Roberto s Notes on Integral Calculus Chapter 3: Basics of differential equations Section 6. Euler s method. for approximate solutions of IVP s

Size: px
Start display at page:

Download "Roberto s Notes on Integral Calculus Chapter 3: Basics of differential equations Section 6. Euler s method. for approximate solutions of IVP s"

Transcription

1 Roberto s Notes on Integral Calculus Chapter 3: Basics of differential equations Section 6 Euler s method for approximate solutions of IVP s What ou need to know alread: What an initial value problem is. How to construct the linearization of a function at a point. What ou can learn here: How to obtain an approximate solution to an initial value problem (IVP), without solving its ODE. We have seen onl a few basic methods for solving ODE s and man more are available. However, not ever ODE can be solved exactl and when the cannot, it ma be nice to have a method that provides an approximate solution. Such methods do exist and the rel on intense computational work and are therefore best suited for computer programming. Here we shall focus not on the computational part, but on the principles and ideas behind one such method. As the title of the section suggests, the method I am referring to is Euler s method, named after the great mathematician Leonhard Euler. It can be applied to an first order initial value problem in whose ODE the first derivative can be isolated, that is, an ODE that can be written in the form: ' F( x, ) In this situation, the ODE allows us to compute the slope of the solution that contains an given point (x, ). This value and the point itself allow us to construct a linear approximation of the function near that point, thus leading us to a new point nearb. Continuing the process allows us to construct not a formula, but a table of values whose corresponding graph approximate the solution we are seeking. Here is the formal description of the process. Euler s strateg for approximating the solution of a first order IVP If a first order initial value problem can be written as: ' F( x, ), x 0 0 where x0, 0 is a given point, an approximation to its solution f () x can be obtained as follows:. Determine a step size h corresponding to a small change of x. This should be chosen small enough to allow a good approximation, but large enough to make the computations feasible in a reasonable number of steps.. Use the linear approximation formula Integral Calculus Chapter 3: Basics of differential equations Section 6: Euler s method for approximate solutions Page

2 ( ) ( ) f x h f x f x h and the starting point x0, 0 to obtain an approximation to the coordinate of the point at x x h: 0 f ( x ) F x, h 0 0 0, This generates the new point x. 3. Repeat the same process b using, x to obtain an estimate of the next point, x., 4. Keep repeating the same process, b using the iterative formula ( ), f x f x F x h n n n n to obtain as man points as needed All we know about this phantom function is a point on it and a formula for its slope at an point, F x, the given point x b using the slope, 0, 0. So, we start b constructing the tangent line at F x. 0 0 On this tangent line we can identif a point nearb, at x x0 h, for a small value of h. We call this new point x., Wait a minute! What exactl are we accomplishing with all these formulae and how do I know that the work? Excellent point! Here is a visual representation of the process. We are tring to construct an unknown function curve. f x, represented here with a dashed Notice, however, that this second point is not on the solution we are seeking, but on a different one near it. This means that for the next step we will use the tangent line to a nearb solution, therefore adding inaccurac of the approximation. Still, we now have a new point and we can repeat the procedure to obtain a third point and more. Integral Calculus Chapter 3: Basics of differential equations Section 6: Euler s method for approximate solutions Page

3 So, b using this procedure we build each step on the approximation of the previous one. This implies that the approximations usuall tend to become worse as we move awa from the original point. B using small steps, that is, small values of h, we hope not to wander too far from to the solution we want. Notice also that this method is iterative, that is, it repeats each step on the basis of the previous one. Example: 3 x, We are here in a suitable setting to use Euler s method to approximate the value of, sa, (). To do that, we first pick a value for h that is not too large or small. If we tr h 0., we get the following iteration formula: / 3 / x 0. n n n n n n B appling the formula repeatedl, we obtain the following table of values: xn n / n Therefore () But we can also look at a plot of the points so obtained, in the hope of extracting more information about the solution of the whole IVP: x n n What kind of additional information? Technical fact If the plot obtained from Euler s method shows a fairl linear pattern, it means that the solution is also linear and hence the approximation, which uses tangent lines, is fairl good. If the plot obtained from Euler s method shows an upward concavit, it means that the tangent lines used for the approximation are below the curve and hence we have an underestimate of the true values. If the plot obtained from Euler s method shows a downward concavit, it means that the tangent lines used for the approximation are above the curve and hence we have an overestimate of the true values. If the plot shows marked changes in concavit, it means that the tangent lines used in the approximations diverge quickl from the real solutions and hence the estimate is likel not good. 0-3 For instance, in our previous example we can see that the estimated solution seems concave down. This tells us that the approximation we obtained is likel an overestimate and the true value of () is likel lower than Moreover, the curve seems to be more concave at the beginning and flatter later. This ma indicate an unsatisfactor qualit of the approximation. Likel? Seems? Ma? Not too sure, are we? No, we are not! Remember that this is a method to approximate a solution and, like all such methods, there is the big question of how trustworth our conclusions are. There is a whole area of mathematics devoted to that, but it is beond our current goals. What we can tr for now, however, is to compare the approximation to the exact solution when we can compute the latter. Here is an example. Integral Calculus Chapter 3: Basics of differential equations Section 6: Euler s method for approximate solutions Page 3

