Implementation and evaluation of a fully 3D OS-MLEM reconstruction algorithm accounting for the PSF of the PET imaging system

Size: px
Start display at page:

Download "Implementation and evaluation of a fully 3D OS-MLEM reconstruction algorithm accounting for the PSF of the PET imaging system"

Transcription

1 Implementation and evaluation of a fully 3D OS-MLEM reconstruction algorithm accounting for the PSF of the PET imaging system 3 rd October th Topical Seminar on Innovative Particle and Radiation Detectors 1-4 October 2008 Siena, Italy

2 2 Positron Emission Tomography PET is a diagnostic exam relying on the annihilation of positrons with electrons in the medium Radiopharmaceutical marked with a β+-emitter administered to the patient CT Functional studies Oncology 93% Neurology 5% Cardiology 2% PET

3 Physical effects at emission level 3 Poisson statistics e P( n) = λ n λ n! λ is the required quantity n is the emitted quantity Non collinearity Positron residual energy Random coincidences Two uncorrelated photons on the crystals inside the coincidence time τ R rand = 2τR R 1 fake LOR 2 Source decay A( t) = A t e Measured: Required: T t 0 A t0 Photons not exactly back-to-back 0 ( t t ) t 0 1/ 2 ln 2 0 ( T ) A( t) dt A t Scattered coincidences One of the two photons scattered by the tissues in the body E E = E 1+ 2 m c e ( 1 cosθ ) wrong LOR t θ = ( 180 ± 0. 5) 0 Positron range The positron travels before annihilating Image reconstruction Annihilation point Emission point Attenuation The detected photon pairs are less than the emitted ones due to absorption along the flight ( x) = N e x N 0 0 μ ( t) ρ ( t) dt Internal parts appear less active

4 Physical effects at acquisition level 4 Energy resolution Small crystals Incident radiation not monoenergetic Multicrystal response Two uncorrelated photons are contemporarily detected in two crystals Crystal efficiency Scintillation efficiency dependent on the single crystal and on the ambience PMTs response may change Radial geometry Widths of sinogram bins dependent on radial position Scatter inside crystals The incoming photon is scattered in neighbouring scintillators Crystal dimensions and depth of interaction Crystal response: triangular function A photon may not be confined and lose its energy also in neighbouring crystals Dead time Pile-up due to crystal scintillation Elaboration time of the electronics paralyzable non paralyzable

5 The Point Spread Function 5 Various effects are not corrected A point source (impulse) is rendered with finite dimensions Gaussian (thanks to CLT) Point Spread Function (PSF) r v v R( x) = A( x) PSF( x) Recorded activity distribution Real activity distribution Four main components: Multicrystal response Depth of interaction Scatter inside crystals Finite dimensions of crystals Non collinearity of photons Positron range Block effects FWHM D FWHM N FWHM P FWHM B = 2 4 mm = 1 2 mm = mm = 2 3 mm tot R 2 D FWHM = k FWHM + FWHM + FWHM + FWHM 2 N 2 P 2 B Constant due to the reconstruction algorithm k R 1.25 FWHM tot 5 6 mm

6 The Point Spread Function 6 Cylindric scanner Cylindric symmetry In the radial direction, the PSF is asymmetric due to the circular disposition of the crystals Nearly symmetric Larger sigma towards the scanner center Acquired point source Bidimensional (radially asymmetric) gaussian

7 Image reconstruction 7

8 Image reconstruction 8 LOR

9 Image reconstruction 9 LOR LOR

10 Image reconstruction 10 LOR LOR Radial position Projection angles

11 Image reconstruction 11 LOR Sinogram LOR Radial position Image matrix Projection angles

12 Iterative reconstruction: OSEM Statistical approach: iterative maximization of the log-likelihood ( Data Img) log P 12 Ordered Subsets (Maximum Likelihood with) Expectation Maximization The voxel b in image λ at iteration k -1 is updated using the rule λ [ k ] b λ [ k 1] BP b = BP Add Add A [ ] dd yd k 1 P λb + Rd + Sd y d events detected in LOR d R d estimation of randoms in LOR d S d estimation of scatter in LOR d A dd attenuation correction factor relative to LOR d Key concept: probability p(b,d) of detecting in LOR d an event coming from voxel b P B () = () p BP() = () b = 1 Converts image into sinogram b d d S m Converts sinogram into image p bd

13 PSF measurements 13 Work performed at San Raffaele Hospital (in Milano) Collaboration with GE for the implementation of the reconstruction algorithm Scanner used: Discovery STE (GE Medical Systems) Integrated PET-CT system BGO crystals (4.7 x 6.3 x 30 mm 3 ) Point source: encapsulated 22 Na non collimated source 1.5 mm x 1.5 mm cylinder surrounded by Lucite capsule PSF modelled as a radially-asymmetric tridimensional Gaussian Function in image space (with position-dependent sigmas) referred to a space variant axes system (r,θ, z)

14 PSF measurements on OSEM reconstructed images 14 Transaxial measurements: in the center of axial FOV the source was acquired at different radial distances Axial measurements: the source was acquired at different axial positions on a line parallel to the scanner axis and located at 5 cm from it Each acquisition was reconstructed with 3D-OSEM (FOV=128 mm, image matrix 256x256, 7 subsets, 10 iterations) and post-filtered (transaxial planes) with a Gaussian (FWHM=2 mm) Without post filter With post filter

15 Fitting method on the OSEM images 15 The tridimensional image can be represented by a matrix N-PIXELS x N-PIXELS x N-SLICES From the image, extracted 3 bidimensional planes fixing row number column number slice number radial-axial tangential-axial radial-tangential and each plane was fitted with a bidimensional function of the sigmas

16 Fitting method on the OSEM images 16 The fit functions have 6 (radial-tangential and radial-axial) or 4 (tangential-axial) parameters and take into account the post-filter Each sigma was estimated twice (in two of the three fits of the planes) The final value was the mean of the two estimations The values for each distance were fitted

17 Results of the fitting 17

18 Fitting method on the OSEM images 18 The fit functions have 6 (radial-tangential and radial-axial) or 4 (tangential-axial) parameters and take into account the post-filter Each sigma was estimated twice (in two of the three fits of the planes) The final value was the mean of the two estimations The values for each distance were fitted

