Introduc1on to Computa1onal Manifolds and Applica1ons

Size: px
Start display at page:

Download "Introduc1on to Computa1onal Manifolds and Applica1ons"

Transcription

1 Trimester Program on Computa1onal Manifolds and Applica1ons Introduc1on to Computa1onal Manifolds and Applica1ons Manifold Harmonics Luis Gustavo Nonato Depto Matemá3ca Aplicada e Esta9s3ca ICMC- USP- Brazil

2 Summary Today (Tuesday): Differen3al Operators on Surfaces - Differen3al operators in the parametric domain - Cotangent formula - Belkin s approach - SPH- based scheme Thursday: Manifold Harmonics and Applica3ons - Some theore3cal background - Mesh Filtering - Embedding in high- dimension - Fiedler tree - Heat Trace

3 Spectral Mesh Processing Although rela3vely recent in the context of Geometry Processing, spectral methods have already experienced a large development in the field of spectral graph theory.

4 Spectral Mesh Processing Although rela3vely recent in the context of Geometry Processing, spectral methods have already experienced a large development in the field of spectral graph theory. Those techniques rely on spectrum of a Laplacian- like matrix.

5 Laplacian Matrices

6 Laplacian Matrices

7 Laplacian Matrices Cotangent Formula!!

8 Short Review of Eigenvalues and Eigenvectors

9 Short Review of Eigenvalues and Eigenvectors eigenvalue eigenvector

10 Short Review of Eigenvalues and Eigenvectors ARPACK Large sparse matrices Lanczos algorithm (derived from the power method)

11 Short Review of Eigenvalues and Eigenvectors

12 Short Review of Eigenvalues and Eigenvectors

13 Spectral Mesh Processing There are three main steps involved in most spectral mesh processing methods: 1. Construc3on of the matrix L 2. Eigendecomposi3on of L. 3. Handling the eigendecomposi3on towards obtaining the desired results.

14 Spectral Mesh Processing

15 Spectral Mesh Processing

16 Spectral Mesh Processing eigenvalues eigenvectors

17 Spectral Mesh Processing eigenvalues eigenvectors Fourier Basis

18 Spectral Mesh Processing filter

19 Spectral Mesh Processing filter For surfaces, the spectrum of the Laplace operator behaves quite similarly to a Fourier basis, allowing for filtering func3ons defined on the surface.

20 Spectral Mesh Processing In par3cular, if the coordinates of the ver3ces of surface mesh are seem as func3ons defined on the surface, band- pass filtering can be performed. [Vallet and Levy, SGP 08]

21 Spectral Mesh Processing In par3cular, if the coordinates of the ver3ces of surface mesh are seem as func3ons defined on the surface, band- pass filtering can be performed

22 [Taubin, Siggraph 95] Spectral Mesh Processing

23 [Taubin, Siggraph 95] Spectral Mesh Processing

24 [Taubin, Siggraph 95] Spectral Mesh Processing

25 [Taubin, Siggraph 95] Spectral Mesh Processing

26 [Taubin, Siggraph 95] Spectral Mesh Processing

27 Spectral Mesh Processing [Taubin, Siggraph 95] Avoid to compute the spectrum

28 [Taubin, Siggraph 95]

29 Spectral Mesh Processing What about eigenvectors?

30 Spectral Mesh Processing Nodal Domain: The nodal set of an eigenfunc3on is the set of points where the eigenfunc3on is zero. The regions bounded by the nodal set are called nodal domains.

31 Spectral Mesh Processing Nodal Domain: The nodal set of an eigenfunc3on is the set of points where the eigenfunc3on is zero. The regions bounded by the nodal set are called nodal domains. An eigenfunc3on is built by interpola3ng the values of an eigenvector (defined on the ver3ces of a mesh) in each point of the surface.

32 Spectral Mesh Processing Courant's Nodal Theorem: Let the eigenvectors of the Laplace operator be labeled in ascending order according to the corresponding eigenvalues. Then, the k- th eigenfunc3on has at most k nodal domains, that is, the k- th eigenfunc3on can separate the surface into at most k connected components.

33 Spectral Mesh Processing Courant's Nodal Theorem: Let the eigenvectors of the Laplace operator be labeled in ascending order according to the corresponding eigenvalues. Then, the k- th eigenfunc3on has at most k nodal domains, that is, the k- th eigenfunc3on can separate the surface into at most k connected components.

34 Zero is an eigenvalue of the Laplace operator with a constant corresponding eigenvector.

35 Spectral Mesh Processing Eigenvectors capture symmetries of the model; Invariant by isometric transforma3on; Not sensi3ve to small topological and geometrical changes

36 Spectral Mesh Processing Eigenvectors capture symmetries of the model; Invariant by isometric transforma3on; Not sensi3ve to small topological and geometrical changes Powerful tool for many mesh processing tasks.

37 Spectral Mesh Processing Mesh Segmenta3on [O. Sidi et al., SigAsia 11]

38 Spectral Mesh Processing Global Point Signature [Rustamov., SGP 07] Euclidean distance in the GPS space is related to Green s func3on on the surface.