4 Example: tan, 0 6 This initial value problem can be solved exactl, since it is separable, and it gives the function: x e sin whose graph is shown here. Let us see how Euler s method performs here. If we use h 0., the iterative formula becomes: F x, h 0. tan n n n n n n We now implement it for 3 steps: x0, 0 0,. tan x, 0., tan x 3 x, 0.6,.989, 0.4, tan If we plot these points against the real solution, we obtain this graph: Notice that the concavit of the solution is up and, correspondingl, we get underestimates. The qualit of the approximation is not bad, but will it sta this good for long, or will it deteriorate quickl as we consider more points? Fortunatel here the domain is limited, because of the inverse sine function, so the danger is not big, but in other cases it ma be. So, should we alwas use h=0.? No, an small number ma be reasonable and in practical applications it ma be wise to tr several values of h and observe how different the corresponding estimates are. When the are ver different, a smaller step size should be used. But remember that a smaller step size implies more steps to get to where we need to go or to get a sufficientl large section of the solution. It s all a question of balance Summar Euler s method allows us to approximate the solutions of an initial value problem b using tangent lines at several points, close to each other. Since each step moves the estimated approximation to a different solution, such approximations ma worsen with an increasing number of steps. The step size should be small enough to not exacerbate the cumulative approximations, but large enough to allow the needed estimate. Don t get confused in the midst of the notation an formulae! Common errors to avoid Integral Calculus Chapter 3: Basics of differential equations Section 6: Euler s method for approximate solutions Page 4

5 Learning questions for Section I 3-6 Review questions:. Describe how Euler s method works. Memor questions:. To which differential equations can we appl Euler s method?. What is the iterative formula for Euler s method? Computation questions: For each of the initial value problems presented in questions -0, and for the corresponding desired value: a) Decide on a suitable value of the step size. b) Construct the iterative formula of Euler s method. c) Appl the formula to obtain the required value of the function. d) Plot the point and observed the concavit to determine whether what ou obtained is an overestimate or an underestimate. e) If possible, solve the problem exactl and compare it to Euler s approximation.. x, () ; find (.) 6. x, ; find 5., 4 3; find 5 3. ' 3 x e,, find 0 4. ' x, 0 ; find x x 0, ; find 7. cos( x), (0) ; find (0.6) 8. x, 0 ; find ' cos x, x 3 ', (), find., find 0.5 Integral Calculus Chapter 3: Basics of differential equations Section 6: Euler s method for approximate solutions Page 5

6 Theor questions:. For what tpe of ODE s is Euler s method usable?. Wh is it necessar to use Euler s method for certain ODEs? 3. For what kinds of solutions is Euler s method guaranteed to provide an exact solution of the problem? 4. Does Euler s method provide a better approximation for smaller or larger values of h? 5. If the points obtained with Euler s method form a downward concavit, what can we sa about the approximation it provides? 6. If the points obtained with Euler s method form an upward concavit, what can we sa about the approximation it provides? 7. What is one disadvantage of using a small step size in Euler s method? 8. Besides the iterative formula itself, what other approximation occurs in Euler s method? 9. If Euler s method provides a good approximation to a given ODE, what can be said about the second derivative of the solution it approximates? 0. If Euler s method provides an underestimate, what can be said about the second derivative of the solution it approximates?. If Euler s method provides an overestimate, what can be said about the second derivative of the solution it approximates?. When will Euler s method provide a ver poor estimate? Application questions:. In order to complete a certain design, ou must find an approximate solution for the initial value problem cos( x ); (0) 0 for x between 0 and 0. Set up the formula for Euler s approximation and use it to compute the first three steps of this approximation, b using a suitable value of h.. A battle between an Evil Empire arm of E soldiers and a Rebel Alliance group of R fighters is fought according to the Lanchester ODE de 5R dr E. If at the start of the battle E 000 and R 300, what will be the size of the Empire s arm when the Rebels have lost 30 fighters, as estimated b Euler s method with a new estimate for each 0 Rebels lost? What questions do ou have for our instructor? Integral Calculus Chapter 3: Basics of differential equations Section 6: Euler s method for approximate solutions Page 6

Implicit differentiation

Implicit differentiation Roberto s Notes on Differential Calculus Chapter 4: Basic differentiation rules Section 5 Implicit differentiation What ou need to know alread: Basic rules of differentiation, including the chain rule.

More information

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 5. Graph sketching

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 5. Graph sketching Roberto s Notes on Differential Calculus Chapter 8: Graphical analsis Section 5 Graph sketching What ou need to know alread: How to compute and interpret limits How to perform first and second derivative

More information

Topic 2 Transformations of Functions

Topic 2 Transformations of Functions Week Topic Transformations of Functions Week Topic Transformations of Functions This topic can be a little trick, especiall when one problem has several transformations. We re going to work through each

More information

ABSOLUTE EXTREMA AND THE MEAN VALUE THEOREM

ABSOLUTE EXTREMA AND THE MEAN VALUE THEOREM 61 LESSON 4-1 ABSOLUTE EXTREMA AND THE MEAN VALUE THEOREM Definitions (informal) The absolute maimum (global maimum) of a function is the -value that is greater than or equal to all other -values in the

More information

Implicit Differentiation - the basics

Implicit Differentiation - the basics x x 6 Implicit Differentiation - the basics Implicit differentiation is the name for the method of differentiation that we use when we have not explicitl solved for in terms of x (that means we did not

More information

3/1/2016. Calculus: A Reminder. Calculus: A Reminder. Calculus: A Reminder. Calculus: A Reminder. Calculus: A Reminder. Calculus: A Reminder

3/1/2016. Calculus: A Reminder. Calculus: A Reminder. Calculus: A Reminder. Calculus: A Reminder. Calculus: A Reminder. Calculus: A Reminder 1 Intermediate Microeconomics W3211 Lecture 5: Choice and Demand Introduction Columbia Universit, Spring 2016 Mark Dean: mark.dean@columbia.edu 2 The Stor So Far. 3 Toda s Aims 4 We have now have had a