19 Fitting method on the OSEM images 19 The fit functions have 6 (radial-tangential and radial-axial) or 4 (tangential-axial) parameters and take into account the post-filter Each sigma was estimated twice (in two of the three fits of the planes) The final value was the mean of the two estimations The values for each distance were fitted and the dependences on the distance (transaxial for radial and tangential sigma, axial foraxialsigma) weredescribedby σ[ mm ] = f ( d[ cm]) σ σ σ σ i e t a = d 2 = d = d = d d d

20 Implementation of the PSF in the OSEM algorithm 20 Standard OSEM λ [ k ] b λ [ k 1] BP b = BP Add Add A [ ] dd yd k 1 P λb + Rd + Sd P B () = () BP b = 1 () = () d S m p b d p bd PSF-OSEM λ [ k ] b λ [ k 1] BP b = BPAdd Add A [ ] dd yd k 1 Pλb + Rd + Sd P B () = [() PSF] BP b = 1 T () = PSF () p bd d S m PSF T r p r b d ( x) = PSF( x)

21 Validation of the PSF-OSEM algorithm 21 Phantom data Six 22 Na point sources NEMA IEC IQ phantom Tank containing six fillable spheres having different diameters and four additional capillaries Clinical data Neurogical patient Oncological patient Suspect of Parkinson s disease Lesions in the lungs

22 Estimators for quantitative analysis 22 Background mean level Taking ROIs (regions of interest) or VOIs (volumes of interest) in the background regions, let C i be the counts recorded in voxel i μ B = 1 N voxels i R C i Noise standard deviation The reconstructed image of a uniform region should contain constant values in the different voxels STD = N 1 voxels 1 ( Ci μb ) i R 2 Hot contrast recovery μ μ R Let R be the real ratio between signal and background, μ B S B the background mean level and μ the signal mean level CRChot = S 1 1

23 IQ Phantom (reduced statistics): qualitative analysis 23 Reconstruction on FOV=700 mm, 256 pixels x 256 pixels, 28 subsets, 5 iterations, M=13, M-AXIAL=7 OSEM PSF-OSEM

24 IQ Phantom (reduced statistics): quantitative analysis 24 Reconstruction on FOV=700 mm, 256 pixels x 256 pixels, 28 subsets, up to 10 iterations, M=13, M-AXIAL=7 +6.5% +32.7% +5.2% +13.2% Largest sphere (d=37 mm) Smallest sphere (d=10 mm) Noise standard deviation -42.3% Background mean level -45.1%

25 22 Na sources 25 Reconstruction on FOV=500 mm, 256 pixels x 256 pixels, 14 subsets, 10 iterations, M=13, M-AXIAL=7 OSEM PSF-OSEM Scanner center

26 Clinical patients 26 Reconstruction on 256 pixels x 256 pixels, 28 subsets, 5 iterations OSEM PSF-OSEM FOV=512 mm M=15 M-AXIAL=9 FOV=700 mm M=9 M-AXIAL=7

27 Clinical patients 27 Reconstruction on 256 pixels x 256 pixels, 28 subsets, 5 iterations OSEM PSF-OSEM FWHM=4 mm FOV=512 mm M=15 M-AXIAL=9 FWHM=5 mm FOV=700 mm M=9 M-AXIAL=7

28 Conclusions and future perspectives 28 The resolution of PET depends on some effects impossible to be readily corrected In this work the implementation of 3D spatially-variant PSF (radially asymmetric) in a 3D iterative reconstruction algorithm has been proposed Simple acquisition scheme and measurement procedure Higher contrast recovery, lower noise and more defined volumes

29 Conclusions and future perspectives 29 The resolution of PET depends on some effects impossible to be readily corrected In this work the implementation of 3D spatially-variant PSF (radially asymmetric) in a 3D iterative reconstruction algorithm has been proposed Simple acquisition scheme and measurement procedure Higher contrast recovery, lower noise and more defined volumes Thank you for the attention!

Introduction to Positron Emission Tomography

Introduction to Positron Emission Tomography Planar and SPECT Cameras Summary Introduction to Positron Emission Tomography, Ph.D. Nuclear Medicine Basic Science Lectures srbowen@uw.edu System components: Collimator Detector Electronics Collimator

More information

Review of PET Physics. Timothy Turkington, Ph.D. Radiology and Medical Physics Duke University Durham, North Carolina, USA

Review of PET Physics. Timothy Turkington, Ph.D. Radiology and Medical Physics Duke University Durham, North Carolina, USA Review of PET Physics Timothy Turkington, Ph.D. Radiology and Medical Physics Duke University Durham, North Carolina, USA Chart of Nuclides Z (protons) N (number of neutrons) Nuclear Data Evaluation Lab.

More information

Corso di laurea in Fisica A.A Fisica Medica 5 SPECT, PET

Corso di laurea in Fisica A.A Fisica Medica 5 SPECT, PET Corso di laurea in Fisica A.A. 2007-2008 Fisica Medica 5 SPECT, PET Step 1: Inject Patient with Radioactive Drug Drug is labeled with positron (β + ) emitting radionuclide. Drug localizes

More information

Q.Clear. Steve Ross, Ph.D.

Q.Clear. Steve Ross, Ph.D. Steve Ross, Ph.D. Accurate quantitation (SUV - Standardized Uptake Value) is becoming more important as clinicians seek to utilize PET imaging for more than just diagnosing and staging disease, but also

More information

Introduction to Emission Tomography

Introduction to Emission Tomography Introduction to Emission Tomography Gamma Camera Planar Imaging Robert Miyaoka, PhD University of Washington Department of Radiology rmiyaoka@u.washington.edu Gamma Camera: - collimator - detector (crystal

More information

Continuation Format Page

Continuation Format Page C.1 PET with submillimeter spatial resolution Figure 2 shows two views of the high resolution PET experimental setup used to acquire preliminary data [92]. The mechanics of the proposed system are similar

More information

8/2/2017. Disclosure. Philips Healthcare (Cleveland, OH) provided the precommercial