39 Spectral Mesh Processing Global Point Signature [Rustamov., SGP 07]

40 Spectral Mesh Processing Global Point Signature [Rustamov., SGP 07]

41 Global Point Signature Spectral Mesh Processing [Rustamov., SGP 07]

42 Global Point Signature Spectral Mesh Processing [Rustamov., SGP 07]

43 Diffusion Maps Spectral Mesh Processing [Goes, SGP 08] Euclidean distance in the DM space is related to diffusion distance on the surface.

44 Diffusion Maps Spectral Mesh Processing [Goes, SGP 08]

45 Diffusion Maps Spectral Mesh Processing [Goes, SGP 08]

46 Spectral Mesh Processing The eigenvector corresponding to the smallest non- zero eigenvalue is called Fiedler vector and it is characterized by:

47 Spectral Mesh Processing The eigenvector corresponding to the smallest non- zero eigenvalue is called Fiedler vector and it is characterized by: Will be minimum when adjacent ver3ces have similar values.

48 Spectral Mesh Processing The Fiedler vector also generates nodal domains with similar areas and minimal boundary curve

49 Fiedler Tree Spectral Mesh Processing [Berger, SMI 09]

50 Fiedler Tree Spectral Mesh Processing [Berger, SMI 09]

51 Fiedler Tree Spectral Mesh Processing [Berger, SMI 09]

52 Fiedler Tree Spectral Mesh Processing [Berger, SMI 09]

53 Some Interes3ng Results Spectral Mesh Processing

54 Some Interes3ng Results Spectral Mesh Processing Heat Trace

55 Some Interes3ng Results Spectral Mesh Processing Heat Trace

56 Spectral Mesh Processing

57 That is all Folks!!

Mesh Processing Pipeline

Mesh Processing Pipeline Mesh Smoothing 1 Mesh Processing Pipeline... Scan Reconstruct Clean Remesh 2 Mesh Quality Visual inspection of sensitive attributes Specular shading Flat Shading Gouraud Shading Phong Shading 3 Mesh Quality

More information

Overview. Spectral Processing of Point- Sampled Geometry. Introduction. Introduction. Fourier Transform. Fourier Transform

Overview. Spectral Processing of Point- Sampled Geometry. Introduction. Introduction. Fourier Transform. Fourier Transform Overview Spectral Processing of Point- Sampled Geometry Introduction Fourier transform Spectral processing pipeline Spectral filtering Adaptive subsampling Summary Point-Based Computer Graphics Markus

More information

CS 6140: Machine Learning Spring 2017

CS 6140: Machine Learning Spring 2017 CS 6140: Machine Learning Spring 2017 Instructor: Lu Wang College of Computer and Informa@on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Logis@cs Grades

More information

Preparation Meeting. Recent Advances in the Analysis of 3D Shapes. Emanuele Rodolà Matthias Vestner Thomas Windheuser Daniel Cremers

Preparation Meeting. Recent Advances in the Analysis of 3D Shapes. Emanuele Rodolà Matthias Vestner Thomas Windheuser Daniel Cremers Preparation Meeting Recent Advances in the Analysis of 3D Shapes Emanuele Rodolà Matthias Vestner Thomas Windheuser Daniel Cremers What You Will Learn in the Seminar Get an overview on state of the art

More information

Image Similarities for Learning Video Manifolds. Selen Atasoy MICCAI 2011 Tutorial

Image Similarities for Learning Video Manifolds. Selen Atasoy MICCAI 2011 Tutorial Image Similarities for Learning Video Manifolds Selen Atasoy MICCAI 2011 Tutorial Image Spaces Image Manifolds Tenenbaum2000 Roweis2000 Tenenbaum2000 [Tenenbaum2000: J. B. Tenenbaum, V. Silva, J. C. Langford:

More information

Dimensionality Reduction of Laplacian Embedding for 3D Mesh Reconstruction

Dimensionality Reduction of Laplacian Embedding for 3D Mesh Reconstruction Journal of Physics: Conference Series PAPER OPEN ACCESS Dimensionality Reduction of Laplacian Embedding for 3D Mesh Reconstruction To cite this article: I Mardhiyah et al 2016 J. Phys.: Conf. Ser. 725

More information

Data fusion and multi-cue data matching using diffusion maps

Data fusion and multi-cue data matching using diffusion maps Data fusion and multi-cue data matching using diffusion maps Stéphane Lafon Collaborators: Raphy Coifman, Andreas Glaser, Yosi Keller, Steven Zucker (Yale University) Part of this work was supported by

More information

Spectral Compression of Mesh Geometry

Spectral Compression of Mesh Geometry Spectral Compression of Mesh Geometry Zachi Karni, Craig Gotsman SIGGRAPH 2000 1 Introduction Thus far, topology coding drove geometry coding. Geometric data contains far more information (15 vs. 3 bits/vertex).

More information

Spectral Surface Reconstruction from Noisy Point Clouds

Spectral Surface Reconstruction from Noisy Point Clouds Spectral Surface Reconstruction from Noisy Point Clouds 1. Briefly summarize the paper s contributions. Does it address a new problem? Does it present a new approach? Does it show new types of results?