More information

SECTION 6-8 Graphing More General Tangent, Cotangent, Secant, and Cosecant Functions

SECTION 6-8 Graphing More General Tangent, Cotangent, Secant, and Cosecant Functions 6-8 Graphing More General Tangent, Cotangent, Secant, and Cosecant Functions 9 duce a scatter plot in the viewing window. Choose 8 for the viewing window. (B) It appears that a sine curve of the form k

More information

Social Science/Commerce Calculus I: Assignment #6 - Solutions Page 1/14

Social Science/Commerce Calculus I: Assignment #6 - Solutions Page 1/14 Social Science/Commerce Calculus I: Assignment #6 - Solutions Page 1/14 3 1. Let f (x) = -2x - 5x + 1. Use the rules of differentiation to compute: 2 The first derivative of f (x): -6x - 5 The second derivative

More information

Chapter 1. Limits and Continuity. 1.1 Limits

Chapter 1. Limits and Continuity. 1.1 Limits Chapter Limits and Continuit. Limits The its is the fundamental notion of calculus. This underling concept is the thread that binds together virtuall all of the calculus ou are about to stud. In this section,

More information

Lesson 12: Sine 5 = 15 3

Lesson 12: Sine 5 = 15 3 Lesson 12: Sine How did ou do on that last worksheet? Is finding the opposite side and adjacent side of an angle super-duper eas for ou now? Good, now I can show ou wh I wanted ou to learn that first.

More information

20 Calculus and Structures

20 Calculus and Structures 0 Calculus and Structures CHAPTER FUNCTIONS Calculus and Structures Copright LESSON FUNCTIONS. FUNCTIONS A function f is a relationship between an input and an output and a set of instructions as to how

More information

4.4. Concavity and Curve Sketching. Concavity

4.4. Concavity and Curve Sketching. Concavity 4.4 Concavit and Curve Sketching 267 4.4 Concavit and Curve Sketching f' decreases CONCAVE DOWN 3 f' increases 0 CONCAVE UP FIGURE 4.25 The graph of ƒsd = 3 is concave down on s - q, 0d and concave up

More information

MA123, Chapter 6: Extreme values, Mean Value Theorem, Curve sketching, and Concavity

MA123, Chapter 6: Extreme values, Mean Value Theorem, Curve sketching, and Concavity MA123, Chapter 6: Etreme values, Mean Value Theorem, Curve sketching, and Concavit Chapter Goals: Appl the Etreme Value Theorem to find the global etrema for continuous function on closed and bounded interval.

More information

Math 1525 Excel Lab 9 Fall 2000 This lab is designed to help you discover how to use Excel to identify relative extrema for a given function.

Math 1525 Excel Lab 9 Fall 2000 This lab is designed to help you discover how to use Excel to identify relative extrema for a given function. Math 1525 Excel Lab 9 Fall 2 This lab is designed to help ou discover how to use Excel to identif relative extrema for a given function. Example #1. Stud the data table and graph below for the function

More information

0 COORDINATE GEOMETRY

0 COORDINATE GEOMETRY 0 COORDINATE GEOMETRY Coordinate Geometr 0-1 Equations of Lines 0- Parallel and Perpendicular Lines 0- Intersecting Lines 0- Midpoints, Distance Formula, Segment Lengths 0- Equations of Circles 0-6 Problem

More information

Dept. of Computing Science & Math

Dept. of Computing Science & Math Lecture 4: Multi-Laer Perceptrons 1 Revie of Gradient Descent Learning 1. The purpose of neural netor training is to minimize the output errors on a particular set of training data b adusting the netor

More information

Chapter Three Chapter Three

Chapter Three Chapter Three Chapter Three Chapter Three 90 CHAPTER THREE ConcepTests for Section.. If f () = g (), then f() = g(). (a) True (b) False (b). If f () = g (), then f() = g() + C, where C is some constant. You might point

More information

0.1 Solving and Plotting ODE s

0.1 Solving and Plotting ODE s > restart; Differential Equations In this worksheet we demonstrate basic techniques of working withordinar differential equations, (ODE s), using Maple. An ODE is a differential equation in which the unknown

More information

y = f(x) x (x, f(x)) f(x) g(x) = f(x) + 2 (x, g(x)) 0 (0, 1) 1 3 (0, 3) 2 (2, 3) 3 5 (2, 5) 4 (4, 3) 3 5 (4, 5) 5 (5, 5) 5 7 (5, 7)

y = f(x) x (x, f(x)) f(x) g(x) = f(x) + 2 (x, g(x)) 0 (0, 1) 1 3 (0, 3) 2 (2, 3) 3 5 (2, 5) 4 (4, 3) 3 5 (4, 5) 5 (5, 5) 5 7 (5, 7) 0 Relations and Functions.7 Transformations In this section, we stud how the graphs of functions change, or transform, when certain specialized modifications are made to their formulas. The transformations

More information

Algebra I Notes Linear Functions & Inequalities Part I Unit 5 UNIT 5 LINEAR FUNCTIONS AND LINEAR INEQUALITIES IN TWO VARIABLES

Algebra I Notes Linear Functions & Inequalities Part I Unit 5 UNIT 5 LINEAR FUNCTIONS AND LINEAR INEQUALITIES IN TWO VARIABLES UNIT LINEAR FUNCTIONS AND LINEAR INEQUALITIES IN TWO VARIABLES PREREQUISITE SKILLS: students must know how to graph points on the coordinate plane students must understand ratios, rates and unit rate VOCABULARY:

More information

Pre-Algebra Notes Unit 8: Graphs and Functions

Pre-Algebra Notes Unit 8: Graphs and Functions Pre-Algebra Notes Unit 8: Graphs and Functions The Coordinate Plane A coordinate plane is formed b the intersection of a horizontal number line called the -ais and a vertical number line called the -ais.