8/2/2017. Disclosure. Philips Healthcare (Cleveland, OH) provided the precommercial 8//0 AAPM0 Scientific Symposium: Emerging and New Generation PET: Instrumentation, Technology, Characteristics and Clinical Practice Aug Wednesday 0:4am :pm Solid State Digital Photon Counting PET/CT Instrumentation

More information

Emission Computed Tomography Notes

Emission Computed Tomography Notes Noll (24) ECT Notes: Page 1 Emission Computed Tomography Notes Introduction Emission computed tomography (ECT) is the CT applied to nuclear medicine. There are two varieties of ECT: 1. SPECT single-photon

More information

Time-of-Flight Technology

Time-of-Flight Technology Medical Review Time-of-Flight Technology Bing Bai, PhD Clinical Sciences Manager, PET/CT Canon Medical Systems INTRODUCTION Improving the care for every patient while providing a high standard care to

More information

Workshop on Quantitative SPECT and PET Brain Studies January, 2013 PUCRS, Porto Alegre, Brasil Corrections in SPECT and PET

Workshop on Quantitative SPECT and PET Brain Studies January, 2013 PUCRS, Porto Alegre, Brasil Corrections in SPECT and PET Workshop on Quantitative SPECT and PET Brain Studies 14-16 January, 2013 PUCRS, Porto Alegre, Brasil Corrections in SPECT and PET Físico João Alfredo Borges, Me. Corrections in SPECT and PET SPECT and

More information

Performance Evaluation of the Philips Gemini PET/CT System

Performance Evaluation of the Philips Gemini PET/CT System Performance Evaluation of the Philips Gemini PET/CT System Rebecca Gregory, Mike Partridge, Maggie A. Flower Joint Department of Physics, Institute of Cancer Research, Royal Marsden HS Foundation Trust,

More information

Medical Imaging BMEN Spring 2016

Medical Imaging BMEN Spring 2016 Name Medical Imaging BMEN 420-501 Spring 2016 Homework #4 and Nuclear Medicine Notes All questions are from the introductory Powerpoint (based on Chapter 7) and text Medical Imaging Signals and Systems,

More information

Cherenkov Radiation. Doctoral Thesis. Rok Dolenec. Supervisor: Prof. Dr. Samo Korpar

Cherenkov Radiation. Doctoral Thesis. Rok Dolenec. Supervisor: Prof. Dr. Samo Korpar Doctoral Thesis Time-of-Flight Time-of-Flight Positron Positron Emission Emission Tomography Tomography Using Using Cherenkov Cherenkov Radiation Radiation Rok Dolenec Supervisor: Prof. Dr. Samo Korpar

More information

NIH Public Access Author Manuscript J Nucl Med. Author manuscript; available in PMC 2010 February 9.

NIH Public Access Author Manuscript J Nucl Med. Author manuscript; available in PMC 2010 February 9. NIH Public Access Author Manuscript Published in final edited form as: J Nucl Med. 2010 February ; 51(2): 237. doi:10.2967/jnumed.109.068098. An Assessment of the Impact of Incorporating Time-of-Flight

More information

Positron. MillenniumVG. Emission Tomography Imaging with the. GE Medical Systems

Positron. MillenniumVG. Emission Tomography Imaging with the. GE Medical Systems Positron Emission Tomography Imaging with the MillenniumVG GE Medical Systems Table of Contents Introduction... 3 PET Imaging With Gamma Cameras PET Overview... 4 Coincidence Detection on Gamma Cameras...

More information

Constructing System Matrices for SPECT Simulations and Reconstructions

Constructing System Matrices for SPECT Simulations and Reconstructions Constructing System Matrices for SPECT Simulations and Reconstructions Nirantha Balagopal April 28th, 2017 M.S. Report The University of Arizona College of Optical Sciences 1 Acknowledgement I would like

More information

Iterative SPECT reconstruction with 3D detector response

Iterative SPECT reconstruction with 3D detector response Iterative SPECT reconstruction with 3D detector response Jeffrey A. Fessler and Anastasia Yendiki COMMUNICATIONS & SIGNAL PROCESSING LABORATORY Department of Electrical Engineering and Computer Science

More information

PURE. ViSION Edition PET/CT. Patient Comfort Put First.

PURE. ViSION Edition PET/CT. Patient Comfort Put First. PURE ViSION Edition PET/CT Patient Comfort Put First. 2 System features that put patient comfort and safety first. Oncology patients deserve the highest levels of safety and comfort during scans. Our Celesteion

More information

Semi-Quantitative Metrics in Positron Emission Tomography. Michael Adams. Department of Biomedical Engineering Duke University.

Semi-Quantitative Metrics in Positron Emission Tomography. Michael Adams. Department of Biomedical Engineering Duke University. Semi-Quantitative Metrics in Positron Emission Tomography by Michael Adams Department of Biomedical Engineering Duke University Date: Approved: Timothy G. Turkington, Supervisor Adam P. Wax Terence Z.

More information

Improvement of contrast using reconstruction of 3D Image by PET /CT combination system

Improvement of contrast using reconstruction of 3D Image by PET /CT combination system Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 2013, 4(1):285-290 ISSN: 0976-8610 CODEN (USA): AASRFC Improvement of contrast using reconstruction of 3D Image

More information

SPECT QA and QC. Bruce McBride St. Vincent s Hospital Sydney.

SPECT QA and QC. Bruce McBride St. Vincent s Hospital Sydney. SPECT QA and QC Bruce McBride St. Vincent s Hospital Sydney. SPECT QA and QC What is needed? Why? How often? Who says? QA and QC in Nuclear Medicine QA - collective term for all the efforts made to produce

More information

Assessment of OSEM & FBP Reconstruction Techniques in Single Photon Emission Computed Tomography Using SPECT Phantom as Applied on Bone Scintigraphy

Assessment of OSEM & FBP Reconstruction Techniques in Single Photon Emission Computed Tomography Using SPECT Phantom as Applied on Bone Scintigraphy Assessment of OSEM & FBP Reconstruction Techniques in Single Photon Emission Computed Tomography Using SPECT Phantom as Applied on Bone Scintigraphy Physics Department, Faculty of Applied Science,Umm Al-Qura

More information

COUNT RATE AND SPATIAL RESOLUTION PERFORMANCE OF A 3-DIMENSIONAL DEDICATED POSITRON EMISSION TOMOGRAPHY (PET) SCANNER

COUNT RATE AND SPATIAL RESOLUTION PERFORMANCE OF A 3-DIMENSIONAL DEDICATED POSITRON EMISSION TOMOGRAPHY (PET) SCANNER COUNT RATE AND SPATIAL RESOLUTION PERFORMANCE OF A 3-DIMENSIONAL DEDICATED POSITRON EMISSION TOMOGRAPHY (PET) SCANNER By RAMI RIMON ABU-AITA A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY

More information

Validation of GEANT4 for Accurate Modeling of 111 In SPECT Acquisition

Validation of GEANT4 for Accurate Modeling of 111 In SPECT Acquisition Validation of GEANT4 for Accurate Modeling of 111 In SPECT Acquisition Bernd Schweizer, Andreas Goedicke Philips Technology Research Laboratories, Aachen, Germany bernd.schweizer@philips.com Abstract.