More information

Introduction aux Systèmes Collaboratifs Multi-Agents

Introduction aux Systèmes Collaboratifs Multi-Agents M1 EEAII - Découverte de la Recherche (ViRob) Introduction aux Systèmes Collaboratifs Multi-Agents UPJV, Département EEA Fabio MORBIDI Laboratoire MIS Équipe Perception et Robotique E-mail: fabio.morbidi@u-picardie.fr

More information

Time-of-Flight Surface De-noising through Spectral Decomposition

Time-of-Flight Surface De-noising through Spectral Decomposition Time-of-Flight Surface De-noising through Spectral Decomposition Thiago R. dos Santos, Alexander Seitel, Hans-Peter Meinzer, Lena Maier-Hein Div. Medical and Biological Informatics, German Cancer Research

More information

How Much Geometry Lies in The Laplacian?

How Much Geometry Lies in The Laplacian? How Much Geometry Lies in The Laplacian? Encoding and recovering the discrete metric on triangle meshes Distance Geometry Workshop in Bad Honnef, November 23, 2017 Maks Ovsjanikov Joint with: E. Corman,

More information

Topology-Invariant Similarity and Diffusion Geometry

Topology-Invariant Similarity and Diffusion Geometry 1 Topology-Invariant Similarity and Diffusion Geometry Lecture 7 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 Intrinsic

More information

Pose analysis using spectral geometry

Pose analysis using spectral geometry Vis Comput DOI 10.1007/s00371-013-0850-0 ORIGINAL ARTICLE Pose analysis using spectral geometry Jiaxi Hu Jing Hua Springer-Verlag Berlin Heidelberg 2013 Abstract We propose a novel method to analyze a

More information

Heat Kernels and Diffusion Processes

Heat Kernels and Diffusion Processes Heat Kernels and Diffusion Processes Definition: University of Alicante (Spain) Matrix Computing (subject 3168 Degree in Maths) 30 hours (theory)) + 15 hours (practical assignment) Contents 1. Solving

More information

Geometric Modeling in Graphics

Geometric Modeling in Graphics Geometric Modeling in Graphics Part 10: Surface reconstruction Martin Samuelčík www.sccg.sk/~samuelcik samuelcik@sccg.sk Curve, surface reconstruction Finding compact connected orientable 2-manifold surface

More information

Lecture 2: Geometric Graphs, Predictive Graphs and Spectral Analysis

Lecture 2: Geometric Graphs, Predictive Graphs and Spectral Analysis Lecture 2: Geometric Graphs, Predictive Graphs and Spectral Analysis Radu Balan February 8, 2018 Data Graphs Today we discuss construction of dynamical data graphs and spectral analysis. The overarching

More information

Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering May 12 2017 2 Content 1. Introduction 2. Proposed Technique 2.1 Learning Fast Localized Spectral Filters 2.2 Graph Coarsening

More information

Analy'c Organiza'on of high dimensional observa'onal Databases as a tool for learning and inference.

Analy'c Organiza'on of high dimensional observa'onal Databases as a tool for learning and inference. Analy'c Organiza'on of high dimensional observa'onal Databases as a tool for learning and inference. R. Coifman, Mathema0cs Yale M. Gavish, Sta0s0cs Stanford We describe a mathematical framework to learn

More information

Mesh Segmentation Using Laplacian Eigenvectors and Gaussian Mixtures

Mesh Segmentation Using Laplacian Eigenvectors and Gaussian Mixtures Manifold Learning and its Applications: Papers from the AAAI Fall Symposium (FS-09-04) Mesh Segmentation Using Laplacian Eigenvectors and Gaussian Mixtures Avinash Sharma, Radu Horaud, David Knossow and

More information

Kernighan/Lin - Preliminary Definitions. Comments on Kernighan/Lin Algorithm. Partitioning Without Nodal Coordinates Kernighan/Lin

Kernighan/Lin - Preliminary Definitions. Comments on Kernighan/Lin Algorithm. Partitioning Without Nodal Coordinates Kernighan/Lin Partitioning Without Nodal Coordinates Kernighan/Lin Given G = (N,E,W E ) and a partitioning N = A U B, where A = B. T = cost(a,b) = edge cut of A and B partitions. Find subsets X of A and Y of B with

More information

Spectral Clustering X I AO ZE N G + E L HA M TA BA S SI CS E CL A S S P R ESENTATION MA RCH 1 6,

Spectral Clustering X I AO ZE N G + E L HA M TA BA S SI CS E CL A S S P R ESENTATION MA RCH 1 6, Spectral Clustering XIAO ZENG + ELHAM TABASSI CSE 902 CLASS PRESENTATION MARCH 16, 2017 1 Presentation based on 1. Von Luxburg, Ulrike. "A tutorial on spectral clustering." Statistics and computing 17.4

More information

Justin Solomon MIT, Spring

Justin Solomon MIT, Spring Justin Solomon MIT, Spring 2017 http://www.gogeometry.com Instructor: Justin Solomon Email: jsolomon@mit.edu Office: 32-D460 Office hours: Wednesdays, 1pm-3pm Geometric Data Processing

More information

Correspondence. CS 468 Geometry Processing Algorithms. Maks Ovsjanikov

Correspondence. CS 468 Geometry Processing Algorithms. Maks Ovsjanikov Shape Matching & Correspondence CS 468 Geometry Processing Algorithms Maks Ovsjanikov Wednesday, October 27 th 2010 Overall Goal Given two shapes, find correspondences between them. Overall Goal Given