More information

Unit 4 Trigonometry. Study Notes 1 Right Triangle Trigonometry (Section 8.1)

Unit 4 Trigonometry. Study Notes 1 Right Triangle Trigonometry (Section 8.1) Unit 4 Trigonometr Stud Notes 1 Right Triangle Trigonometr (Section 8.1) Objective: Evaluate trigonometric functions of acute angles. Use a calculator to evaluate trigonometric functions. Use trigonometric

More information

Student Page. Algebra/ Day #4 90 Minute Class Functions, Patterns and X-Y Tables

Student Page. Algebra/ Day #4 90 Minute Class Functions, Patterns and X-Y Tables Student Page Algebra/ Da #4 90 Minute Class Functions, Patterns and X-Y Tables Definition: A relation is an set of ordered pairs Ex: # {(,), (-7,6), (-,4)} # { (0,8), (-, ), (0,6)} Definition: A function

More information

Derivatives 3: The Derivative as a Function

Derivatives 3: The Derivative as a Function Derivatives : The Derivative as a Function 77 Derivatives : The Derivative as a Function Model : Graph of a Function 9 8 7 6 5 g() - - - 5 6 7 8 9 0 5 6 7 8 9 0 5 - - -5-6 -7 Construct Your Understanding

More information

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology Intermediate Algebra Gregg Waterman Oregon Institute of Technolog c 2017 Gregg Waterman This work is licensed under the Creative Commons Attribution 4.0 International license. The essence of the license

More information

Euler s Method for Approximating Solution Curves

Euler s Method for Approximating Solution Curves Euler s Method for Approximating Solution Curves As you may have begun to suspect at this point, time constraints will allow us to learn only a few of the many known methods for solving differential equations.

More information

Section 4.2 Graphing Lines

Section 4.2 Graphing Lines Section. Graphing Lines Objectives In this section, ou will learn to: To successfull complete this section, ou need to understand: Identif collinear points. The order of operations (1.) Graph the line

More information

3.9 Differentials. Tangent Line Approximations. Exploration. Using a Tangent Line Approximation

3.9 Differentials. Tangent Line Approximations. Exploration. Using a Tangent Line Approximation 3.9 Differentials 3 3.9 Differentials Understand the concept of a tangent line approimation. Compare the value of the differential, d, with the actual change in,. Estimate a propagated error using a differential.

More information

turn counterclockwise from the positive x-axis. However, we could equally well get to this point by a 3 4 turn clockwise, giving (r, θ) = (1, 3π 2

turn counterclockwise from the positive x-axis. However, we could equally well get to this point by a 3 4 turn clockwise, giving (r, θ) = (1, 3π 2 Math 133 Polar Coordinates Stewart 10.3/I,II Points in polar coordinates. The first and greatest achievement of modern mathematics was Descartes description of geometric objects b numbers, using a sstem

More information

9.1 Solutions, Slope Fields, and Euler s Method

9.1 Solutions, Slope Fields, and Euler s Method Math 181 www.timetodare.com 9.1 Solutions, Slope Fields, and Euler s Method In-class work: Model of Population Growth One model for the growth of a population is based on the assumption that the population

More information

2.2 Absolute Value Functions

2.2 Absolute Value Functions . Absolute Value Functions 7. Absolute Value Functions There are a few was to describe what is meant b the absolute value of a real number. You ma have been taught that is the distance from the real number

More information

LINEAR PROGRAMMING. Straight line graphs LESSON

LINEAR PROGRAMMING. Straight line graphs LESSON LINEAR PROGRAMMING Traditionall we appl our knowledge of Linear Programming to help us solve real world problems (which is referred to as modelling). Linear Programming is often linked to the field of

More information

science. In this course we investigate problems both algebraically and graphically.

science. In this course we investigate problems both algebraically and graphically. Section. Graphs. Graphs Much of algebra is concerned with solving equations. Man algebraic techniques have been developed to provide insights into various sorts of equations and those techniques are essential

More information

4.7 INVERSE TRIGONOMETRIC FUNCTIONS

4.7 INVERSE TRIGONOMETRIC FUNCTIONS Section 4.7 Inverse Trigonometric Functions 4 4.7 INVERSE TRIGONOMETRIC FUNCTIONS NASA What ou should learn Evaluate and graph the inverse sine function. Evaluate and graph the other inverse trigonometric

More information

Polar Functions Polar coordinates

Polar Functions Polar coordinates 548 Chapter 1 Parametric, Vector, and Polar Functions 1. What ou ll learn about Polar Coordinates Polar Curves Slopes of Polar Curves Areas Enclosed b Polar Curves A Small Polar Galler... and wh Polar

More information

IB SL REVIEW and PRACTICE

IB SL REVIEW and PRACTICE IB SL REVIEW and PRACTICE Topic: CALCULUS Here are sample problems that deal with calculus. You ma use the formula sheet for all problems. Chapters 16 in our Tet can help ou review. NO CALCULATOR Problems

More information

Transformations of Functions. 1. Shifting, reflecting, and stretching graphs Symmetry of functions and equations

Transformations of Functions. 1. Shifting, reflecting, and stretching graphs Symmetry of functions and equations Chapter Transformations of Functions TOPICS.5.. Shifting, reflecting, and stretching graphs Smmetr of functions and equations TOPIC Horizontal Shifting/ Translation Horizontal Shifting/ Translation Shifting,

More information

Flux Integrals. Solution. We want to visualize the surface together with the vector field. Here s a picture of exactly that:

