MARCH ISSN: INTERNATIONALJOURNALFORENGINEERINGAPPLICATIONSAND TECHNOLOGY GPS ENABLED EMERGENT TRACING AND NEAREST FACILITY AVAILANCE SYSTEM

Size: px
Start display at page:

Download "MARCH ISSN: INTERNATIONALJOURNALFORENGINEERINGAPPLICATIONSAND TECHNOLOGY GPS ENABLED EMERGENT TRACING AND NEAREST FACILITY AVAILANCE SYSTEM"

Transcription

1 IJFEAT INTERNATIONALJOURNALFORENGINEERINGAPPLICATIONSAND TECHNOLOGY GPS ENABLED EMERGENT TRACING AND NEAREST FACILITY AVAILANCE SYSTEM 1 Prof.A.N.Shire, Department of EXTC, J.D.I.E.T,Yavatmal, 2Ankita A. Kotecha,Department of EXTC, J.D.I.E.T,Yavatmal,ankitakothecha6@gmail.com 3Priti S.Khodankar Department of EXTC, J.D.I.E.T,Yavatmal priti.khodankar92@gmail.com 4.Snehajeet Tembhare, EXTC, J.D.I.E.T,Yavatmal, J.D.I.E.T, Maharashtra, India, Abstract: This proposed work is an attempt to design a tracking unit for the emergency situations that uses the global positioning system (GPS) to determine the precise location of a person and to provide emergency facilities that are most nearby to the affected person. The proposed embedded system uses GPS for tracing exact location of an affected person and the GPS coordinates of the same is transmitted to the relay station. The transmission of GPS coordinates is carried out by Android Application. The relay station is developed using Atmega32 Microcontroller with Sim300 GSM module. The relay station enabled with GSM and GPRS can find the nearest available emergency facilities that can be provided to the affected person. The nearest facilities are tracked by comparing difference of distance vector with distance vector of affected person. 1. INTRODUCTION This system uses AVR microcontroller ATmega16. The inbuilt ADC receives analog data from sensors and converts it to digital data and passes it to the microcontroller. This proposed work is to attempt to design a tracking unit for the emergency situations. The android phone itself acts as transmitter and relay station form using ATmega16 microcontroller, SIM300, LCD DISPLAY 16X2, power supply section. It uses the global positioning system (GPS) to determine the precise location of a person and to provide emergency facilities that are most nearby to the affected person. It uses mainly the microcontroller ATmega16, GSM/GPRS and LCD display.

2 GSM Modem Tran_9 T 10K 10mF GND BR BR_ac_dc Atmega 32 CAP1 C_100uF_50V VREG IC_7805 Gnd CAP1 C_10uF_50V GND GND GND MARCH ISSN: The proposed embedded system uses GPS for tracing exact location of an affected person and the GPS coordinates of the same is transmitted to the relay station. The transmission of GPS coordinates is carried out by Android Application. The relay station is developed using Atmega16 Microcontroller with Sim300 GSM module. The relay station enabled with GSM and GPRS can find the nearest available emergency facilities that can be provided to the affected person. The nearest facilities are tracked by comparing difference of distance vector with distance vector of affected person using the android application. 2. SYSTEM OVERVIEW The block diagram of prototype is shown in figure (1). The bridge rectifier is used to convert the 9V supply output of transformer into DC voltage. A voltage regulator IC 7805 Fig.:- 1 Block Diagram of prototype The TXD pin of microcontroller is connected to the RXD pin of GSM model and vice versa. Implementation: The below figure(2) shows the circuit diagram of project from which overall architecture of system is explained. CIRCUIT DIAGRAM AC _ + AC In Out Tx Rx 38 Tx Rx CIRCUIT DIAGRAM OF RELAY STATION 16*2 LCD Display Design and implimentation 3.1 Hardware Requirements 1. Microcontroller :ATMEGA16 2. GSM module :SIMCOM LCD display : [16 2] Display 4. IC 7805 : Voltage Regulator of ±5V DC. 5. adaptor :12V DC 6. Power supply :DC 5V Regulated is used to obtain fixed output voltage of +5V. Separate supply of same specification requirement is used for microcontroller and GSM module. The microcontroller used is ATMEGHA-16 and GSM modem is SIM Power Supply The power supply used in this project is shown in figure(3). The step down transformer is used which convert V. We used bridge rectifier to convert the 9V supply output of transformer into DC voltage. A voltage regulator IC is used to have the fixed output voltage of +5V. For microcontroller and GSM