More information

Two-View Geometry (Course 23, Lecture D)

Two-View Geometry (Course 23, Lecture D) Two-View Geometry (Course 23, Lecture D) Jana Kosecka Department of Computer Science George Mason University http://www.cs.gmu.edu/~kosecka General Formulation Given two views of the scene recover the

More information

Lecture 2: From Structured Data to Graphs and Spectral Analysis

Lecture 2: From Structured Data to Graphs and Spectral Analysis Lecture 2: From Structured Data to Graphs and Spectral Analysis Radu Balan February 9, 2017 Data Sets Today we discuss type of data sets and graphs. The overarching problem is the following: Main Problem

More information

SPECTRAL SPARSIFICATION IN SPECTRAL CLUSTERING

SPECTRAL SPARSIFICATION IN SPECTRAL CLUSTERING SPECTRAL SPARSIFICATION IN SPECTRAL CLUSTERING Alireza Chakeri, Hamidreza Farhidzadeh, Lawrence O. Hall Department of Computer Science and Engineering College of Engineering University of South Florida

More information

A Robust Spectral Approach for Blind Watermarking of Manifold Surfaces

A Robust Spectral Approach for Blind Watermarking of Manifold Surfaces A Robust Spectral Approach for Blind Watermarking of Manifold Surfaces Yang Liu Dept. of Computer Science University of Texas at Dallas Richardson, TX 75080, USA yxl072100@utdallas.edu Balakrishnan Prabhakaran

More information

Discrete Differential Geometry. Differential Geometry

Discrete Differential Geometry. Differential Geometry Discrete Differential Geometry Yiying Tong CSE 891 Sect 004 Differential Geometry Why do we care? theory: special surfaces minimal, CMC, integrable, etc. computation: simulation/processing Grape (u. of

More information

Non-rigid shape correspondence by matching semi-local spectral features and global geodesic structures

Non-rigid shape correspondence by matching semi-local spectral features and global geodesic structures Non-rigid shape correspondence by matching semi-local spectral features and global geodesic structures Anastasia Dubrovina Technion Israel Institute of Technology Introduction Correspondence detection

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

Algebraic Graph Theory- Adjacency Matrix and Spectrum

Algebraic Graph Theory- Adjacency Matrix and Spectrum Algebraic Graph Theory- Adjacency Matrix and Spectrum Michael Levet December 24, 2013 Introduction This tutorial will introduce the adjacency matrix, as well as spectral graph theory. For those familiar

More information

Computing and Processing Correspondences with Functional Maps

Computing and Processing Correspondences with Functional Maps Computing and Processing Correspondences with Functional Maps SIGGRAPH 2017 course Maks Ovsjanikov, Etienne Corman, Michael Bronstein, Emanuele Rodolà, Mirela Ben-Chen, Leonidas Guibas, Frederic Chazal,

More information

Unsupervised Learning. Mostly Clustering

Unsupervised Learning. Mostly Clustering Unsupervised Learning Mostly Clustering Word clustering Input: stack exchange ques

More information

A Study of Graph Spectra for Comparing Graphs

A Study of Graph Spectra for Comparing Graphs A Study of Graph Spectra for Comparing Graphs Ping Zhu and Richard C. Wilson Computer Science Department University of York, UK Abstract The spectrum of a graph has been widely used in graph theory to

More information

Towards Multi-scale Heat Kernel Signatures for Point Cloud Models of Engineering Artifacts

Towards Multi-scale Heat Kernel Signatures for Point Cloud Models of Engineering Artifacts Towards Multi-scale Heat Kernel Signatures for Point Cloud Models of Engineering Artifacts Reed M. Williams and Horea T. Ilieş Department of Mechanical Engineering University of Connecticut Storrs, CT

More information

Planar Graphs 2, the Colin de Verdière Number

Planar Graphs 2, the Colin de Verdière Number Spectral Graph Theory Lecture 26 Planar Graphs 2, the Colin de Verdière Number Daniel A. Spielman December 4, 2009 26.1 Introduction In this lecture, I will introduce the Colin de Verdière number of a

More information

UNIVERSITY OF CALGARY. Subdivision Surfaces. Advanced Geometric Modeling Faramarz Samavati

UNIVERSITY OF CALGARY. Subdivision Surfaces. Advanced Geometric Modeling Faramarz Samavati Subdivision Surfaces Surfaces Having arbitrary Topologies Tensor Product Surfaces Non Tensor Surfaces We can t find u-curves and v-curves in general surfaces General Subdivision Coarse mesh Subdivision

More information

Spectral Coding of Three-Dimensional Mesh Geometry Information Using Dual Graph

Spectral Coding of Three-Dimensional Mesh Geometry Information Using Dual Graph Spectral Coding of Three-Dimensional Mesh Geometry Information Using Dual Graph Sung-Yeol Kim, Seung-Uk Yoon, and Yo-Sung Ho Gwangju Institute of Science and Technology (GIST) 1 Oryong-dong, Buk-gu, Gwangju,

More information

A Primer on Laplacians. Max Wardetzky. Institute for Numerical and Applied Mathematics Georg-August Universität Göttingen, Germany

