragmentation capability of current and future projectiles

More information

Simulating Underbelly Blast Events using Abaqus/Explicit - CEL

Simulating Underbelly Blast Events using Abaqus/Explicit - CEL U.S. Army Research, Development and Engineering Command Simulating Underbelly Blast Events using Abaqus/Explicit - CEL J. Jablonski, P. Carlucci (U.S. Army ARDEC) R. Thyagarajan (U.S. Army TARDEC) B. Nandi,

More information

"The real world is nonlinear"... 7 main Advantages using Abaqus

The real world is nonlinear... 7 main Advantages using Abaqus "The real world is nonlinear"... 7 main Advantages using Abaqus FEA SERVICES LLC 6000 FAIRVIEW ROAD, SUITE 1200 CHARLOTTE, NC 28210 704.552.3841 WWW.FEASERVICES.NET AN OFFICIAL DASSAULT SYSTÈMES VALUE

More information

14 Dec 94. Hydrocode Micro-Model Concept for Multi-Component Flow in Sediments Hans U. Mair

14 Dec 94. Hydrocode Micro-Model Concept for Multi-Component Flow in Sediments Hans U. Mair Hydrocode Micro-Model Concept for Multi-Component Flow in Sediments Hans U. Mair mairh@asme.org Background Hydrocodes are Computational Mechanics tools that simulate the compressible dynamics (i.e., shock

More information

EXPERIMENTAL VALIDATION OF TURNING PROCESS USING 3D FINITE ELEMENT SIMULATIONS

EXPERIMENTAL VALIDATION OF TURNING PROCESS USING 3D FINITE ELEMENT SIMULATIONS CHAPTER-5 EXPERIMENTAL VALIDATION OF TURNING PROCESS USING 3D FINITE ELEMENT SIMULATIONS This chapter presents the three-dimensional (3D) finite element analysis (FEA) to calculate the workpiece tool wear

More information

An Embedded Boundary Method with Adaptive Mesh Refinements

An Embedded Boundary Method with Adaptive Mesh Refinements An Embedded Boundary Method with Adaptive Mesh Refinements Marcos Vanella and Elias Balaras 8 th World Congress on Computational Mechanics, WCCM8 5 th European Congress on Computational Methods in Applied

More information

Computational Astrophysics 5 Higher-order and AMR schemes

Computational Astrophysics 5 Higher-order and AMR schemes Computational Astrophysics 5 Higher-order and AMR schemes Oscar Agertz Outline - The Godunov Method - Second-order scheme with MUSCL - Slope limiters and TVD schemes - Characteristics tracing and 2D slopes.

More information

Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications

Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications Per-Olof Persson (persson@mit.edu) Department of Mathematics Massachusetts Institute of Technology http://www.mit.edu/

More information

A METHOD TO INCREASE THE TIP VELOCITY OF A SHAPED CHARGE JET. William P. Walters and Daniel R. Scheffler

A METHOD TO INCREASE THE TIP VELOCITY OF A SHAPED CHARGE JET. William P. Walters and Daniel R. Scheffler 23 RD INTERNATIONAL SYMPOSIUM ON BALLISTICS TARRAGONA, SPAIN 16-20 APRIL 2007 A METHOD TO INCREASE THE TIP VELOCITY OF A SHAPED CHARGE JET William P. Walters and Daniel R. Scheffler US Army Research Laboratory,

More information

Three Dimensional Numerical Simulation of Turbulent Flow Over Spillways

Three Dimensional Numerical Simulation of Turbulent Flow Over Spillways Three Dimensional Numerical Simulation of Turbulent Flow Over Spillways Latif Bouhadji ASL-AQFlow Inc., Sidney, British Columbia, Canada Email: lbouhadji@aslenv.com ABSTRACT Turbulent flows over a spillway

More information

Offshore Platform Fluid Structure Interaction (FSI) Simulation

Offshore Platform Fluid Structure Interaction (FSI) Simulation Offshore Platform Fluid Structure Interaction (FSI) Simulation Ali Marzaban, CD-adapco Murthy Lakshmiraju, CD-adapco Nigel Richardson, CD-adapco Mike Henneke, CD-adapco Guangyu Wu, Chevron Pedro M. Vargas,

More information

A cell-centered Arbitrary Lagrangian Eulerian method for two-dimensional multimaterial problems