Flux Integrals. Solution. We want to visualize the surface together with the vector field. Here s a picture of exactly that: Flu Integrals The pictures for problems # - #4 are on the last page.. Let s orient each of the three pictured surfaces so that the light side is considered to be the positie side. Decide whether each of

More information

Section 1.4 Limits involving infinity

Section 1.4 Limits involving infinity Section. Limits involving infinit (/3/08) Overview: In later chapters we will need notation and terminolog to describe the behavior of functions in cases where the variable or the value of the function

More information

Week 10. Topic 1 Polynomial Functions

Week 10. Topic 1 Polynomial Functions Week 10 Topic 1 Polnomial Functions 1 Week 10 Topic 1 Polnomial Functions Reading Polnomial functions result from adding power functions 1 together. Their graphs can be ver complicated, so the come up

More information

Increasing/Decreasing Behavior

Increasing/Decreasing Behavior Derivatives and the Shapes of Graphs In this section, we will specifically discuss the information that f (x) and f (x) give us about the graph of f(x); it turns out understanding the first and second

More information

of Straight Lines 1. The straight line with gradient 3 which passes through the point,2

of Straight Lines 1. The straight line with gradient 3 which passes through the point,2 Learning Enhancement Team Model answers: Finding Equations of Straight Lines Finding Equations of Straight Lines stud guide The straight line with gradient 3 which passes through the point, 4 is 3 0 Because

More information

Using Characteristics of a Quadratic Function to Describe Its Graph. The graphs of quadratic functions can be described using key characteristics:

Using Characteristics of a Quadratic Function to Describe Its Graph. The graphs of quadratic functions can be described using key characteristics: Chapter Summar Ke Terms standard form of a quadratic function (.1) factored form of a quadratic function (.1) verte form of a quadratic function (.1) concavit of a parabola (.1) reference points (.) transformation

More information

Why Use Graphs? Test Grade. Time Sleeping (Hrs) Time Sleeping (Hrs) Test Grade

Why Use Graphs? Test Grade. Time Sleeping (Hrs) Time Sleeping (Hrs) Test Grade Analyzing Graphs Why Use Graphs? It has once been said that a picture is worth a thousand words. This is very true in science. In science we deal with numbers, some times a great many numbers. These numbers,

More information

2.9 Linear Approximations and Differentials

2.9 Linear Approximations and Differentials 2.9 Linear Approximations and Differentials 2.9.1 Linear Approximation Consider the following graph, Recall that this is the tangent line at x = a. We had the following definition, f (a) = lim x a f(x)

More information

MATHEMATICAL METHODS UNITS 3 AND Sketching Polynomial Graphs

MATHEMATICAL METHODS UNITS 3 AND Sketching Polynomial Graphs Maths Methods 1 MATHEMATICAL METHODS UNITS 3 AND 4.3 Sketching Polnomial Graphs ou are required to e ale to sketch the following graphs. 1. Linear functions. Eg. = ax + These graphs when drawn will form

More information

Section 2.2: Absolute Value Functions, from College Algebra: Corrected Edition by Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a

Section 2.2: Absolute Value Functions, from College Algebra: Corrected Edition by Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Section.: Absolute Value Functions, from College Algebra: Corrected Edition b Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Creative Commons Attribution-NonCommercial-ShareAlike.0 license.

More information

12.4 The Ellipse. Standard Form of an Ellipse Centered at (0, 0) (0, b) (0, -b) center

12.4 The Ellipse. Standard Form of an Ellipse Centered at (0, 0) (0, b) (0, -b) center . The Ellipse The net one of our conic sections we would like to discuss is the ellipse. We will start b looking at the ellipse centered at the origin and then move it awa from the origin. Standard Form

More information

Edexcel Mechanics 2 Kinematics of a particle. Section 1: Projectiles

Edexcel Mechanics 2 Kinematics of a particle. Section 1: Projectiles Edecel Mechanics Kinematics of a particle Section 1: Projectiles Notes and Eamples These notes contain subsections on Investigating projectiles Modelling assumptions General strateg for projectile questions

More information

Connecticut Common Core Algebra 1 Curriculum. Professional Development Materials. Unit 4 Linear Functions

Connecticut Common Core Algebra 1 Curriculum. Professional Development Materials. Unit 4 Linear Functions Connecticut Common Core Algebra Curriculum Professional Development Materials Unit 4 Linear Functions Contents Activit 4.. What Makes a Function Linear? Activit 4.3. What is Slope? Activit 4.3. Horizontal

More information

Unit 2: Function Transformation Chapter 1

Unit 2: Function Transformation Chapter 1 Basic Transformations Reflections Inverses Unit 2: Function Transformation Chapter 1 Section 1.1: Horizontal and Vertical Transformations A of a function alters the and an combination of the of the graph.

More information

Discover how to solve this problem in this chapter.

Discover how to solve this problem in this chapter. A 2 cm tall object is 12 cm in front of a spherical mirror. A 1.2 cm tall erect image is then obtained. What kind of mirror is used (concave, plane or convex) and what is its focal length? www.totalsafes.co.uk/interior-convex-mirror-900mm.html

More information

Trigonometric Functions. Copyright Cengage Learning. All rights reserved.