3 module separate supplier are used of same specification requirement. 3.3 MICROCONTROLLER ATMEGA16 The ATmega16 is a low-power CMOS 8- bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega16 achieves throughputs approaching 1 MIPS per MHz allowing the system designed to optimize power consumption versus processing speed Features High-performance, Low-power Atmel AVR 8-bit Microcontroller:- Advanced RISC Architecture:- 131 Powerful Instructions Most Singleclock Cycle Execution 32 x 8 General Purpose Working Registers Up to 16 MIPS Throughput at 16 MHz High Endurance Non-volatile Memory segments:- 16 Kbytes of Flash program memory 512 Bytes EEPROM 1 Kbyte Internal SRAM Peripheral Features:- Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode Real Time Counter with Separate Oscillator 8-channel, 10-bit ADC, 8 Single-ended Channels Byte-oriented Two-wire Serial Interface Programmable Serial USART Master/Slave SPI Serial Interface On-chip Analog Comparator Special Microcontroller Features:- Power-on Reset Internal Calibrated RC Oscillator External and Internal Interrupt Sources Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby and Extended Standby I/O and Packages:- 32 Programmable I/O Lines 40-pin PDIP Operating Voltages:- 4.5V - 5.5V for ATmega16 Speed Grades: MHz for ATmega16 Power 1 MHz, 3V, and 25 C for ATmega16:- Active: 1.1 ma Idle Mode: 0.35 ma Power-down Mode: < 1 μa

4 3.3.2 Block Diagram The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers. The ATmega16 provides the following features: 16 Kbytes of In-System Programmable Flash Program memory with Read-While-Write capabilities, 512 bytes EEPROM, 1 Kbyte SRAM, 32 general purpose I/O lines, 32 general purpose working registers, a JTAG interface for Boundaryscan, On-chip Debugging support and programming, three flexible Timer/Counters with compare modes, Internal and External Interrupts, a serial programmable USART, a byte oriented Two-wire Serial Interface, an 8-channel, 10-bit ADC with optional differential input stage with programmable gain (TQFP package only), a programmable Watchdog Timer with Internal Oscillator, an SPI serial port, and six software selectable power saving modes. The Idle mode stops the CPU while allowing the USART, Two-wire interface, A/D Converter, SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next External Interrupt or Hardware Reset. In Power-save mode, the Asynchronous Timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except Asynchronous Timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with lowpower consumption. In Extended Standby mode, both the main Oscillator and the Asynchronous Timer continue to run. The device is manufactured using Atmel s high density nonvolatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program running on the AVR core. The boot program can use any interface to download the application program in the Application Flash

5 memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read- While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega16 is a powerful microcontroller that provides a highly-flexible and cost-effective solution to many embedded control applications. The ATmega16 AVR is supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits Pin Configurations Pin Descriptions VCC:- Digital supply voltage. GND:- Ground. Port A (PA7..PA0):- Port A serves as the analog inputs to the A/D Converter. Port A also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins can provide internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. When pins PA0 to PA7 are used as inputs and are externally pulled low, they will source current if the internal pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port B (PB7..PB0):- Port B is an 8-bit bidirectional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port C (PC7..PC0):- Port C is an 8-bit bidirectional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resistors on pins PC5(TDI), PC3(TMS) and PC2(TCK) will be activated even if a reset occurs. Port D (PD7..PD0):- Port D is an 8-bit bidirectional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.

6 RESET:- Reset Input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. XTAL1:- Input to the inverting Oscillator amplifier and input to the internal clock operating circuit. XTAL2:- Output from the inverting Oscillator amplifier. AVCC: - AVCC is the supply voltage pin for Port A and the A/D Converter. It should be externally connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC through a low-pass filter. AREF: - AREF is the analog reference pin for the A/D Converter 3.4 Global System for Mobile communications Module GSM System: The Global System for Mobile Communications (GSM) originally is the most popular standard for mobile phones in the world. GSM service is used by over 2 billion people across more than 212 countries and territories. As the GSM standard continued to develop, it retained backward compatibility with the original GSM phones; for example, packet data capabilities were added in the Release 97 version of the standard, by means of General Pocket Radio Service (GPRS). Higher speed data transmission has also been introduced with Enhance Data rates for GSM Evolution (EDGE) in the Release 99 version of the standard History of GSM The growth of cellular telephone systems took off in the early 1980s, particularly in Europe. The lack of a technological standardization prompted the European Conference of Postal and Telecommunications Administrations (CEPT) to create the Group Special Mobile (GSM) in 1982 with the objective of developing a standard for a mobile telephone system that could be used across Europe. The first GSM network was launched in 1991 by Radiolinja in Finland. In 1989, GSM responsibility was transferred to the European Telecommunications Standards Institute (ETSI), and phase I of the GSM specifications were published in By the end of 1993, over a million subscribers were using GSM phone networks being operated by 70 carriers across 48 countries ARCHITECTURE:- Fig.:- 6 General Architecture of GSM network CONNECTION BETWEEN MICROCONTROLLER AND GSM MODULE For connection, Receiver Pin (Rx) of Microcontroller is connected to the Transmitter Pin (Tx) of GSM Module and Transmitter Pin (Tx) of Microcontroller is connected to the