A cell-centered Arbitrary Lagrangian Eulerian method for two-dimensional multimaterial problems A cell-centered Arbitrary Lagrangian Eulerian method for two-dimensional multimaterial problems Application to Inertial Confinement Fusion modeling in the direct drive context Pierre-Henri Maire, maire@celia.u-bordeaux1.fr

More information

Overview and Recent Developments of Dynamic Mesh Capabilities

Overview and Recent Developments of Dynamic Mesh Capabilities Overview and Recent Developments of Dynamic Mesh Capabilities Henrik Rusche and Hrvoje Jasak h.rusche@wikki-gmbh.de and h.jasak@wikki.co.uk Wikki Gmbh, Germany Wikki Ltd, United Kingdom 6th OpenFOAM Workshop,

More information

Simulation of Fuel Sloshing Comparative Study

Simulation of Fuel Sloshing Comparative Study 3. LS-DYNA Anwenderforum, Bamberg 2004 Netfreie Verfahren Simulation of Fuel Sloshing Comparative Study Matej Vesenjak 1, Heiner Müllerschön 2, Alexander Hummel 3, Zoran Ren 1 1 University of Maribor,

More information

Types of Idealizations. Idealizations. Cylindrical Shaped Part. Cyclic Symmetry. 3D Shell Model. Axisymmetric

Types of Idealizations. Idealizations. Cylindrical Shaped Part. Cyclic Symmetry. 3D Shell Model. Axisymmetric Types of Idealizations Idealizations Selecting the model type 3D Solid Plane Stress Plane Strain 3D Shell Beam Cyclic Symmetry Cylindrical Shaped Part Interior Pressure Load 3D model can be used to model

More information

ALE METHODS FOR DETERMINING STATIONARY SOLUTIONS OF METAL FORMING PROCESSES

ALE METHODS FOR DETERMINING STATIONARY SOLUTIONS OF METAL FORMING PROCESSES European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2000 Barcelona, 11-14 September 2000 c ECCOMAS ALE METHODS FOR DETERMINING STATIONARY SOLUTIONS OF METAL FORMING PROCESSES

More information

Large scale CFD computations at CEA

Large scale CFD computations at CEA 1 Large scale CFD computations at CEA G. Meurant a,h.jourdren a and B. Meltz a a CEA/DIF, PB 12, 91680 Bruyères le Châtel, France This paper describes some large scale Computational Fluid Dynamics computations

More information

CHAPTER-10 DYNAMIC SIMULATION USING LS-DYNA

CHAPTER-10 DYNAMIC SIMULATION USING LS-DYNA DYNAMIC SIMULATION USING LS-DYNA CHAPTER-10 10.1 Introduction In the past few decades, the Finite Element Method (FEM) has been developed into a key indispensable technology in the modeling and simulation

More information

A study of Jumper FIV due to multiphase internal flow: understanding life-cycle fatigue. Alan Mueller & Oleg Voronkov

A study of Jumper FIV due to multiphase internal flow: understanding life-cycle fatigue. Alan Mueller & Oleg Voronkov A study of Jumper FIV due to multiphase internal flow: understanding life-cycle fatigue Alan Mueller & Oleg Voronkov Case description Main structural dimensions [1]: deformable jumper [2] in Mixture on

More information

Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders

Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders Objective: The objective of this laboratory is to introduce how to use FLUENT to solve both transient and natural convection problems.

More information

Application of Finite Volume Method for Structural Analysis

Application of Finite Volume Method for Structural Analysis Application of Finite Volume Method for Structural Analysis Saeed-Reza Sabbagh-Yazdi and Milad Bayatlou Associate Professor, Civil Engineering Department of KNToosi University of Technology, PostGraduate

More information

High performance computing using AUTODYN-3D

High performance computing using AUTODYN-3D High performance computing using AUTODYN-3D M. S. Cowler', O. La'adan\ T. Ohta^ ' Century Dynamics Incorporated, USA. Hebrew University ofjerusalem, Israel. * CRC Research Institute Incorporated, Japan.