Trigonometric Functions. Copyright Cengage Learning. All rights reserved. 4 Trigonometric Functions Copyright Cengage Learning. All rights reserved. 4.7 Inverse Trigonometric Functions Copyright Cengage Learning. All rights reserved. What You Should Learn Evaluate and graph

More information

Section 1.4: Graphing Calculators and Computers

Section 1.4: Graphing Calculators and Computers Section 1.4: Graphing Calculators and Computers In this section we shall show some of the was that calculators can help us in mathematics. 1. Calculator Warnings Before we even consider how a calculator

More information

LINEAR TOPICS Notes and Homework: DUE ON EXAM

LINEAR TOPICS Notes and Homework: DUE ON EXAM NAME CLASS PERIOD LINEAR TOPICS Notes and Homework: DUE ON EXAM VOCABULARY: Make sure ou know the definitions of the terms listed below. These will be covered on the exam. Axis Scatter plot b Slope Coordinate

More information

CS 450: COMPUTER GRAPHICS RASTERIZING LINES SPRING 2016 DR. MICHAEL J. REALE

CS 450: COMPUTER GRAPHICS RASTERIZING LINES SPRING 2016 DR. MICHAEL J. REALE CS 45: COMPUTER GRAPHICS RASTERIZING LINES SPRING 6 DR. MICHAEL J. REALE OBJECT-ORDER RENDERING We going to start on how we will perform object-order rendering Object-order rendering Go through each OBJECT

More information

Quantifying the Curvature of Curves: An Intuitive Introduction to Di erential Geometry

Quantifying the Curvature of Curves: An Intuitive Introduction to Di erential Geometry Quantifing the Curvature of Curves: An Intuitive Introduction to Di erential Geometr Jason M. Osborne, William J. Cook, and Michael J. Bossé ovember, 07 Abstract In this paper we introduce the reader to

More information

Section 1.6: Graphs of Functions, from College Algebra: Corrected Edition by Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Creative

Section 1.6: Graphs of Functions, from College Algebra: Corrected Edition by Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Creative Section.6: Graphs of Functions, from College Algebra: Corrected Edition b Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Creative Commons Attribution-NonCommercial-ShareAlike.0 license.

More information

Section 4.3 Features of a Line

Section 4.3 Features of a Line Section.3 Features of a Line Objectives In this section, ou will learn to: To successfull complete this section, ou need to understand: Identif the - and -intercepts of a line. Plotting points in the --plane

More information

Essential Question: How do you graph an exponential function of the form f (x) = ab x? Explore Exploring Graphs of Exponential Functions. 1.

Essential Question: How do you graph an exponential function of the form f (x) = ab x? Explore Exploring Graphs of Exponential Functions. 1. Locker LESSON 4.4 Graphing Eponential Functions Common Core Math Standards The student is epected to: F-IF.7e Graph eponential and logarithmic functions, showing intercepts and end behavior, and trigonometric

More information

MA 220 Lesson 28 Notes Section 3.3 (p. 191, 2 nd half of text)

MA 220 Lesson 28 Notes Section 3.3 (p. 191, 2 nd half of text) MA 220 Lesson 28 Notes Section 3.3 (p. 191, 2 nd half of tet) The property of the graph of a function curving upward or downward is defined as the concavity of the graph of a function. Concavity if how

More information

Graphing Quadratics: Vertex and Intercept Form

Graphing Quadratics: Vertex and Intercept Form Algebra : UNIT Graphing Quadratics: Verte and Intercept Form Date: Welcome to our second function famil...the QUADRATIC FUNCTION! f() = (the parent function) What is different between this function and

More information

g(x) h(x) f (x) = Examples sin x +1 tan x!

g(x) h(x) f (x) = Examples sin x +1 tan x! Lecture 4-5A: An Introduction to Rational Functions A Rational Function f () is epressed as a fraction with a functiong() in the numerator and a function h() in the denominator. f () = g() h() Eamples

More information

LESSON 3.1 INTRODUCTION TO GRAPHING

LESSON 3.1 INTRODUCTION TO GRAPHING LESSON 3.1 INTRODUCTION TO GRAPHING LESSON 3.1 INTRODUCTION TO GRAPHING 137 OVERVIEW Here s what ou ll learn in this lesson: Plotting Points a. The -plane b. The -ais and -ais c. The origin d. Ordered

More information

1.1 Horizontal & Vertical Translations

1.1 Horizontal & Vertical Translations Unit II Transformations of Functions. Horizontal & Vertical Translations Goal: Demonstrate an understanding of the effects of horizontal and vertical translations on the graphs of functions and their related

More information

Table of Contents. Unit 5: Trigonometric Functions. Answer Key...AK-1. Introduction... v

Table of Contents. Unit 5: Trigonometric Functions. Answer Key...AK-1. Introduction... v These materials ma not be reproduced for an purpose. The reproduction of an part for an entire school or school sstem is strictl prohibited. No part of this publication ma be transmitted, stored, or recorded

More information

Special Products on Factoring

Special Products on Factoring Special Products on Factoring What Is This Module About? This module is a continuation of the module on polnomials. In the module entitled Studing Polnomials, ou learned what polnomials are as well as

More information

The Bisection Method versus Newton s Method in Maple (Classic Version for Windows)

The Bisection Method versus Newton s Method in Maple (Classic Version for Windows) The Bisection Method versus (Classic Version for Windows) Author: Barbara Forrest Contact: baforres@uwaterloo.ca Copyrighted/NOT FOR RESALE version 1.1 Contents 1 Objectives for this Lab i 2 Approximate

More information

Calculus & Its Applications Larry J. Goldstein David Lay Nakhle I. Asmar David I. Schneider Thirteenth Edition

Calculus & Its Applications Larry J. Goldstein David Lay Nakhle I. Asmar David I. Schneider Thirteenth Edition Calculus & Its Applications Larr J. Goldstein David La Nakhle I. Asmar David I. Schneider Thirteenth Edition Pearson Education Limited Edinburgh Gate Harlow Esse CM20 2JE England and Associated Companies