A Primer on Laplacians. Max Wardetzky. Institute for Numerical and Applied Mathematics Georg-August Universität Göttingen, Germany A Primer on Laplacians Max Wardetzky Institute for Numerical and Applied Mathematics Georg-August Universität Göttingen, Germany Warm-up: Euclidean case Warm-up The Euclidean case Chladni s vibrating plates

More information

Diffusion Maps and Topological Data Analysis

Diffusion Maps and Topological Data Analysis Diffusion Maps and Topological Data Analysis Melissa R. McGuirl McGuirl (Brown University) Diffusion Maps and Topological Data Analysis 1 / 19 Introduction OVERVIEW Topological Data Analysis The use of

More information

An improved spectral analysis method with additional attributes for 3D objects

An improved spectral analysis method with additional attributes for 3D objects Int J Adv Manuf Technol (2012) 59:761 773 DOI 10.1007/s00170-011-3484-2 ORIGINAL ARTICLE An improved spectral analysis method with additional attributes for 3D objects HanKyunChoi Seung Joo Lee Min Ki

More information

CS 140: Sparse Matrix-Vector Multiplication and Graph Partitioning

CS 140: Sparse Matrix-Vector Multiplication and Graph Partitioning CS 140: Sparse Matrix-Vector Multiplication and Graph Partitioning Parallel sparse matrix-vector product Lay out matrix and vectors by rows y(i) = sum(a(i,j)*x(j)) Only compute terms with A(i,j) 0 P0 P1

More information

Adaptive Discrete Laplace Operator

Adaptive Discrete Laplace Operator Adaptive Discrete Laplace Operator Christophe Fiorio 1, Christian Mercat 2, and Frédéric Rieux 13 1 LIRMM, Université Montpellier 2, 161 rue Ada, F-34392 MONTPELLIER, FranceIREM, S2HEP, Université Claude

More information

Surface Reconstruction from Unorganized Points

Surface Reconstruction from Unorganized Points Survey of Methods in Computer Graphics: Surface Reconstruction from Unorganized Points H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle SIGGRAPH 1992. Article and Additional Material at: http://research.microsoft.com/en-us/um/people/hoppe/proj/recon/

More information

04 - Normal Estimation, Curves

04 - Normal Estimation, Curves 04 - Normal Estimation, Curves Acknowledgements: Olga Sorkine-Hornung Normal Estimation Implicit Surface Reconstruction Implicit function from point clouds Need consistently oriented normals < 0 0 > 0

More information

CS7540 Spectral Algorithms, Spring 2017 Lecture #2. Matrix Tree Theorem. Presenter: Richard Peng Jan 12, 2017

CS7540 Spectral Algorithms, Spring 2017 Lecture #2. Matrix Tree Theorem. Presenter: Richard Peng Jan 12, 2017 CS7540 Spectral Algorithms, Spring 2017 Lecture #2 Matrix Tree Theorem Presenter: Richard Peng Jan 12, 2017 DISCLAIMER: These notes are not necessarily an accurate representation of what I said during

More information

A Segmentation of Non-rigid Shape with Heat Diffuse

A Segmentation of Non-rigid Shape with Heat Diffuse 2012 4th International Conference on Signal Processing Systems (ICSPS 2012) IPCSIT vol. 58 (2012) (2012) IACSIT Press, Singapore DOI: 10.7763/IPCSIT.2012.V58.6 A Segmentation of Non-rigid Shape with Heat

More information

Introduction to geometry

Introduction to geometry 1 2 Manifolds A topological space in which every point has a neighborhood homeomorphic to (topological disc) is called an n-dimensional (or n-) manifold Introduction to geometry The German way 2-manifold

More information

Graph based machine learning with applications to media analytics

Graph based machine learning with applications to media analytics Graph based machine learning with applications to media analytics Lei Ding, PhD 9-1-2011 with collaborators at Outline Graph based machine learning Basic structures Algorithms Examples Applications in

More information

CSCI-B609: A Theorist s Toolkit, Fall 2016 Sept. 6, Firstly let s consider a real world problem: community detection.

CSCI-B609: A Theorist s Toolkit, Fall 2016 Sept. 6, Firstly let s consider a real world problem: community detection. CSCI-B609: A Theorist s Toolkit, Fall 016 Sept. 6, 016 Lecture 03: The Sparsest Cut Problem and Cheeger s Inequality Lecturer: Yuan Zhou Scribe: Xuan Dong We will continue studying the spectral graph theory

More information

Lecture 8 Object Descriptors

Lecture 8 Object Descriptors Lecture 8 Object Descriptors Azadeh Fakhrzadeh Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University 2 Reading instructions Chapter 11.1 11.4 in G-W Azadeh Fakhrzadeh

More information

Complex Fiedler vectors for shape retrieval

Complex Fiedler vectors for shape retrieval Complex Fiedler vectors for shape retrieval Reinier H. van Leuken 1, Olga Symonova 2 Remco C. Veltkamp 1, and Raffaele de Amicis 2 1 Universiteit Utrecht, The Netherlands 2 Fondazione Graphitech, Trento,

More information

Geometric Modeling and Processing

Geometric Modeling and Processing Geometric Modeling and Processing Tutorial of 3DIM&PVT 2011 (Hangzhou, China) May 16, 2011 6. Mesh Simplification Problems High resolution meshes becoming increasingly available 3D active scanners Computer