More information

Numerical Methods. (Additional Notes from Talks by PFH)

Numerical Methods. (Additional Notes from Talks by PFH) Numerical Methods (Additional Notes from Talks by PFH) SPH Challenge: POPULAR METHODS FOR HYDRODYNAMICS HAVE PROBLEMS Lucy 77, Gingold & Monaghan 77 Reviews by: Springel 11, Price 12 Smoothed-Particle

More information

Coupled analysis of material flow and die deflection in direct aluminum extrusion

Coupled analysis of material flow and die deflection in direct aluminum extrusion Coupled analysis of material flow and die deflection in direct aluminum extrusion W. Assaad and H.J.M.Geijselaers Materials innovation institute, The Netherlands w.assaad@m2i.nl Faculty of Engineering

More information

Parallel Algorithms: Adaptive Mesh Refinement (AMR) method and its implementation

Parallel Algorithms: Adaptive Mesh Refinement (AMR) method and its implementation Parallel Algorithms: Adaptive Mesh Refinement (AMR) method and its implementation Massimiliano Guarrasi m.guarrasi@cineca.it Super Computing Applications and Innovation Department AMR - Introduction Solving

More information

Fluid-Structure Interaction in LS-DYNA: Industrial Applications

Fluid-Structure Interaction in LS-DYNA: Industrial Applications 4 th European LS-DYNA Users Conference Aerospace / Fluid-Struct. Inter. Fluid-Structure Interaction in LS-DYNA: Industrial Applications M hamed Souli Universite des Sciences et Technologie de Lille Laboratoire

More information

Principal Roll Structure Design Using Non-Linear Implicit Optimisation in Radioss

Principal Roll Structure Design Using Non-Linear Implicit Optimisation in Radioss Principal Roll Structure Design Using Non-Linear Implicit Optimisation in Radioss David Mylett, Dr. Simon Gardner Force India Formula One Team Ltd. Dadford Road, Silverstone, Northamptonshire, NN12 8TJ,

More information

Creo Simulate 3.0 Tutorial

Creo Simulate 3.0 Tutorial Creo Simulate 3.0 Tutorial Structure and Thermal Roger Toogood, Ph.D., P. Eng. SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit the following

More information

SIMULATION OF FLOW AROUND KCS-HULL

SIMULATION OF FLOW AROUND KCS-HULL SIMULATION OF FLOW AROUND KCS-HULL Sven Enger (CD-adapco, Germany) Milovan Perić (CD-adapco, Germany) Robinson Perić (University of Erlangen-Nürnberg, Germany) 1.SUMMARY The paper describes results of

More information

Advances in 3-D Forging Process Modeling

Advances in 3-D Forging Process Modeling Advances in 3-D Forging Process Modeling W J Slagter, C J L Florie and A C J Venis MSC.Software Corporation, Groningenweg 6, 2803 PV Gouda, The Netherlands MSC/SuperForge is a new code developed for performing

More information

WAVE PATTERNS, WAVE INDUCED FORCES AND MOMENTS FOR A GRAVITY BASED STRUCTURE PREDICTED USING CFD

WAVE PATTERNS, WAVE INDUCED FORCES AND MOMENTS FOR A GRAVITY BASED STRUCTURE PREDICTED USING CFD Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering OMAE2011 June 19-24, 2011, Rotterdam, The Netherlands OMAE2011-49593 WAVE PATTERNS, WAVE INDUCED FORCES

More information

GALAXY ADVANCED ENGINEERING, INC. P.O. BOX 614 BURLINGAME, CALIFORNIA Tel: (650) Fax: (650)

GALAXY ADVANCED ENGINEERING, INC. P.O. BOX 614 BURLINGAME, CALIFORNIA Tel: (650) Fax: (650) GALAXY ADVANCED ENGINEERING, INC. P.O. BOX 614 BURLINGAME, CALIFORNIA 94011 Tel: (650) 740-3244 Fax: (650) 347-4234 E-mail: bahmanz@aol.com PUFF-TFT/PC A Material Response Computer Code for PC Computer

More information

Using ANSYS and CFX to Model Aluminum Reduction Cell since1984 and Beyond. Dr. Marc Dupuis

Using ANSYS and CFX to Model Aluminum Reduction Cell since1984 and Beyond. Dr. Marc Dupuis Using ANSYS and CFX to Model Aluminum Reduction Cell since1984 and Beyond Dr. Marc Dupuis 1980-84, 2D potroom ventilation model Physical model 1980-84, 2D potroom ventilation model Experimental results

More information

Shape of Things to Come: Next-Gen Physics Deep Dive

Shape of Things to Come: Next-Gen Physics Deep Dive Shape of Things to Come: Next-Gen Physics Deep Dive Jean Pierre Bordes NVIDIA Corporation Free PhysX on CUDA PhysX by NVIDIA since March 2008 PhysX on CUDA available: August 2008 GPU PhysX in Games Physical