More information

Characterization of a Time-of-Flight PET Scanner based on Lanthanum Bromide

Characterization of a Time-of-Flight PET Scanner based on Lanthanum Bromide 2005 IEEE Nuclear Science Symposium Conference Record M04-8 Characterization of a Time-of-Flight PET Scanner based on Lanthanum Bromide J. S. Karp, Senior Member, IEEE, A. Kuhn, Member, IEEE, A. E. Perkins,

More information

Modeling and Incorporation of System Response Functions in 3D Whole Body PET

Modeling and Incorporation of System Response Functions in 3D Whole Body PET Modeling and Incorporation of System Response Functions in 3D Whole Body PET Adam M. Alessio, Member IEEE, Paul E. Kinahan, Senior Member IEEE, and Thomas K. Lewellen, Senior Member IEEE University of

More information

Conflicts of Interest Nuclear Medicine and PET physics reviewer for the ACR Accreditation program

Conflicts of Interest Nuclear Medicine and PET physics reviewer for the ACR Accreditation program James R Halama, PhD Loyola University Medical Center Conflicts of Interest Nuclear Medicine and PET physics reviewer for the ACR Accreditation program Learning Objectives 1. Be familiar with recommendations

More information

Positron Emission Tomography

Positron Emission Tomography Physics 656 Seminar on Physical Fundamentals of Medical Imaging Positron Emission Tomography Ahmed Qamesh Outline What is PET? PET mechanism Radionuclide and its synthesis Detection concept and Development

More information

The great interest shown toward PET instrumentation is

The great interest shown toward PET instrumentation is CONTINUING EDUCATION PET Instrumentation and Reconstruction Algorithms in Whole-Body Applications* Gabriele Tarantola, BE; Felicia Zito, MSc; and Paolo Gerundini, MD Department of Nuclear Medicine, Ospedale

More information

SUV Analysis of F-18 FDG PET Imaging in the Vicinity of the Bladder. Colleen Marie Allen. Graduate Program in Medical Physics Duke University

SUV Analysis of F-18 FDG PET Imaging in the Vicinity of the Bladder. Colleen Marie Allen. Graduate Program in Medical Physics Duke University SUV Analysis of F-18 FDG PET Imaging in the Vicinity of the Bladder by Colleen Marie Allen Graduate Program in Medical Physics Duke University Date: Approved: Timothy Turkington, Supervisor Terence Wong

More information

Extremely Fast Detector for 511 kev Gamma

Extremely Fast Detector for 511 kev Gamma Extremely Fast Detector for 511 kev Gamma V. Sharyy, D. Yvon, G. Tauzin, E.Delagnes, Ph. Abbon, J P. Bard, M. Kebbiri, M. Alokhina, C. Canot IRFU, CEA D. Breton, J. Maalmi LAL,IN2P3 Journée 2015 du Labex

More information

James R Halama, PhD Loyola University Medical Center

James R Halama, PhD Loyola University Medical Center James R Halama, PhD Loyola University Medical Center Conflicts of Interest Nuclear Medicine and PET physics reviewer for the ACR Accreditation program Learning Objectives Be familiar with the tests recommended

More information

C a t p h a n / T h e P h a n t o m L a b o r a t o r y

C a t p h a n / T h e P h a n t o m L a b o r a t o r y C a t p h a n 5 0 0 / 6 0 0 T h e P h a n t o m L a b o r a t o r y C a t p h a n 5 0 0 / 6 0 0 Internationally recognized for measuring the maximum obtainable performance of axial, spiral and multi-slice

More information

The Design and Implementation of COSEM, an Iterative Algorithm for Fully 3-D Listmode Data

The Design and Implementation of COSEM, an Iterative Algorithm for Fully 3-D Listmode Data IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 20, NO. 7, JULY 2001 633 The Design and Implementation of COSEM, an Iterative Algorithm for Fully 3-D Listmode Data Ron Levkovitz, Dmitry Falikman*, Michael Zibulevsky,

More information

Slide 1. Technical Aspects of Quality Control in Magnetic Resonance Imaging. Slide 2. Annual Compliance Testing. of MRI Systems.

Slide 1. Technical Aspects of Quality Control in Magnetic Resonance Imaging. Slide 2. Annual Compliance Testing. of MRI Systems. Slide 1 Technical Aspects of Quality Control in Magnetic Resonance Imaging Slide 2 Compliance Testing of MRI Systems, Ph.D. Department of Radiology Henry Ford Hospital, Detroit, MI Slide 3 Compliance Testing

More information

Quantitative capabilities of four state-of-the-art SPECT-CT cameras

Quantitative capabilities of four state-of-the-art SPECT-CT cameras Seret et al. EJNMMI Research 2012, 2:45 ORIGINAL RESEARCH Open Access Quantitative capabilities of four state-of-the-art SPECT-CT cameras Alain Seret 1,2*, Daniel Nguyen 1 and Claire Bernard 3 Abstract

More information

Evaluation of Penalty Design in Penalized Maximum- likelihood Image Reconstruction for Lesion Detection

Evaluation of Penalty Design in Penalized Maximum- likelihood Image Reconstruction for Lesion Detection Evaluation of Penalty Design in Penalized Maximum- likelihood Image Reconstruction for Lesion Detection Li Yang, Andrea Ferrero, Rosalie J. Hagge, Ramsey D. Badawi, and Jinyi Qi Supported by NIBIB under