More information

Outline. Visualization Discretization Sampling Quantization Representation Continuous Discrete. Noise

Outline. Visualization Discretization Sampling Quantization Representation Continuous Discrete. Noise Fundamentals Data Outline Visualization Discretization Sampling Quantization Representation Continuous Discrete Noise 2 Data Data : Function dependent on one or more variables. Example Audio (1D) - depends

More information

A Construction of Cospectral Graphs

A Construction of Cospectral Graphs Project Number: MA-PRC-3271 A Construction of Cospectral Graphs A Major Qualifying Project Report submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements

More information

My favorite application using eigenvalues: partitioning and community detection in social networks

My favorite application using eigenvalues: partitioning and community detection in social networks My favorite application using eigenvalues: partitioning and community detection in social networks Will Hobbs February 17, 2013 Abstract Social networks are often organized into families, friendship groups,

More information

Temperature Distribution Descriptor for Robust 3D Shape Retrieval

Temperature Distribution Descriptor for Robust 3D Shape Retrieval Temperature Distribution Descriptor for Robust 3D Shape Retrieval Yi Fang Purdue University West Lafayette, IN, USA fang4@purdue.edu Mengtian Sun Purdue University West Lafayette, IN, USA sun84@purdue.edu

More information

pα i + q, where (n, m, p and q depend on i). 6. GROMOV S INVARIANT AND THE VOLUME OF A HYPERBOLIC MANIFOLD

pα i + q, where (n, m, p and q depend on i). 6. GROMOV S INVARIANT AND THE VOLUME OF A HYPERBOLIC MANIFOLD 6. GROMOV S INVARIANT AND THE VOLUME OF A HYPERBOLIC MANIFOLD of π 1 (M 2 )onπ 1 (M 4 ) by conjugation. π 1 (M 4 ) has a trivial center, so in other words the action of π 1 (M 4 ) on itself is effective.

More information

Lecture 19: Graph Partitioning

Lecture 19: Graph Partitioning Lecture 19: Graph Partitioning David Bindel 3 Nov 2011 Logistics Please finish your project 2. Please start your project 3. Graph partitioning Given: Graph G = (V, E) Possibly weights (W V, W E ). Possibly

More information

Computer Graphics I Lecture 11

Computer Graphics I Lecture 11 15-462 Computer Graphics I Lecture 11 Midterm Review Assignment 3 Movie Midterm Review Midterm Preview February 26, 2002 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

More information

Numerical Mesh Processing

Numerical Mesh Processing Numerical Mesh Processing Gabriel Peyré To cite this version: Gabriel Peyré. Numerical Mesh Processing. Course notes. 2008. HAL Id: hal-00365931 https://hal.archives-ouvertes.fr/hal-00365931 Submitted

More information

Contents. I The Basic Framework for Stationary Problems 1

Contents. I The Basic Framework for Stationary Problems 1 page v Preface xiii I The Basic Framework for Stationary Problems 1 1 Some model PDEs 3 1.1 Laplace s equation; elliptic BVPs... 3 1.1.1 Physical experiments modeled by Laplace s equation... 5 1.2 Other

More information

Non-Uniform Recursive Doo-Sabin Surfaces (NURDSes)

Non-Uniform Recursive Doo-Sabin Surfaces (NURDSes) Non-Uniform Recursive Doo-Sabin Surfaces Zhangjin Huang 1 Guoping Wang 2 1 University of Science and Technology of China 2 Peking University, China SIAM Conference on Geometric and Physical Modeling Doo-Sabin

More information

Computing Curvature CS468 Lecture 8 Notes

Computing Curvature CS468 Lecture 8 Notes Computing Curvature CS468 Lecture 8 Notes Scribe: Andy Nguyen April 4, 013 1 Motivation In the previous lecture we developed the notion of the curvature of a surface, showing a bunch of nice theoretical

More information

Spectral Graph Sparsification: overview of theory and practical methods. Yiannis Koutis. University of Puerto Rico - Rio Piedras

Spectral Graph Sparsification: overview of theory and practical methods. Yiannis Koutis. University of Puerto Rico - Rio Piedras Spectral Graph Sparsification: overview of theory and practical methods Yiannis Koutis University of Puerto Rico - Rio Piedras Graph Sparsification or Sketching Compute a smaller graph that preserves some

More information

VISUALIZING INTRINSIC ISOSURFACE VARIATION DUE TO UNCERTAINTY THROUGH HEAT KERNEL SIGNATURES

VISUALIZING INTRINSIC ISOSURFACE VARIATION DUE TO UNCERTAINTY THROUGH HEAT KERNEL SIGNATURES VISUALIZING INTRINSIC ISOSURFACE VARIATION DUE TO UNCERTAINTY THROUGH HEAT KERNEL SIGNATURES by Nazmus Saquib A thesis submitted to the faculty of The University of Utah in partial fulfillment of the requirements

More information

Unit 3 Functions of Several Variables

Unit 3 Functions of Several Variables Unit 3 Functions of Several Variables In this unit, we consider several simple examples of multi-variable functions, quadratic surfaces and projections, level curves and surfaces, partial derivatives of