More information

Multigrid Solvers in CFD. David Emerson. Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK

Multigrid Solvers in CFD. David Emerson. Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK Multigrid Solvers in CFD David Emerson Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK david.emerson@stfc.ac.uk 1 Outline Multigrid: general comments Incompressible

More information

ES 128: Computer Assignment #4. Due in class on Monday, 12 April 2010

ES 128: Computer Assignment #4. Due in class on Monday, 12 April 2010 ES 128: Computer Assignment #4 Due in class on Monday, 12 April 2010 Task 1. Study an elastic-plastic indentation problem. This problem combines plasticity with contact mechanics and has many rich aspects.

More information

T6: Position-Based Simulation Methods in Computer Graphics. Jan Bender Miles Macklin Matthias Müller

T6: Position-Based Simulation Methods in Computer Graphics. Jan Bender Miles Macklin Matthias Müller T6: Position-Based Simulation Methods in Computer Graphics Jan Bender Miles Macklin Matthias Müller Jan Bender Organizer Professor at the Visual Computing Institute at Aachen University Research topics

More information

3-D Numerical Simulation of Direct Aluminum Extrusion and Die Deformation

3-D Numerical Simulation of Direct Aluminum Extrusion and Die Deformation 3-D Numerical Simulation of Direct Aluminum Extrusion and Die Deformation ABSTRACT W.A.Assaad, University of Twente Enschede, The Netherlands H.J.M. Geijselaers, University of Twente Enschede, The Netherlands

More information

Support for Multi physics in Chrono

Support for Multi physics in Chrono Support for Multi physics in Chrono The Story Ahead Overview of multi physics strategy in Chrono Summary of handling rigid/flexible body dynamics using Lagrangian approach Summary of handling fluid, and

More information

SIMULATION CAPABILITIES IN CREO. Enhance Your Product Design with Simulation & Analysis

SIMULATION CAPABILITIES IN CREO. Enhance Your Product Design with Simulation & Analysis SIMULATION CAPABILITIES IN CREO Enhance Your Product Design with Simulation & Using digital prototypes to understand how your designs perform in real-world conditions is vital to your product development

More information

Acknowledgements. Prof. Dan Negrut Prof. Darryl Thelen Prof. Michael Zinn. SBEL Colleagues: Hammad Mazar, Toby Heyn, Manoj Kumar

Acknowledgements. Prof. Dan Negrut Prof. Darryl Thelen Prof. Michael Zinn. SBEL Colleagues: Hammad Mazar, Toby Heyn, Manoj Kumar Philipp Hahn Acknowledgements Prof. Dan Negrut Prof. Darryl Thelen Prof. Michael Zinn SBEL Colleagues: Hammad Mazar, Toby Heyn, Manoj Kumar 2 Outline Motivation Lumped Mass Model Model properties Simulation

More information

Some Aspects for the Simulation of a Non-Linear Problem with Plasticity and Contact

Some Aspects for the Simulation of a Non-Linear Problem with Plasticity and Contact Some Aspects for the Simulation of a Non-Linear Problem with Plasticity and Contact Eduardo Luís Gaertner Marcos Giovani Dropa de Bortoli EMBRACO S.A. Abstract A linear elastic model is often not appropriate

More information

Nouveautés ANSYS pour le calcul structurel et l impression 3D. CADFEM 2017 ANSYS Additive Manufacturing

Nouveautés ANSYS pour le calcul structurel et l impression 3D. CADFEM 2017 ANSYS Additive Manufacturing Titelmasterformat Journée Technologique durch AddiPole Klicken bearbeiten Nouveautés ANSYS pour le calcul structurel et l impression 3D Titelmasterformat Structural design with durch ANSYS Klicken bearbeiten

More information

Using MSC.Nastran for Explicit FEM Simulations

Using MSC.Nastran for Explicit FEM Simulations 3. LS-DYNA Anwenderforum, Bamberg 2004 CAE / IT III Using MSC.Nastran for Explicit FEM Simulations Patrick Doelfs, Dr. Ingo Neubauer MSC.Software GmbH, D-81829 München, Patrick.Doelfs@mscsoftware.com Abstract:

More information

Numerical Methods for (Time-Dependent) HJ PDEs

Numerical Methods for (Time-Dependent) HJ PDEs Numerical Methods for (Time-Dependent) HJ PDEs Ian Mitchell Department of Computer Science The University of British Columbia research supported by National Science and Engineering Research Council of