7 Receiver Pin (Rx) of GSM Module. Also Ground Pin (GND) of both are connected. AT COMMANDS where AT stands for Application Terminal. Some useful AT Commands are: AT Commands, GSM AT command set AT commands are used to control MODEMs. bb AT is the abbreviation for Attention. These commands come from Hayes commands that Fig.:- 7 Interfacing of ATmega16 with GSM Module were used by the Hayes smart modems. The Hayes commands started with AT to indicate the attention from the MODEM. The dial up and wireless MODEMs (devices that involve machine to machine communication) need AT commands to interact with a computer. These include the Hayes command set as a subset, along with other extended AT commands GSM MODULE Fig.:- 8 GSM Module For sending message, a GSM Module named SIMCOM 300 with RS232, power supply, buzzer and audio interface are used. This can be connected to PC by using a USB to Serial Adaptor. Terminal programs such as Real term are used to send & receive data. The interface between GSM Module and microcontroller can also be done directly with the help of wires. GSM Module works with AT commands with a GSM/GPRS MODEM or mobile phone can be used to access following information and services: 1. Information and configuration pertaining to mobile device or MODEM and SIM card. 2. SMS services. 3. MMS services. 4. Fax services. 5. Data and Voice link over mobile network. The Hayes subset commands are called the basic commands and the commands specific to a GSM network are called extended AT commands. Types of AT Commands: There are four types of AT commands:

8 1) Test commands - used to check whether a command is supported or not by the MODEM. SYNTAX: AT<command name>=? For example: ATD=? 2) Read command - used to get mobile phone or MODEM settings for an operation. SYNTAX: AT<command name>? For example: AT+CBC? 3) Set commands - used to modify mobile phone or MODEM settings for an operation. SYNTAX: AT<command name>=value1, value2,, valuen Some values in set commands can be optional. For example: AT+CSCA= , 120 4) Execution commands - used to carry out an operation. SYNTAX: AT<command name>=parameter1, parameter2,, parametern The read commands are not available to get value of last parameter assigned in execution commands because parameters of execution commands are not stored. For example: AT+CMSS=1, , 120 1) AT - This command is used to check communication between the module and the computer. For example, AT OK The command returns a result code OK if the computer (serial port) and module are connected properly. If any of module or SIM is not working, it would return a result code ERROR. 2)+CMGF - This command is used to set the SMS mode. Either text or PDU mode can be selected by assigning 1 or 0 in the command. SYNTAX: AT+CMGF=<mode> 0: for PDU mode 1: for text mode The text mode of SMS is easier to operate but it allows limited features of SMS. The PDU (protocol data unit) allows more access to SMS services but the operator requires bit level knowledge of TPDUs. The headers and body of SMS are accessed in hex format in PDU mode so it allows availing more features. For example, AT+CMGF=1 OK 3) +CMGW - This command is used to store message in the SIM. SYNTAX: AT+CMGW= Phone number > Message to be stored Ctrl+z As one types AT+CMGW and phone number, > sign appears on next line where one can type the message. Multiple line messages can

9 be typed in this case. This is why the message is terminated by providing a Ctrl+z combination. As Ctrl+z is pressed, the following information response is displayed on the screen. +CMGW: Number on which message has been stored 4) +CMGS - This command is used to send a SMS message to a phone number. SYNTAX: AT+CMGS= serial number of message to be send. As the command AT+CMGS and serial number of message are entered, SMS is sent to the particular SIM. For example, AT+CMGS=1 OK 5) ATD - This command is used to dial or call a number. SYNTAX: ATD<Phone number>(enter) For example, ATD ) ATA - This command is used to answer a call. An incoming call is indicated by a message RING which is repeated for every ring of the call. When the call ends NO CARRIER is displayed on the screen. SYNTAX: ATA(Enter) As ATA followed by enter key is pressed, incoming call is answered. For example, RING RING ATA 7) ATH - This command is used to disconnect remote user link with the GSM module. SYNTAX: ATH (Enter) SMS Text mode : Command Description AT+CSMS Select message service AT+CPMS Preferred message storage AT+CMGF Message format AT+CSCA Service centre address AT+CSMP Set text mode parameters AT+CSDH Show text mode parameters AT+CSCB Select cell broadcast message types AT+CSAS Save settings AT+CRES Restore settings AT+CNMI New message indications to TE AT+CMGL List messages AT+CMGR Read message AT+CMGS Send message AT+CMSS Send message from storage AT+CMGW Write message to memory AT+CMGD Delete message SMS PDU mode : Command Description AT+CMGL List Messages AT+CMGR Read message AT+CMGS Send message AT+CMGW Write message to memory 3.5 LCD DISPLAY