More information

Stable and Multiscale Topological Signatures

Stable and Multiscale Topological Signatures Stable and Multiscale Topological Signatures Mathieu Carrière, Steve Oudot, Maks Ovsjanikov Inria Saclay Geometrica April 21, 2015 1 / 31 Shape = point cloud in R d (d = 3) 2 / 31 Signature = mathematical

More information

Detection and Characterization of Intrinsic Symmetry of 3D Shapes

Detection and Characterization of Intrinsic Symmetry of 3D Shapes Detection and Characterization of Intrinsic Symmetry of 3D Shapes Anirban Mukhopadhyay Suchendra M. Bhandarkar Fatih Porikli Department of Visual Data Analysis, Zuse Institute Berlin, Berlin, Germany Department

More information

Characterizing Shape Using Conformal Factors

Characterizing Shape Using Conformal Factors Eurographics Workshop on 3D Object Retrieval (28) I. Pratikakis and T. Theoharis (Editors) Characterizing Shape Using Conformal Factors Mirela Ben-Chen and Craig Gotsman Technion Israel Institute of Technology

More information

Hyperbolic Invariants and Computing hyperbolic structures on 3-Orbifolds. Craig Hodgson. University of Melbourne

Hyperbolic Invariants and Computing hyperbolic structures on 3-Orbifolds. Craig Hodgson. University of Melbourne Hyperbolic Invariants and Computing hyperbolic structures on 3-Orbifolds Craig Hodgson University of Melbourne Some References W. Thurston, Geometry and topology of 3-manifolds, Lecture Notes, Princeton

More information

1.7.1 Laplacian Smoothing

1.7.1 Laplacian Smoothing 1.7.1 Laplacian Smoothing 320491: Advanced Graphics - Chapter 1 434 Theory Minimize energy functional total curvature estimate by polynomial-fitting non-linear (very slow!) 320491: Advanced Graphics -

More information

Mathematical Tools for 3D Shape Analysis and Description

Mathematical Tools for 3D Shape Analysis and Description outline Mathematical Tools for 3D Shape Analysis and Description SGP 2013 Graduate School Silvia Biasotti, Andrea Cerri, Michela Spagnuolo Istituto di Matematica Applicata e Tecnologie Informatiche E.

More information

Estimating normal vectors and curvatures by centroid weights

Estimating normal vectors and curvatures by centroid weights Computer Aided Geometric Design 21 (2004) 447 458 www.elsevier.com/locate/cagd Estimating normal vectors and curvatures by centroid weights Sheng-Gwo Chen, Jyh-Yang Wu Department of Mathematics, National

More information

A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching

A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching International Journal of Computer Vision manuscript No. (will be inserted by the editor) A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching Alexander

More information

Big Data Analytics. Special Topics for Computer Science CSE CSE Feb 11

Big Data Analytics. Special Topics for Computer Science CSE CSE Feb 11 Big Data Analytics Special Topics for Computer Science CSE 4095-001 CSE 5095-005 Feb 11 Fei Wang Associate Professor Department of Computer Science and Engineering fei_wang@uconn.edu Clustering II Spectral

More information

Subdivision. Outline. Key Questions. Subdivision Surfaces. Advanced Computer Graphics (Spring 2013) Video: Geri s Game (outside link)

Subdivision. Outline. Key Questions. Subdivision Surfaces. Advanced Computer Graphics (Spring 2013) Video: Geri s Game (outside link) Advanced Computer Graphics (Spring 03) CS 83, Lecture 7: Subdivision Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs83/sp3 Slides courtesy of Szymon Rusinkiewicz, James O Brien with material from Denis

More information

Fast marching methods

Fast marching methods 1 Fast marching methods Lecture 3 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 Metric discretization 2 Approach I:

More information

A Geometric Perspective on Machine Learning

A Geometric Perspective on Machine Learning A Geometric Perspective on Machine Learning Partha Niyogi The University of Chicago Collaborators: M. Belkin, V. Sindhwani, X. He, S. Smale, S. Weinberger A Geometric Perspectiveon Machine Learning p.1

More information

Shape Matching for 3D Retrieval and Recognition. Agenda. 3D collections. Ivan Sipiran and Benjamin Bustos

Shape Matching for 3D Retrieval and Recognition. Agenda. 3D collections. Ivan Sipiran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition Ivan Sipiran and Benjamin Bustos PRISMA Research Group Department of Computer Science University of Chile Agenda Introduction Applications Datasets Shape

More information

Volumetric Heat Kernel Signatures

Volumetric Heat Kernel Signatures Volumetric Heat Kernel Signatures ABSTRACT Dan Raviv Dept. of Computer Science, Technion Haifa, Israel darav@cs.technion.ac.il Alexander M. Bronstein Dept. of Electrical Engineering, Tel-Aviv Univ. Tel-Aviv,

More information

On the null space of a Colin de Verdière matrix

On the null space of a Colin de Verdière matrix On the null space of a Colin de Verdière matrix László Lovász 1 and Alexander Schrijver 2 Dedicated to the memory of François Jaeger Abstract. Let G = (V, E) be a 3-connected planar graph, with V = {1,...,