More information

Attenuation map reconstruction from TOF PET data

Attenuation map reconstruction from TOF PET data Attenuation map reconstruction from TOF PET data Qingsong Yang, Wenxiang Cong, Ge Wang* Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 80, USA *Ge Wang (ge-wang@ieee.org)

More information

Fast Timing and TOF in PET Medical Imaging

Fast Timing and TOF in PET Medical Imaging Fast Timing and TOF in PET Medical Imaging William W. Moses Lawrence Berkeley National Laboratory October 15, 2008 Outline: Time-of-Flight PET History Present Status Future This work was supported in part

More information

3-D PET Scatter Correction

3-D PET Scatter Correction Investigation of Accelerated Monte Carlo Techniques for PET Simulation and 3-D PET Scatter Correction C.H. Holdsworth, Student Member, IEEE, C.S. Levin", Member, IEEE, T.H. Farquhar, Student Member, IEEE,

More information

REMOVAL OF THE EFFECT OF COMPTON SCATTERING IN 3-D WHOLE BODY POSITRON EMISSION TOMOGRAPHY BY MONTE CARLO

REMOVAL OF THE EFFECT OF COMPTON SCATTERING IN 3-D WHOLE BODY POSITRON EMISSION TOMOGRAPHY BY MONTE CARLO REMOVAL OF THE EFFECT OF COMPTON SCATTERING IN 3-D WHOLE BODY POSITRON EMISSION TOMOGRAPHY BY MONTE CARLO Abstract C.S. Levin, Y-C Tai, E.J. Hoffman, M. Dahlbom, T.H. Farquhar UCLA School of Medicine Division

More information

A full-brain PET scanner based on the AX-PET concept: Monte Carlo performance study

A full-brain PET scanner based on the AX-PET concept: Monte Carlo performance study Universitat de València Master Thesis A full-brain PET scanner based on the AX-PET concept: Monte Carlo performance study Author: Gabriel Reynés-Llompart Principal Supervisor: Paola Solevi, PhD Co-Supervisor:

More information

AX-PET : A novel PET concept with G-APD readout

AX-PET : A novel PET concept with G-APD readout AX-PET : A novel PET concept with G-APD readout Matthieu Heller CERN - PH/DT Marie Curie network MC-PAD Matthieu.heller@cern.ch On behalf of the AX-PET collaboration https://twiki.cern.ch/twiki/bin/view/axialpet

More information

SNIC Symposium, Stanford, California April The Hybrid Parallel Plates Gas Counter for Medical Imaging

SNIC Symposium, Stanford, California April The Hybrid Parallel Plates Gas Counter for Medical Imaging The Hybrid Parallel Plates Gas Counter for Medical Imaging F. Anulli, G. Bencivenni, C. D Ambrosio, D. Domenici, G. Felici, F. Murtas Laboratori Nazionali di Frascati - INFN, Via E. Fermi 40, I-00044 Frascati,

More information

INTERNATIONAL STANDARD

INTERNATIONAL STANDARD INTERNATIONAL STANDARD IEC 61675-2 First edition 1998-01 Radionuclide imaging devices Characteristics and test conditions Part 2: Single photon emission computed tomographs Dispositifs d imagerie par radionucléides

More information

Diagnostic imaging techniques. Krasznai Zoltán. University of Debrecen Medical and Health Science Centre Department of Biophysics and Cell Biology

Diagnostic imaging techniques. Krasznai Zoltán. University of Debrecen Medical and Health Science Centre Department of Biophysics and Cell Biology Diagnostic imaging techniques Krasznai Zoltán University of Debrecen Medical and Health Science Centre Department of Biophysics and Cell Biology 1. Computer tomography (CT) 2. Gamma camera 3. Single Photon

More information

Radon Transform and Filtered Backprojection

Radon Transform and Filtered Backprojection Radon Transform and Filtered Backprojection Jørgen Arendt Jensen October 13, 2016 Center for Fast Ultrasound Imaging, Build 349 Department of Electrical Engineering Center for Fast Ultrasound Imaging Department

More information

Performance Evaluation of radionuclide imaging systems

Performance Evaluation of radionuclide imaging systems Performance Evaluation of radionuclide imaging systems Nicolas A. Karakatsanis STIR Users meeting IEEE Nuclear Science Symposium and Medical Imaging Conference 2009 Orlando, FL, USA Geant4 Application

More information

Respiratory Motion Compensation for Simultaneous PET/MR Based on Strongly Undersampled Radial MR Data

Respiratory Motion Compensation for Simultaneous PET/MR Based on Strongly Undersampled Radial MR Data Respiratory Motion Compensation for Simultaneous PET/MR Based on Strongly Undersampled Radial MR Data Christopher M Rank 1, Thorsten Heußer 1, Andreas Wetscherek 1, and Marc Kachelrieß 1 1 German Cancer

More information

Simultaneous measurement of noise and spatial resolution in PET phantom images

Simultaneous measurement of noise and spatial resolution in PET phantom images IOP PUBLISHING Phys. Med. Biol. 55 (2010) 1069 1081 PHYSICS IN MEDICINE AND BIOLOGY doi:10.1088/0031-9155/55/4/011 Simultaneous measurement of noise and spatial resolution in PET phantom images Martin

More information

A dedicated tool for PET scanner simulations using FLUKA

A dedicated tool for PET scanner simulations using FLUKA A dedicated tool for PET scanner simulations using FLUKA P. G. Ortega FLUKA meeting June 2013 1 Need for in-vivo treatment monitoring Particles: The good thing is that they stop... Tumour Normal tissue/organ

More information

Introduction to Biomedical Imaging

Introduction to Biomedical Imaging Alejandro Frangi, PhD Computational Imaging Lab Department of Information & Communication Technology Pompeu Fabra University www.cilab.upf.edu X-ray Projection Imaging Computed Tomography Digital X-ray

More information

3D-OSEM Transition Matrix for High Resolution PET Imaging with Modeling of the Gamma-Event Detection