More information

2-1. The Language of Functions. Vocabulary

2-1. The Language of Functions. Vocabulary Chapter Lesson -1 BIG IDEA A function is a special tpe of relation that can be described b ordered pairs, graphs, written rules or algebraic rules such as equations. On pages 78 and 79, nine ordered pairs

More information

Module 2: Single Step Methods Lecture 4: The Euler Method. The Lecture Contains: The Euler Method. Euler's Method (Analytical Interpretations)

Module 2: Single Step Methods Lecture 4: The Euler Method. The Lecture Contains: The Euler Method. Euler's Method (Analytical Interpretations) The Lecture Contains: The Euler Method Euler's Method (Analytical Interpretations) An Analytical Example file:///g /Numerical_solutions/lecture4/4_1.htm[8/26/2011 11:14:40 AM] We shall now describe methods

More information

Numerical Analysis Notes

Numerical Analysis Notes Numerical Analsis Notes Foes Team Plotting of = f() contour-lines with Ecel Macro isol.ls The Ecel (XP/) macro isol.ls developed b SimonLuca Santoro and kindl released in the free public domain allows

More information

SM 2. Date: Section: Objective: The Pythagorean Theorem: In a triangle, or

SM 2. Date: Section: Objective: The Pythagorean Theorem: In a triangle, or SM 2 Date: Section: Objective: The Pythagorean Theorem: In a triangle, or. It doesn t matter which leg is a and which leg is b. The hypotenuse is the side across from the right angle. To find the length

More information

Notes Packet on Quadratic Functions and Factoring Graphing quadratic equations in standard form, vertex form, and intercept form.

Notes Packet on Quadratic Functions and Factoring Graphing quadratic equations in standard form, vertex form, and intercept form. Notes Packet on Quadratic Functions and Factoring Graphing quadratic equations in standard form, vertex form, and intercept form. A. Intro to Graphs of Quadratic Equations:! = ax + bx + c A is a function

More information

Contents. How You May Use This Resource Guide

Contents. How You May Use This Resource Guide Contents How You Ma Use This Resource Guide ii 0 Trigonometric Formulas, Identities, and Equations Worksheet 0.: Graphical Analsis of Trig Identities.............. Worksheet 0.: Verifing Trigonometric

More information

Increasing/Decreasing Behavior

Increasing/Decreasing Behavior Derivatives and the Shapes of Graphs In this section, we will specifically discuss the information that f (x) and f (x) give us about the graph of f(x); it turns out understanding the first and second

More information

3x 4y 2. 3y 4. Math 65 Weekly Activity 1 (50 points) Name: Simplify the following expressions. Make sure to use the = symbol appropriately.

3x 4y 2. 3y 4. Math 65 Weekly Activity 1 (50 points) Name: Simplify the following expressions. Make sure to use the = symbol appropriately. Math 65 Weekl Activit 1 (50 points) Name: Simplif the following epressions. Make sure to use the = smbol appropriatel. Due (1) (a) - 4 (b) ( - ) 4 () 8 + 5 6 () 1 5 5 Evaluate the epressions when = - and

More information

The Quadratic function f(x) = x 2 2x 3. y y = x 2 2x 3. We will now begin to study the graphs of the trig functions, y = sinx, y = cosx and y = tanx.

The Quadratic function f(x) = x 2 2x 3. y y = x 2 2x 3. We will now begin to study the graphs of the trig functions, y = sinx, y = cosx and y = tanx. Chapter 7 Trigonometric Graphs Introduction We have alread looked at the graphs of various functions : The Linear function f() = The Quadratic function f() = The Hperbolic function f() = = = = We will

More information

F8-18 Finding the y-intercept from Ordered Pairs

F8-18 Finding the y-intercept from Ordered Pairs F8-8 Finding the -intercept from Ordered Pairs Pages 5 Standards: 8.F.A., 8.F.B. Goals: Students will find the -intercept of a line from a set of ordered pairs. Prior Knowledge Required: Can add, subtract,

More information

3.2 Polynomial Functions of Higher Degree

3.2 Polynomial Functions of Higher Degree 71_00.qp 1/7/06 1: PM Page 6 Section. Polnomial Functions of Higher Degree 6. Polnomial Functions of Higher Degree What ou should learn Graphs of Polnomial Functions You should be able to sketch accurate

More information

Time Series prediction with Feed-Forward Neural Networks -A Beginners Guide and Tutorial for Neuroph. Laura E. Carter-Greaves

Time Series prediction with Feed-Forward Neural Networks -A Beginners Guide and Tutorial for Neuroph. Laura E. Carter-Greaves http://neuroph.sourceforge.net 1 Introduction Time Series prediction with Feed-Forward Neural Networks -A Beginners Guide and Tutorial for Neuroph Laura E. Carter-Greaves Neural networks have been applied

More information

3 Limits Involving Infinity: Asymptotes LIMITS INVOLVING INFINITY. 226 Chapter 3 Additional Applications of the Derivative

3 Limits Involving Infinity: Asymptotes LIMITS INVOLVING INFINITY. 226 Chapter 3 Additional Applications of the Derivative 226 Chapter 3 Additional Applications of the Derivative 52. Given the function f() 2 3 3 2 2 7, complete the following steps: (a) Graph using [, ] b [, ] and [, ] b [ 2, 2]2. (b) Fill in the following

More information

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, THE UNIVERSITY OF NEW MEXICO ECE-238L: Computer Logic Design Fall 2013.