10 The display used here (shown in fig. 9) is 16x2 LCD (Liquid Crystal Display) that displays 16 characters per line by 2 lines. A very popular standard exists which allows us to communicate with the vast majority of LCDs regardless of their manufacturer. The standard is referred to as HD44780U, which refers to the controller chip which receives data from an external source (in this case, the Atmega16) and communicates directly with the LCD. The standard requires 3 control lines as well as either 4 or 8 I/O lines for the data bus. Here we are using 8-bit mode of LCD, i.e., using 8-bit data bus. for the minimum amount of time required by the LCD datasheet (this varies from LCD to LCD), and end by bringing it low (0) again. The RS line is the "Register Select" line. When RS is low (0), the data is to be treated as a command or special instruction (such as clear screen, position cursor, etc.). When RS is high (1), the data being sent is text data which should be displayed on the screen. For example, to display the letter "T" on the screen you would set RS high. The RW line is the "Read/Write" control line. When RW is low (0), the information on the data bus is being written to the LCD. When RW is high (1), the program is effectively querying (or reading) the LCD. Only one instruction ("Get LCD status") is a read command. All others are write commands--so RW will almost always be low. In our case of an 8-bit data bus, the lines are referred to as DB0, DB1, DB2, DB3, DB4, DB5, DB6, and DB7. Fig.:- 9 PIN Diagram of LCD The three control lines are referred to as EN, RS, and RW. The EN line is called "Enable." This control line is used to tell the LCD that we are sending it data. To send data to the LCD, our program should make sure this line is low (0) and then set the other two control lines and/or put data on the data bus. When the other lines are completely ready, bring EN high (1) and wait

11 3.5.1 PIN DESCRIPTION PIN NUMBER SYMBOL FUNCTION 1 Vss GND 2 Vdd + 3V or + 5V 3 Vo Contrast Adjustment Fig.:- 10 Interfacing of ATmega 16 with LCD Display INTERFACING OF LCD WITH MICROCONTROLLER 4 RS H/L Register Select Signal 5 R/W H/L Read/Write Signal 6 E H L Enable Signal 7 DB0 H/L Data Bus Line 8 DB1 H/L Data Bus Line 9 DB2 H/L Data Bus Line 10 DB3 H/L Data Bus Line 11 DB4 H/L Data Bus Line 12 DB5 H/L Data Bus Line 13 DB6 H/L Data Bus Line 14 DB7 H/L Data Bus Line + 3.5V for 15 A/Vee LED/Negative Voltage Output PROGRAMMING STEPS SEQUENCE: 1. Initalizing LDC_Display and SIM Get response of SIM300 and Display it. 3. If response=="ok", set "TEXT MODE SELECTION". 4. Check SIM Card and display it's response. 5. Check Network connection and Display it. 6. Wait untill message received. 7. Read message. 8. Copy Mob_Location and Text. 16 K K Power Supply for B/L (OV) 9. Display Mob_Location and Text. 10. Send SMS according to Text as, Table of PIN Description of LCD Display

12 11. If Text==1: Send to Mob_USER_ If Text==2: Send to Mob_USER_ If Text==3: Send to Mob_USER_ Display Response of SMS. Advantages and Applications: Advantage: 1. Easy in implementation at low cost. 2. It required very low cost. 3. It can be implemented easily at low cost. 4. Used to provide emergency facility. Application: 1. It can use in hospitals and police stations.