3D-OSEM Transition Matrix for High Resolution PET Imaging with Modeling of the Gamma-Event Detection 3D-OSEM Transition Matrix for High Resolution PET Imaging with Modeling of the Gamma-Event Detection Juan E. Ortuño, George Kontaxakis, Member, IEEE, Pedro Guerra, Student Member, IEEE, and Andrés Santos,

More information

PERFORMANCE MEASUREMENTS OF POSITRON EMISSION TOMOGRAPHS

PERFORMANCE MEASUREMENTS OF POSITRON EMISSION TOMOGRAPHS NEMA NU 2 PERFORMANCE MEASUREMENTS OF POSITRON EMISSION TOMOGRAPHS NEMA Standards Publication NU 2-2001 Performance Measurements of Positron Emission Tomographs Published by National Electrical Manufacturers

More information

MOHAMMAD MINHAZ AKRAM THE EFFECT OF SAMPLING IN HISTOGRAMMING AND ANALYTICAL RECONSTRUCTION OF 3D AX-PET DATA

MOHAMMAD MINHAZ AKRAM THE EFFECT OF SAMPLING IN HISTOGRAMMING AND ANALYTICAL RECONSTRUCTION OF 3D AX-PET DATA MOHAMMAD MINHAZ AKRAM THE EFFECT OF SAMPLING IN HISTOGRAMMING AND ANALYTICAL RECONSTRUCTION OF 3D AX-PET DATA Master of Science Thesis Examiners: Prof. Ulla Ruotsalainen M.Sc. Uygar Tuna Examiners and

More information

Image reconstruction for PET/CT scanners: past achievements and future challenges

Image reconstruction for PET/CT scanners: past achievements and future challenges Review Image reconstruction for PET/CT scanners: past achievements and future challenges PET is a medical imaging modality with proven clinical value for disease diagnosis and treatment monitoring. The

More information

Automated Image Analysis Software for Quality Assurance of a Radiotherapy CT Simulator

Automated Image Analysis Software for Quality Assurance of a Radiotherapy CT Simulator Automated Image Analysis Software for Quality Assurance of a Radiotherapy CT Simulator Andrew J Reilly Imaging Physicist Oncology Physics Edinburgh Cancer Centre Western General Hospital EDINBURGH EH4

More information

Evaluation of the Spline Reconstruction Technique for PET

Evaluation of the Spline Reconstruction Technique for PET Evaluation of the Spline Reconstruction Technique for PET George A. Kastis and Dimitra Kyriakopoulou Research Center of Mathematics, Academy of Athens, Soranou Efessiou 4, Athens 11527, Greece Anastasios

More information

ADVANCES IN FLUKA PET TOOLS

ADVANCES IN FLUKA PET TOOLS MCMA2017 ADVANCES IN FLUKA PET TOOLS Caterina Cuccagna Tera Foundation (CERN) and University of Geneva Ricardo Santos Augusto, Caterina Cuccagna, Wioletta Kozlowska,Pablo Garcia Ortega, Yassine Toufique,

More information

The Effects of PET Reconstruction Parameters on Radiotherapy Response Assessment. and an Investigation of SUV peak Sampling Parameters.

The Effects of PET Reconstruction Parameters on Radiotherapy Response Assessment. and an Investigation of SUV peak Sampling Parameters. The Effects of PET Reconstruction Parameters on Radiotherapy Response Assessment and an Investigation of SUV peak Sampling Parameters by Leith Rankine Graduate Program in Medical Physics Duke University

More information

FRONT-END DATA PROCESSING OF NEW POSITRON EMIS- SION TOMOGRAPHY DEMONSTRATOR

FRONT-END DATA PROCESSING OF NEW POSITRON EMIS- SION TOMOGRAPHY DEMONSTRATOR SOUDABEH MORADI FRONT-END DATA PROCESSING OF NEW POSITRON EMIS- SION TOMOGRAPHY DEMONSTRATOR Master of Science Thesis Examiners: Prof. Ulla Ruotsalainen MSc Defne Us Examiners and topic approved by the

More information

SINGLE-PHOTON emission computed tomography

SINGLE-PHOTON emission computed tomography 1458 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 59, NO. 4, AUGUST 2012 SPECT Imaging With Resolution Recovery Andrei V. Bronnikov Abstract Single-photon emission computed tomography (SPECT) is a method

More information

Outline. What is Positron Emission Tomography? (PET) Positron Emission Tomography I: Image Reconstruction Strategies

Outline. What is Positron Emission Tomography? (PET) Positron Emission Tomography I: Image Reconstruction Strategies CE: PET Physics and Technology II 2005 AAPM Meeting, Seattle WA Positron Emission Tomography I: Image Reconstruction Strategies Craig S. Levin, Ph.D. Department of Radiology and Molecular Imaging Program

More information

3/27/2012 WHY SPECT / CT? SPECT / CT Basic Principles. Advantages of SPECT. Advantages of CT. Dr John C. Dickson, Principal Physicist UCLH

3/27/2012 WHY SPECT / CT? SPECT / CT Basic Principles. Advantages of SPECT. Advantages of CT. Dr John C. Dickson, Principal Physicist UCLH 3/27/212 Advantages of SPECT SPECT / CT Basic Principles Dr John C. Dickson, Principal Physicist UCLH Institute of Nuclear Medicine, University College London Hospitals and University College London john.dickson@uclh.nhs.uk

More information

Biomedical Imaging. Computed Tomography. Patrícia Figueiredo IST

Biomedical Imaging. Computed Tomography. Patrícia Figueiredo IST Biomedical Imaging Computed Tomography Patrícia Figueiredo IST 2013-2014 Overview Basic principles X ray attenuation projection Slice selection and line projections Projection reconstruction Instrumentation

More information

GPU implementation for rapid iterative image reconstruction algorithm

GPU implementation for rapid iterative image reconstruction algorithm GPU implementation for rapid iterative image reconstruction algorithm and its applications in nuclear medicine Jakub Pietrzak Krzysztof Kacperski Department of Medical Physics, Maria Skłodowska-Curie Memorial

More information

Fits you like no other

Fits you like no other Fits you like no other BrightView X and XCT specifications The new BrightView X system is a fully featured variableangle camera that is field-upgradeable to BrightView XCT without any increase in room

More information

Multi-slice CT Image Reconstruction Jiang Hsieh, Ph.D.