More information

Def De orma f tion orma Disney/Pixar

Def De orma f tion orma Disney/Pixar Deformation Disney/Pixar Deformation 2 Motivation Easy modeling generate new shapes by deforming existing ones 3 Motivation Easy modeling generate new shapes by deforming existing ones 4 Motivation Character

More information

Salient Critical Points for Meshes

Salient Critical Points for Meshes Salient Critical Points for Meshes Yu-Shen Liu Min Liu Daisuke Kihara Karthik Ramani Purdue University, West Lafayette, Indiana, USA (a) (b) (c) (d) Figure 1: Salient critical points (the blue, red, and

More information

COMP 9517 Computer Vision

COMP 9517 Computer Vision COMP 9517 Computer Vision Pa6ern Recogni:on (1) 1 Introduc:on Pa#ern recogni,on is the scien:fic discipline whose goal is the classifica:on of objects into a number of categories or classes Pa6ern recogni:on

More information

Improvements in Dynamic Partitioning. Aman Arora Snehal Chitnavis

Improvements in Dynamic Partitioning. Aman Arora Snehal Chitnavis Improvements in Dynamic Partitioning Aman Arora Snehal Chitnavis Introduction Partitioning - Decomposition & Assignment Break up computation into maximum number of small concurrent computations that can

More information

Saab. Kyle McDonald. Polygon Meshes

Saab. Kyle McDonald. Polygon Meshes Saab Kyle McDonald Polygon Meshes Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749 What is a polygon mesh? Like a point cloud, it is a discrete sampling of a surface... but, it adds linear (flat)

More information

A Global Laplacian Smoothing Approach with Feature Preservation

A Global Laplacian Smoothing Approach with Feature Preservation A Global Laplacian Smoothing Approach with Feature Preservation hongping Ji Ligang Liu Guojin Wang Department of Mathematics State Key Lab of CAD&CG hejiang University Hangzhou, 310027 P.R. China jzpboy@yahoo.com.cn,

More information

SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS

SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS JIAN LIANG AND HONGKAI ZHAO Abstract. In this paper we present a general framework for solving partial differential equations on manifolds represented

More information

COMPUTING CONFORMAL INVARIANTS: PERIOD MATRICES

COMPUTING CONFORMAL INVARIANTS: PERIOD MATRICES COMMUNICATIONS IN INFORMATION AND SYSTEMS c 2004 International Press Vol. 3, No. 3, pp. 153-170, March 2004 001 COMPUTING CONFORMAL INVARIANTS: PERIOD MATRICES XIANFENG GU, YALIN WANG, AND SHING-TUNG YAU

More information

Geodesics in heat: A new approach to computing distance

Geodesics in heat: A new approach to computing distance Geodesics in heat: A new approach to computing distance based on heat flow Diana Papyan Faculty of Informatics - Technische Universität München Abstract In this report we are going to introduce new method

More information

On the relationship between the algebraic connectivity and graph s robustness to node and link failures

On the relationship between the algebraic connectivity and graph s robustness to node and link failures On the relationship between the algebraic connectivity and graph s robustness to node and link failures A. Jamakovic, S. Uhlig Delft University of Technology Electrical Engineering, Mathematics and Computer

More information

Graph Theory Problem Ideas

Graph Theory Problem Ideas Graph Theory Problem Ideas April 15, 017 Note: Please let me know if you have a problem that you would like me to add to the list! 1 Classification Given a degree sequence d 1,...,d n, let N d1,...,d n

More information

Cospectral graphs. Presented by: Steve Butler. 21 April 2011

Cospectral graphs. Presented by: Steve Butler. 21 April 2011 ospectral graphs Presented by: Steve utler 21 April 2011 Two non-isomorphic graphs are said to be cospectral with respect to a given matrix if they have the same eigenvalues. ospectral graphs help to show

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 12 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Lecture 7: Spectral Clustering; Linear Dimensionality Reduc:on via Principal Component Analysis

Lecture 7: Spectral Clustering; Linear Dimensionality Reduc:on via Principal Component Analysis Lecture 7: Spectral Clustering; Linear Dimensionality Reduc:on via Principal Component Analysis Lester Mackey April, Stats 6B: Unsupervised Learning Blackboard discussion See lecture notes Spectral clustering

More information

Aspects of Geometry. Finite models of the projective plane and coordinates

Aspects of Geometry. Finite models of the projective plane and coordinates Review Sheet There will be an exam on Thursday, February 14. The exam will cover topics up through material from projective geometry through Day 3 of the DIY Hyperbolic geometry packet. Below are some

More information

Robust Watermarking of Point-Sampled Geometry

Robust Watermarking of Point-Sampled Geometry Robust Watermarking of Point-Sampled Geometry Daniel Cotting 1 Tim Weyrich 1 Mark Pauly 2 Markus Gross 1 1 Computer Graphics Laboratory Swiss Federal Institute of Technology (ETH) Zurich, Switzerland {dcotting,

More information

Exact Volume of Hyperbolic 2-bridge Links

Exact Volume of Hyperbolic 2-bridge Links Exact Volume of Hyperbolic 2-bridge Links Anastasiia Tsvietkova Louisiana State University Parts of this work are joint with M. Thislethwaite, O. Dasbach Anastasiia Tsvietkova (Louisiana State University

More information