More information

Facundo DEL PIN / Iñaki ÇALDICHOURY / Rodrigo PAZ / / Livermore Software Technology Corporation

Facundo DEL PIN / Iñaki ÇALDICHOURY / Rodrigo PAZ / / Livermore Software Technology Corporation LS-DYNA R R7 : Strong Fluid Structure Interaction (FSI) capabilities and associated meshing tools for the incompressible CFD solver (ICFD), applications and examples Facundo DEL PIN / Iñaki ÇALDICHOURY

More information

Tutorial: Modeling Liquid Reactions in CIJR Using the Eulerian PDF transport (DQMOM-IEM) Model

Tutorial: Modeling Liquid Reactions in CIJR Using the Eulerian PDF transport (DQMOM-IEM) Model Tutorial: Modeling Liquid Reactions in CIJR Using the Eulerian PDF transport (DQMOM-IEM) Model Introduction The purpose of this tutorial is to demonstrate setup and solution procedure of liquid chemical

More information

Fluid-Structure Interaction in STAR-CCM+ Alan Mueller CD-adapco

Fluid-Structure Interaction in STAR-CCM+ Alan Mueller CD-adapco Fluid-Structure Interaction in STAR-CCM+ Alan Mueller CD-adapco What is FSI? Air Interaction with a Flexible Structure What is FSI? Water/Air Interaction with a Structure Courtesy CFD Marine Courtesy Germanischer

More information

CFD Project Workflow Guide

CFD Project Workflow Guide CFD Project Workflow Guide Contents Select a problem with known results for proof-of-concept testing... 1 Set up and run a coarse test case... 2 Select and calibrate numerical methods... 3 Minimize & quantify

More information

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems. Prof. Dr. Eleni Chatzi, J.P. Escallo n Lecture December, 2013

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems. Prof. Dr. Eleni Chatzi, J.P. Escallo n Lecture December, 2013 The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems Prof. Dr. Eleni Chatzi, J.P. Escallo n Lecture 11-17 December, 2013 Institute of Structural Engineering Method of Finite Elements

More information

Current Status of Isogeometric Analysis in LS-DYNA

Current Status of Isogeometric Analysis in LS-DYNA Current Status of Isogeometric Analysis in LS-DYNA Stefan Hartmann Developer Forum, September 24 th, 2013, Filderstadt, Germany Development in cooperation with: D.J. Benson: Professor of Applied Mechanics,

More information

ALE Adaptive Mesh Refinement in LS-DYNA

ALE Adaptive Mesh Refinement in LS-DYNA 12 th International LS-DYNA Users Conference FSI/ALE(2) ALE Adaptive Mesh Refinement in LS-DYNA Nicolas AQUELET Livermore Software Technology Corp. 7374 Las Positas Rd Livermore CA94550 aquelet@lstc.com

More information

Homogenization and numerical Upscaling. Unsaturated flow and two-phase flow

Homogenization and numerical Upscaling. Unsaturated flow and two-phase flow Homogenization and numerical Upscaling Unsaturated flow and two-phase flow Insa Neuweiler Institute of Hydromechanics, University of Stuttgart Outline Block 1: Introduction and Repetition Homogenization

More information

CHAPTER 6 EXPERIMENTAL AND FINITE ELEMENT SIMULATION STUDIES OF SUPERPLASTIC BOX FORMING

CHAPTER 6 EXPERIMENTAL AND FINITE ELEMENT SIMULATION STUDIES OF SUPERPLASTIC BOX FORMING 113 CHAPTER 6 EXPERIMENTAL AND FINITE ELEMENT SIMULATION STUDIES OF SUPERPLASTIC BOX FORMING 6.1 INTRODUCTION Superplastic properties are exhibited only under a narrow range of strain rates. Hence, it

More information

Practical Examples of Efficient Design Optimisation by Coupling VR&D GENESIS and LS-DYNA

Practical Examples of Efficient Design Optimisation by Coupling VR&D GENESIS and LS-DYNA Practical Examples of Efficient Design Optimisation by Coupling VR&D GENESIS and LS-DYNA David Salway, GRM Consulting Ltd. UK. Paul-André Pierré, GRM Consulting Ltd. UK. Martin Liebscher, Dynamore GMBH,

More information

Coastal impact of a tsunami Review of numerical models

Coastal impact of a tsunami Review of numerical models Coastal impact of a tsunami Review of numerical models Richard Marcer 2 Content Physics to simulate Different approaches of modelling 2D depth average Full 3D Navier-Stokes 3D model Key point : free surface

More information

ANSYS Element. elearning. Peter Barrett October CAE Associates Inc. and ANSYS Inc. All rights reserved.