Multi-slice CT Image Reconstruction Jiang Hsieh, Ph.D. Multi-slice CT Image Reconstruction Jiang Hsieh, Ph.D. Applied Science Laboratory, GE Healthcare Technologies 1 Image Generation Reconstruction of images from projections. textbook reconstruction advanced

More information

ISO ISO ISO OHSAS ISO

ISO ISO ISO OHSAS ISO ISO 9001 ISO 13485 ISO 14001 OHSAS 18001 ISO 27001 Pro-NM Performance 08-101 - standard version 08-103 - version with the PET Lid Phantom for NM and PET systems performance evaluation (collimator, artifacts,

More information

Spiral CT. Protocol Optimization & Quality Assurance. Ge Wang, Ph.D. Department of Radiology University of Iowa Iowa City, Iowa 52242, USA

Spiral CT. Protocol Optimization & Quality Assurance. Ge Wang, Ph.D. Department of Radiology University of Iowa Iowa City, Iowa 52242, USA Spiral CT Protocol Optimization & Quality Assurance Ge Wang, Ph.D. Department of Radiology University of Iowa Iowa City, Iowa 52242, USA Spiral CT Protocol Optimization & Quality Assurance Protocol optimization

More information

In the short span since the introduction of the first

In the short span since the introduction of the first Performance Characteristics of a Newly Developed PET/CT Scanner Using NEMA Standards in 2D and 3D Modes Osama Mawlawi, PhD 1 ; Donald A. Podoloff, MD 2 ; Steve Kohlmyer, MS 3 ; John J. Williams 3 ; Charles

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging 1 Lucas Parra, CCNY BME I5000: Biomedical Imaging Lecture 4 Computed Tomography Lucas C. Parra, parra@ccny.cuny.edu some slides inspired by lecture notes of Andreas H. Hilscher at Columbia University.

More information

MEDICAL IMAGING 2nd Part Computed Tomography

MEDICAL IMAGING 2nd Part Computed Tomography MEDICAL IMAGING 2nd Part Computed Tomography Introduction 2 In the last 30 years X-ray Computed Tomography development produced a great change in the role of diagnostic imaging in medicine. In convetional

More information

486 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 54, NO. 3, JUNE 2007

486 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 54, NO. 3, JUNE 2007 486 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 54, NO. 3, JUNE 2007 Count-Rate Dependent Component-Based Normalization for the HRRT Mario Rodriguez, Jeih-San Liow, Member, IEEE, Shanthalaxmi Thada, Merence

More information

in PET Medical Imaging

in PET Medical Imaging Fast Timing and TOF in PET Medical Imaging William W. Moses Lawrence Berkeley National Laboratory October 15, 2008 Outline: Time-of-Flight PET History Present Status Future This work was supported in part

More information

Introduc)on to PET Image Reconstruc)on. Tomographic Imaging. Projec)on Imaging. Types of imaging systems

Introduc)on to PET Image Reconstruc)on. Tomographic Imaging. Projec)on Imaging. Types of imaging systems Introduc)on to PET Image Reconstruc)on Adam Alessio http://faculty.washington.edu/aalessio/ Nuclear Medicine Lectures Imaging Research Laboratory Division of Nuclear Medicine University of Washington Fall

More information

Ch. 4 Physical Principles of CT

Ch. 4 Physical Principles of CT Ch. 4 Physical Principles of CT CLRS 408: Intro to CT Department of Radiation Sciences Review: Why CT? Solution for radiography/tomography limitations Superimposition of structures Distinguishing between

More information

Pragmatic Fully-3D Image Reconstruction for the MiCES Mouse Imaging PET Scanner

Pragmatic Fully-3D Image Reconstruction for the MiCES Mouse Imaging PET Scanner Pragmatic Fully-3D Image Reconstruction for the MiCES Mouse Imaging PET Scanner Kisung Lee 1, Paul E. Kinahan 1, Jeffrey A. Fessler 2, Robert S. Miyaoka 1, Marie Janes 1, and Tom K. Lewellen 1 1 Department

More information

Technological Advances and Challenges: Experience with Time-Of-Flight PET Combined with 3T MRI. Floris Jansen, GE Healthcare July, 2015

Technological Advances and Challenges: Experience with Time-Of-Flight PET Combined with 3T MRI. Floris Jansen, GE Healthcare July, 2015 Technological Advances and Challenges: Experience with Time-Of-Flight PET Combined with 3T MRI Floris Jansen, GE Healthcare July, 2015 PET/MR 101 : challenges Thermal Workflow & Apps RF interactions?!!

More information

STIR User s Meeting. Reconstruction of PET data acquired with the BrainPET using STIR. 31. October 2013 Liliana Caldeira

STIR User s Meeting. Reconstruction of PET data acquired with the BrainPET using STIR. 31. October 2013 Liliana Caldeira STIR User s Meeting Reconstruction of PET data acquired with the BrainPET using STIR 31. October 2013 Liliana Caldeira Outline 3T MR-BrainPET System Reading BrainPET data into STIR FBP reconstruction OSEM/OSMAPOSL

More information

High-resolution 3D Bayesian image reconstruction using the micropet small-animal scanner

High-resolution 3D Bayesian image reconstruction using the micropet small-animal scanner Phys. Med. Biol. 43 (1998) 1001 1013. Printed in the UK PII: S0031-9155(98)90627-3 High-resolution 3D Bayesian image reconstruction using the micropet small-animal scanner Jinyi Qi, Richard M Leahy, Simon

More information

2005 IEEE Nuclear Science Symposium Conference Record M Influence of Depth of Interaction on Spatial Resolution and Image Quality for the HRRT

2005 IEEE Nuclear Science Symposium Conference Record M Influence of Depth of Interaction on Spatial Resolution and Image Quality for the HRRT 2005 IEEE Nuclear Science Symposium Conference Record M03-271 Influence of Depth of Interaction on Spatial Resolution and Image Quality for the HRRT Stéphan Blinder, Marie-Laure Camborde, Ken R. Buckley,

More information

Image Acquisition Systems

Image Acquisition Systems Image Acquisition Systems Goals and Terminology Conventional Radiography Axial Tomography Computer Axial Tomography (CAT) Magnetic Resonance Imaging (MRI) PET, SPECT Ultrasound Microscopy Imaging ITCS