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, THE UNIVERSITY OF NEW MEXICO ECE-238L: Computer Logic Design Fall 2013. ECE-8L: Computer Logic Design Fall Notes - Chapter BINARY NUMBER CONVERSIONS DECIMAL NUMBER SYSTEM A decimal digit can take values from to 9: Digit-b-digit representation of a positive integer number (powers

More information

5.2 Graphing Polynomial Functions

5.2 Graphing Polynomial Functions Locker LESSON 5. Graphing Polnomial Functions Common Core Math Standards The student is epected to: F.IF.7c Graph polnomial functions, identifing zeros when suitable factorizations are available, and showing

More information

Towards a unified measurement of quality for mixed elements

Towards a unified measurement of quality for mixed elements Towards a unified measurement of qualit for mixed elements technical report n 015/01, di utfsm Claudio Lobos Departmento de Informática Universidad Técnica Federico Santa María Santiago, Chile clobos@inf.utfsm.cl

More information

FUNCTIONS AND MODELS

FUNCTIONS AND MODELS 1 FUNCTIONS AND MODELS FUNCTIONS AND MODELS 1.5 Exponential Functions In this section, we will learn about: Exponential functions and their applications. EXPONENTIAL FUNCTIONS The function f(x) = 2 x is

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Eponential and Logarithmic Functions Figure Electron micrograph of E. Coli bacteria (credit: Mattosaurus, Wikimedia Commons) CHAPTER OUTLINE. Eponential Functions. Logarithmic Properties. Graphs of Eponential

More information

Lab #4: 2-Dimensional Kinematics. Projectile Motion

Lab #4: 2-Dimensional Kinematics. Projectile Motion Lab #4: -Dimensional Kinematics Projectile Motion A medieval trebuchet b Kolderer, c1507 http://members.iinet.net.au/~rmine/ht/ht0.html#5 Introduction: In medieval das, people had a ver practical knowledge

More information

Shifting, Reflecting, and Stretching Graphs

Shifting, Reflecting, and Stretching Graphs Shifting, Reflecting, and Stretching s Shifting s 1 ( ) ( ) This is f ( ) This is f ( ) This is f ( ) What happens to the graph? f ( ) is f () shifted units to the right. f ( ) is f () shifted units to

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Eponential and Logarithmic Functions Figure Electron micrograph of E. Coli bacteria (credit: Mattosaurus, Wikimedia Commons) Chapter Outline. Eponential Functions. Logarithmic Properties. Graphs of Eponential

More information

Integrating ICT into mathematics at KS4&5

Integrating ICT into mathematics at KS4&5 Integrating ICT into mathematics at KS4&5 Tom Button tom.button@mei.org.uk www.mei.org.uk/ict/ This session will detail the was in which ICT can currentl be used in the teaching and learning of Mathematics

More information

Slope Fields & Differential Equations

Slope Fields & Differential Equations Slope Fields & Differential Equations Answers 7 8 9 10 11 1 TI-Nspire Investigation Student 45 min Introduction The purpose of this activit is to gain a conceptual understanding of slope fields and differential

More information

Unit 4 Part 1: Graphing Quadratic Functions. Day 1: Vertex Form Day 2: Intercept Form Day 3: Standard Form Day 4: Review Day 5: Quiz

Unit 4 Part 1: Graphing Quadratic Functions. Day 1: Vertex Form Day 2: Intercept Form Day 3: Standard Form Day 4: Review Day 5: Quiz Name: Block: Unit 4 Part 1: Graphing Quadratic Functions Da 1: Verte Form Da 2: Intercept Form Da 3: Standard Form Da 4: Review Da 5: Quiz 1 Quadratic Functions Da1: Introducing.. the QUADRATIC function

More information

Implicit Function Explorations

Implicit Function Explorations Activities with Implicit Functions and Implicit Differentiation on the TI-89/Voyage 00 Dennis Pence Western Michigan University Kalamazoo, Michigan USA Abstract: Unfortunately the topic of implicit differentiation

More information

Engineering and Construction F3HV 11 Maths Craft 1 RIGHT ANGLED TRIANGLES : PYTHAGORAS' THEOREM

Engineering and Construction F3HV 11 Maths Craft 1 RIGHT ANGLED TRIANGLES : PYTHAGORAS' THEOREM RIGHT NGLED TRINGLES : PYTHGORS' THEOREM ver important triangle, in terms of practical use, is the right-angled triangle. In the "real" world, the right-angled triangle is used etensivel. It is a shape

More information

Transforming Linear Functions

Transforming Linear Functions COMMON CORE Locker LESSON 6. Transforming Linear Functions Name Class Date 6. Transforming Linear Functions Essential Question: What are the was in which ou can transform the graph of a linear function?

More information

Math 111 Lecture Notes

Math 111 Lecture Notes A function f is even if for ever in the domain of f it holds that f( ) = f(). Visuall, an even function is smmetric about the -ais. A function f is odd if for ever in the domain of f it holds that f( )

More information

Graphing Calculator and Computer Applications

Graphing Calculator and Computer Applications E Graphing Calculator and Applications CHAPTER The Real Numbers ABS, to evaluate the expres- Use the absolute value ke on our calculator, probabl marked sions in problems 7 through 9. Addition and Subtraction

More information

The Straight Line. m is undefined. Use. Show that mab

The Straight Line. m is undefined. Use. Show that mab The Straight Line What is the gradient of a horizontal line? What is the equation of a horizontal line? So the equation of the x-axis is? What is the gradient of a vertical line? What is the equation of

More information

Name: Date: Absolute Value Transformations

Name: Date: Absolute Value Transformations Name: Date: Absolute Value Transformations Vocab: Absolute value is the measure of the distance awa from zero on a number line. Since absolute value is the measure of distance it can never be negative!

More information