ANSYS Element. elearning. Peter Barrett October CAE Associates Inc. and ANSYS Inc. All rights reserved. ANSYS Element Selection elearning Peter Barrett October 2012 2012 CAE Associates Inc. and ANSYS Inc. All rights reserved. ANSYS Element Selection What is the best element type(s) for my analysis? Best

More information

Parallelization study of a VOF/Navier-Stokes model for 3D unstructured staggered meshes

Parallelization study of a VOF/Navier-Stokes model for 3D unstructured staggered meshes Parallelization study of a VOF/Navier-Stokes model for 3D unstructured staggered meshes L. Jofre, O. Lehmkuhl, R. Borrell, J. Castro and A. Oliva Corresponding author: cttc@cttc.upc.edu Centre Tecnològic

More information

Computational Fluid Dynamic Hydraulic Characterization: G3 Cube vs. Dolos Armour Unit. IS le Roux, WJS van der Merwe & CL de Wet

Computational Fluid Dynamic Hydraulic Characterization: G3 Cube vs. Dolos Armour Unit. IS le Roux, WJS van der Merwe & CL de Wet Computational Fluid Dynamic Hydraulic Characterization: G3 Cube vs. Dolos Armour Unit IS le Roux, WJS van der Merwe & CL de Wet Presentation Outline Scope. Assumptions and boundary values. Numerical mesh.

More information

Embedded Reinforcements

Embedded Reinforcements Embedded Reinforcements Gerd-Jan Schreppers, January 2015 Abstract: This paper explains the concept and application of embedded reinforcements in DIANA. Basic assumptions and definitions, the pre-processing

More information

LS-DYNA Smooth Particle Galerkin (SPG) Method

LS-DYNA Smooth Particle Galerkin (SPG) Method LS-DYNA Smooth Particle Galerkin (SPG) Method C.T. Wu, Y. Guo, W. Hu LSTC Element-free Galerkin (EFG) meshless method was introduced into LS-DYNA more than 10 years ago, and has been widely used in the

More information

Cloud Cavitating Flow around an Axisymmetric Projectile in the shallow water

Cloud Cavitating Flow around an Axisymmetric Projectile in the shallow water Cloud Cavitating Flow around an Axisymmetric Projectile in the shallow water 1,2 Chang Xu; 1,2 Yiwei Wang*; 1,2 Jian Huang; 1,2 Chenguang Huang 1 Key Laboratory for Mechanics in Fluid Solid Coupling Systems,

More information

Fluid-Structure-Interaction Using SPH and GPGPU Technology

Fluid-Structure-Interaction Using SPH and GPGPU Technology IMPETUS AFEA SOLVER Fluid-Structure-Interaction Using SPH and GPGPU Technology Jérôme Limido Jean Luc Lacome Wayne L. Mindle GTC May 2012 IMPETUS AFEA SOLVER 1 2D Sloshing Water in Tank IMPETUS AFEA SOLVER

More information

C. A. D. Fraga Filho 1,2, D. F. Pezzin 1 & J. T. A. Chacaltana 1. Abstract

C. A. D. Fraga Filho 1,2, D. F. Pezzin 1 & J. T. A. Chacaltana 1. Abstract Advanced Computational Methods and Experiments in Heat Transfer XIII 15 A numerical study of heat diffusion using the Lagrangian particle SPH method and the Eulerian Finite-Volume method: analysis of convergence,

More information

3D simulations of concrete penetration using SPH formulation and the RHT material model

3D simulations of concrete penetration using SPH formulation and the RHT material model 3D simulations of concrete penetration using SPH formulation and the RHT material model H. Hansson Weapons and Protection, Swedish Defence Research Agency (FOI), Sweden Abstract This paper describes work

More information

Express Introductory Training in ANSYS Fluent Workshop 07 Tank Flushing

Express Introductory Training in ANSYS Fluent Workshop 07 Tank Flushing Express Introductory Training in ANSYS Fluent Workshop 07 Tank Flushing Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry Oriented HPC Simulations,

More information