More information

Evaluation of Centrally Located Sources in. Coincidence Timing Calibration for Time-of-Flight PET

Evaluation of Centrally Located Sources in. Coincidence Timing Calibration for Time-of-Flight PET Evaluation of Centrally Located Sources in Coincidence Timing Calibration for Time-of-Flight PET by Richard Ryan Wargo Graduate Program in Medical Physics Duke University Date: Approved: Timothy G. Turkington,

More information

Fits you like no other

Fits you like no other Fits you like no other Philips BrightView X and XCT specifications The new BrightView X system is a fully featured variableangle camera that is field-upgradeable to BrightView XCT without any increase

More information

Reconstruction from Projections

Reconstruction from Projections Reconstruction from Projections M.C. Villa Uriol Computational Imaging Lab email: cruz.villa@upf.edu web: http://www.cilab.upf.edu Based on SPECT reconstruction Martin Šámal Charles University Prague,

More information

White Paper. EQ PET: Achieving NEMAreferenced. Technologies. Matthew Kelly, PhD, Siemens Healthcare

White Paper. EQ PET: Achieving NEMAreferenced. Technologies. Matthew Kelly, PhD, Siemens Healthcare White Paper EQ PET: Achieving NEMAreferenced SUV Across Technologies Matthew Kelly, PhD, Siemens Healthcare Table of Contents Introduction 1 Case Study 1 Cross-Scanner Response Assessment 2 Clinical Example

More information

SPECT reconstruction

SPECT reconstruction Regional Training Workshop Advanced Image Processing of SPECT Studies Tygerberg Hospital, 19-23 April 2004 SPECT reconstruction Martin Šámal Charles University Prague, Czech Republic samal@cesnet.cz Tomography

More information

Detection of Lesions in Positron Emission Tomography

Detection of Lesions in Positron Emission Tomography Detection of Lesions in Positron Emission Tomography Bachelor Thesis Nina L.F. Bezem Study: Physics and Astronomy Faculty of Science Supervised by: Dr. Andre Mischke Utrecht University, Institute for Subatomic

More information

Pragmatic fully 3D image reconstruction for the MiCES mouse imaging PET scanner

Pragmatic fully 3D image reconstruction for the MiCES mouse imaging PET scanner INSTITUTE OF PHYSICS PUBLISHING Phys. Med. Biol. 49 (2004) 4563 4578 PHYSICS IN MEDICINE AND BIOLOGY PII: S0031-9155(04)79577-9 Pragmatic fully 3D image reconstruction for the MiCES mouse imaging PET scanner

More information

Monte-Carlo-Based Scatter Correction for Quantitative SPECT Reconstruction

Monte-Carlo-Based Scatter Correction for Quantitative SPECT Reconstruction Monte-Carlo-Based Scatter Correction for Quantitative SPECT Reconstruction Realization and Evaluation Rolf Bippus 1, Andreas Goedicke 1, Henrik Botterweck 2 1 Philips Research Laboratories, Aachen 2 Fachhochschule

More information

664 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 3, JUNE 2005

664 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 3, JUNE 2005 664 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 3, JUNE 2005 Attenuation Correction for the NIH ATLAS Small Animal PET Scanner Rutao Yao, Member, IEEE, Jürgen Seidel, Jeih-San Liow, Member, IEEE,

More information

A new PET prototype for proton therapy: comparison of data and Monte Carlo simulations

A new PET prototype for proton therapy: comparison of data and Monte Carlo simulations A new PET prototype for proton therapy: comparison of data and Monte Carlo simulations V. Rosso, G.Battistoni, N. Belcari, N. Camarlinghi, A. Ferrari, S. Ferretti, A. Kraan, A. Mairani, N. Marino, J. E.

More information

Tomographic Reconstruction

Tomographic Reconstruction Tomographic Reconstruction 3D Image Processing Torsten Möller Reading Gonzales + Woods, Chapter 5.11 2 Overview Physics History Reconstruction basic idea Radon transform Fourier-Slice theorem (Parallel-beam)

More information

Optimization of CT Simulation Imaging. Ingrid Reiser Dept. of Radiology The University of Chicago

Optimization of CT Simulation Imaging. Ingrid Reiser Dept. of Radiology The University of Chicago Optimization of CT Simulation Imaging Ingrid Reiser Dept. of Radiology The University of Chicago Optimization of CT imaging Goal: Achieve image quality that allows to perform the task at hand (diagnostic

More information

Improving Reconstructed Image Quality in a Limited-Angle Positron Emission

Improving Reconstructed Image Quality in a Limited-Angle Positron Emission Improving Reconstructed Image Quality in a Limited-Angle Positron Emission Tomography System David Fan-Chung Hsu Department of Electrical Engineering, Stanford University 350 Serra Mall, Stanford CA 94305

More information

Clinically feasible reconstruction of 3D whole-body PET/CT data using blurred anatomical labels

Clinically feasible reconstruction of 3D whole-body PET/CT data using blurred anatomical labels INSTITUTE OF PHYSICSPUBLISHING Phys. Med. Biol. 47 (00) 0 PHYSICS INMEDICINE AND BIOLOGY PII: S003-955(0)56-9 Clinically feasible reconstruction of 3D whole-body PET/CT data using blurred anatomical labels

More information

DUE to beam polychromacity in CT and the energy dependence

DUE to beam polychromacity in CT and the energy dependence 1 Empirical Water Precorrection for Cone-Beam Computed Tomography Katia Sourbelle, Marc Kachelrieß, Member, IEEE, and Willi A. Kalender Abstract We propose an algorithm to correct for the cupping artifact

More information

MEDICAL IMAGING 2nd Part Computed Tomography

MEDICAL IMAGING 2nd Part Computed Tomography MEDICAL IMAGING 2nd Part Computed Tomography Introduction 2 In the last 30 years X-ray Computed Tomography development produced a great change in the role of diagnostic imaging in medicine. In convetional

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS2007W1 SEMESTER 2 EXAMINATION 2014-2015 MEDICAL PHYSICS Duration: 120 MINS (2 hours) This paper contains 10 questions. Answer all questions in Section A and only two questions

More information