13 4. CONCLUSION This proposed work is to attempt to design a tracking unit for the emergency situations. This project had tried a simple way to find the emergency facility that are most nearby to the affected person The android application helps to find location of the person and providing them nearest available emergency facility that are most nearby to that affected person. The nearest facilities are tracked by comparing difference of distance vector with distance vector of affected person. Using this system and with a simple android application we are able to get the emergency facility. 5. REFERANCES 1)ATiny2313 Data Book. (2003, September). AVR Microcontroller. Retrieved April 12, 2011, from ATmel Corporation: http;/ 2) 3)Adedjouma A.S., Adjovi G., Agaï L. and Degbo B., A system of remote control car lock with a GSM based geo-location by GPS and GSM. African Journal of Research in Computer Science and Applied Mathematics, Vol. 1. 4) Baille A., Kittas C. et Katsoulas N., Influence of whitening on greenhouse microclimate and crop energy partitioning. Journal of Agricultural and Forest Meteorology, Vol ) Bouchikhi B., El Harzli M., Design and realization of acquisition system and climatic parameters control under the greenhouse. Phys & Chem. News, Vol. 22 6) El Harzli M., Study and realization of a multifunctional sensor, heat flux, temperature and humidity. Application to the greenhouse control. National PhD, Faculty of Sciences, Meknes, Moulay Ismail University, Morocco 7) Jiang P., Xia H., Zhiye He Z. and Wang Z., Design of a water Environment monitoring system based on wireless sensor networks. Journal of Sensors Vol. 9 8) SIM300 Hardware Interface Description version date: doc.id:- SIM300_HD_V1.06 9) Relay - Wikipedia, the free encyclopediaen.wikipedia.org/wiki/relay 10) max232 datasheet SLLS047L FEBRUARY 1989 REVISED MARCH ) l-avr-lcd-16x2-interfacing-hd44780.html 12)

MICROCONTROLLER BASED LPG GAS DETECTOR USING GSM MODULE

MICROCONTROLLER BASED LPG GAS DETECTOR USING GSM MODULE MICROCONTROLLER BASED LPG GAS DETECTOR USING GSM MODULE Ashish Sharma (B.Tech., EL Engg.) E-mail: ashishpreet2009@gmail.com : contactashish10@gmail.com ABSTRACT Ideal gas sensor is used to detect the presence

More information

Lecture 14. Ali Karimpour Associate Professor Ferdowsi University of Mashhad

Lecture 14. Ali Karimpour Associate Professor Ferdowsi University of Mashhad Lecture 14 AUTOMATIC CONTROL SYSTEMS Ali Karimpour Associate Professor Ferdowsi University of Mashhad Lecture 4 The AVR Microcontroller Introduction to AVR CISC (Complex Instruction Set Computer) Put as

More information

ARDUINO MEGA INTRODUCTION

ARDUINO MEGA INTRODUCTION ARDUINO MEGA INTRODUCTION The Arduino MEGA 2560 is designed for projects that require more I/O llines, more sketch memory and more RAM. With 54 digital I/O pins, 16 analog inputs so it is suitable for

More information

Arduino Uno R3 INTRODUCTION

Arduino Uno R3 INTRODUCTION Arduino Uno R3 INTRODUCTION Arduino is used for building different types of electronic circuits easily using of both a physical programmable circuit board usually microcontroller and piece of code running

More information

AVR- M16 development board Users Manual

AVR- M16 development board Users Manual AVR- M16 development board Users Manual All boards produced by Olimex are ROHS compliant Rev. C, January 2005 Copyright(c) 2009, OLIMEX Ltd, All rights reserved Page1 INTRODUCTION AVR-M16 is header board

More information

VLSI Design Lab., Konkuk Univ. Yong Beom Cho LSI Design Lab

VLSI Design Lab., Konkuk Univ. Yong Beom Cho LSI Design Lab AVR Training Board-I V., Konkuk Univ. Yong Beom Cho ybcho@konkuk.ac.kr What is microcontroller A microcontroller is a small, low-cost computeron-a-chip which usually includes: An 8 or 16 bit microprocessor

More information

LAMPIRAN. Universitas Sumatera Utara

LAMPIRAN. Universitas Sumatera Utara LAMPIRAN 35 Features 2. High-performance, Low-power AVR 8-bit Microcontroller 3. Advanced RISC Architecture 131 Powerful Instructions Most Single-clock Cycle Execution 32 x 8 General Purpose Working Registers

More information

AVR Training Board-I. VLSI Design Lab., Konkuk Univ. LSI Design Lab

AVR Training Board-I. VLSI Design Lab., Konkuk Univ. LSI Design Lab AVR Training Board-I V., Konkuk Univ. Tae Pyeong Kim What is microcontroller A microcontroller is a small, low-cost computeron-a-chip which usually includes: An 8 or 16 bit microprocessor (CPU). A small

More information

SYNOPSIS PROJECT TITLE : GSM BASED E-NOTICE BOARD

SYNOPSIS PROJECT TITLE : GSM BASED E-NOTICE BOARD SYNOPSIS PROJECT TITLE : GSM BASED E-NOTICE BOARD OBJECTIVE: The main aim of this project will be to design a SMS driven automatic display board which can replace the currently used programmable electronic

More information

Mohammad Shaffi 1, D Ravi Nayak 2. Dadi Institute of Engineering & Technology,

Mohammad Shaffi 1, D Ravi Nayak 2. Dadi Institute of Engineering & Technology, A Novel Architecture For Measurement of Temperature, Relative Humidity, and Display of Scrolling Message On LED Display By Using Bluetooth Interface With Arduino Nano. Mohammad Shaffi 1, D Ravi Nayak 2

More information

Driver Fatigue Detection System Using MEMS Technology

Driver Fatigue Detection System Using MEMS Technology Vaishali B dhabale* et al. ISSN: 2250-3676 [IJESAT] [International Journal of Engineering Science & Advanced Technology] Volume-5, Issue-2, 060-064 Driver Fatigue Detection System Using MEMS Technology

More information

Ali Karimpour Associate Professor Ferdowsi University of Mashhad

Ali Karimpour Associate Professor Ferdowsi University of Mashhad AUTOMATIC CONTROL SYSTEMS Ali Karimpour Associate Professor Ferdowsi University of Mashhad Main reference: Christopher T. Kilian, (2001), Modern Control Technology: Components and Systems Publisher: Delmar

More information

3 PHASE FAULT ANALYSIS WITH AUTO RESET FOR TEMPORARY FAULT AND TRIP FOR PREMANENT

3 PHASE FAULT ANALYSIS WITH AUTO RESET FOR TEMPORARY FAULT AND TRIP FOR PREMANENT e-issn 2455 1392 Volume 3 Issue 4, April 2017 pp. 80 84 Scientific Journal Impact Factor : 3.468 http://www.ijcter.com 3 PHASE FAULT ANALYSIS WITH AUTO RESET FOR TEMPORARY FAULT AND TRIP FOR PREMANENT

More information

Ali Karimpour Associate Professor Ferdowsi University of Mashhad

Ali Karimpour Associate Professor Ferdowsi University of Mashhad AUTOMATIC CONTROL SYSTEMS Ali Karimpour Associate Professor Ferdowsi University of Mashhad Main reference: Christopher T. Kilian, (2001), Modern Control Technology: Components and Systems Publisher: Delmar

More information

MICROPROCESSOR BASED SYSTEM DESIGN

MICROPROCESSOR BASED SYSTEM DESIGN MICROPROCESSOR BASED SYSTEM DESIGN Lecture 5 Xmega 128 B1: Architecture MUHAMMAD AMIR YOUSAF VON NEUMAN ARCHITECTURE CPU Memory Execution unit ALU Registers Both data and instructions at the same system

More information

SBAT90USB162 Atmel. SBAT90USB162 Development Board User s Manual

SBAT90USB162 Atmel. SBAT90USB162 Development Board User s Manual SBAT90USB162 Atmel AT90USB162 Development Board User s manual 1 1. INTRODUCTION Thank you for choosing the SBAT90USB162 Atmel AT90USB162 development board. This board is designed to give a quick and cost-effective

More information

LBAT90USB162 Atmel. LBAT90USB162 Development Board User s Manual

LBAT90USB162 Atmel. LBAT90USB162 Development Board User s Manual LBAT90USB162 Atmel AT90USB162 Development Board User s manual 1 1. INTRODUCTION Thank you for choosing the LBAT90USB162 Atmel AT90USB162 development board. This board is designed to give quick and cost-effective

More information

Mega128-DEVelopment Board Progressive Resources LLC 4105 Vincennes Road Indianapolis, IN (317) (317) FAX

Mega128-DEVelopment Board Progressive Resources LLC 4105 Vincennes Road Indianapolis, IN (317) (317) FAX Mega128-DEVelopment Board Progressive Resources LLC 4105 Vincennes Road Indianapolis, IN 46268 (317) 471-1577 (317) 471-1580 FAX http://www.prllc.com GENERAL The Mega128-Development board is designed for

More information

Clock and Fuses. Prof. Prabhat Ranjan Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar

Clock and Fuses. Prof. Prabhat Ranjan Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar Clock and Fuses Prof. Prabhat Ranjan Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar Reference WHY YOU NEED A CLOCK SOURCE - COLIN O FLYNN avrfreaks.net http://en.wikibooks.org/wiki/atmel_avr

More information

An Arduino Controlled 1 Hz to 60 MHz Signal Generator

An Arduino Controlled 1 Hz to 60 MHz Signal Generator An Arduino Controlled 1 Hz to 60 MHz Signal Generator Greg McIntire, AA5C AA5C@arrl.net WWW..ORG 1 Objectives Build a standalone 60 MHz signal generator based on the DDS-60 board. Originally controlled

More information

GSM Interfacing Board

GSM Interfacing Board Campus Component Pvt. Ltd. DISCLAIMER Information furnished is believed to be accurate and reliable at the time of publication. However, Campus Component Pvt. Ltd. assumes no responsibility arising from

More information

INTELLIGENT APPLIANCE CONTROL SYSTEM USING ARM7 AND ZIGBEE

INTELLIGENT APPLIANCE CONTROL SYSTEM USING ARM7 AND ZIGBEE Int. J. Elec&Electr.Eng&Telecoms. 2013 Pushkar Singh et al., 2013 Research Paper ISSN 2319 2518 www.ijeetc.com Vol. 2, No. 3, July 2013 2013 IJEETC. All Rights Reserved INTELLIGENT APPLIANCE CONTROL SYSTEM

More information

ON THE USE OF AT COMMANDS FOR CONTROLING THE MOBILE PHONE WITH MICROCONTROLLER LABORATORY EXERCISE

ON THE USE OF AT COMMANDS FOR CONTROLING THE MOBILE PHONE WITH MICROCONTROLLER LABORATORY EXERCISE 2007 Poznańskie Warsztaty Telekomunikacyjne Poznań 6-7 grudnia 2007 P OZNAN POZNAN UNIVERSIT UNIVERSITY Y OF OF TECHNOLOGY ACADEMIC ACADEMIC JOURNALS JOURNALS No 54 Electrical Engineering 2007 Adrian KLIKS*

More information

Keywords Digital IC tester, Microcontroller AT89S52

Keywords Digital IC tester, Microcontroller AT89S52 Volume 6, Issue 1, January 2016 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Digital Integrated

More information

MegaAVR-DEVelopment Board Progressive Resources LLC 4105 Vincennes Road Indianapolis, IN (317) (317) FAX

MegaAVR-DEVelopment Board Progressive Resources LLC 4105 Vincennes Road Indianapolis, IN (317) (317) FAX MegaAVR-DEVelopment Board Progressive Resources LLC 4105 Vincennes Road Indianapolis, IN 46268 (317) 471-1577 (317) 471-1580 FAX http://www.prllc.com GENERAL The MegaAVR-Development board is designed for

More information

ATmega128. Introduction

ATmega128. Introduction ATmega128 Introduction AVR Microcontroller 8-bit microcontroller released in 1997 by Atmel which was founded in 1984. The AVR architecture was conceived by two students (Alf-Egil Bogen, Vergard-Wollen)

More information

DESIGN OF WIRELESS TRANSMISSION SYSTEM USINGRF DATA MODEM Jayalakshmi P K

DESIGN OF WIRELESS TRANSMISSION SYSTEM USINGRF DATA MODEM Jayalakshmi P K DESIGN OF WIRELESS TRANSMISSION SYSTEM USINGRF DATA MODEM Jayalakshmi P K Abstract Wireless technology has been tremendously growing day by day. The need of wireless technology is that it replaces the

More information

Embedded Automobile Engine Locking System Using GSM & GPS Technology

Embedded Automobile Engine Locking System Using GSM & GPS Technology Volume-6, Issue-2, March-April 2016 International Journal of Engineering and Management Research Page Number: 117-122 Embedded Automobile Engine Locking System Using GSM & GPS Technology Abhishek Gupta

More information

Bolt 18F2550 System Hardware Manual

Bolt 18F2550 System Hardware Manual 1 Bolt 18F2550 System Hardware Manual Index : 1. Overview 2. Technical specifications 3. Definition of pins in 18F2550 4. Block diagram 5. FLASH memory Bootloader programmer 6. Digital ports 6.1 Leds and

More information

The Atmel ATmega328P Microcontroller

The Atmel ATmega328P Microcontroller Ming Hsieh Department of Electrical Engineering EE 459Lx - Embedded Systems Design Laboratory 1 Introduction The Atmel ATmega328P Microcontroller by Allan G. Weber This document is a short introduction

More information

DBAT90USB162 Atmel. DBAT90USB162 Enhanced Development Board User s Manual

DBAT90USB162 Atmel. DBAT90USB162 Enhanced Development Board User s Manual DBAT90USB162 Atmel AT90USB162 Enhanced Development Board User s manual 1 1. INTRODUCTION Thank you for choosing the DBAT90USB162 Atmel AT90USB162 enhanced development board. This board is designed to give

More information

Doc: page 1 of 8

Doc: page 1 of 8 Minicon Reference Manual Revision: February 9, 2009 Note: This document applies to REV C of the board. 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The Minicon board is a

More information

CHAPTER 1 MICROCOMPUTER SYSTEMS. 1.1 Introduction. 1.2 Microcontroller Evolution

CHAPTER 1 MICROCOMPUTER SYSTEMS. 1.1 Introduction. 1.2 Microcontroller Evolution CHAPTER 1 MICROCOMPUTER SYSTEMS 1.1 Introduction The term microcomputer is used to describe a system that includes a microprocessor, program memory, data memory, and an input/output (I/O). Some microcomputer

More information

8-bit Atmel with 8KBytes In- System Programmable Flash. ATmega8 ATmega8L. Summary

8-bit Atmel with 8KBytes In- System Programmable Flash. ATmega8 ATmega8L. Summary Features High-performance, Low-power Atmel AVR 8-bit Microcontroller Advanced RISC Architecture 130 Powerful Instructions Most Single-clock Cycle Execution 32 8 General Purpose Working Registers Fully

More information

More than Compatibility

More than Compatibility More than Compatibility MassDuino MD-328D 8-bit Microcontroller with 32K bytes In-System Programmable Flash www.inhaos.com DOC ID: DS-MD-328D-V01-20160412 www.inhaos.com Page: 1 of 10 Features: More Fast

More information

Doc: page 1 of 6

Doc: page 1 of 6 Nanocon Reference Manual Revision: February 9, 2009 Note: This document applies to REV A-B of the board. 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The Nanocon board is

More information

8-bit Atmel Microcontroller with 8KB In-System Programmable Flash. ATmega8A

8-bit Atmel Microcontroller with 8KB In-System Programmable Flash. ATmega8A 8-bit Atmel Microcontroller with 8KB In-System Programmable Flash ATmega8A SUMMARY Features High-performance, Low-power Atmel AVR 8-bit Microcontroller Advanced RISC Architecture 130 Powerful Instructions

More information

Controlling and Monitoring Of Industrial Parameters by Using GSM

Controlling and Monitoring Of Industrial Parameters by Using GSM Controlling and Monitoring Of Industrial Parameters by Using GSM GUIDE: Mr. S. CHANDRA SHEKAR, PROFESSOR IN ECE P.WASEEM NAZMA, G.SUDHA PRIYANKA, S.DHANA LAKSHMI, SK.SHAHID DEPARTMENT OF ELECTRONICS AND

More information

MEXLE. International Educational Platform. International Educational Platform. for Informatics based on Embedded Systems

MEXLE. International Educational Platform. International Educational Platform. for Informatics based on Embedded Systems MEXLE for Informatics based on Embedded Systems Overview 1. Introduction 2. MiniMEXLE Hardware 3. ATMEL AVR Microcontrollers 4. Teaching Informatics with MEXLE 2 HSHN G. Gruhler (2006) Einfuehrung-miniMEXLE-AVR.ppt

More information

AVR Intermediate Development Board. Product Manual. Contents. 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help

AVR Intermediate Development Board. Product Manual. Contents. 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help AVR Intermediate Development Board Product Manual Contents 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help 1. Overview 2. Features The board is built on a high quality FR-4(1.6

More information

AVRminiV3.1 Manual. 1. AVRminiV3.1 Overview. 2. AVRminiV3.1 Features and Specifications Standard Features: 2.2. Optional Features:

AVRminiV3.1 Manual. 1. AVRminiV3.1 Overview. 2. AVRminiV3.1 Features and Specifications Standard Features: 2.2. Optional Features: AVRminiV3. Manual. AVRminiV3. Overview The AVRminiV3. board is a low-cost versatile development board for Atmel AVR processors. The AVRminiV3. supports all AVR processors in 40-pin and 64-pin packages

More information

MOD-IO development board Users Manual

MOD-IO development board Users Manual MOD-IO development board Users Manual All boards produced by Olimex are ROHS compliant Rev. B, September 0 Copyright(c) 0, OLIMEX Ltd, All rights reserved Page INTRODUCTION MOD-IO is a small but powerful

More information

MicroBolt. Microcomputer/Controller Featuring the Philips LPC2106 FEATURES

MicroBolt. Microcomputer/Controller Featuring the Philips LPC2106 FEATURES Microcomputer/Controller Featuring the Philips LPC2106 FEATURES Powerful 60 MHz, 32-bit ARM processing core. Pin compatible with 24 pin Stamp-like controllers. Small size complete computer/controller with

More information

The Atmel ATmega168A Microcontroller

The Atmel ATmega168A Microcontroller Ming Hsieh Department of Electrical Engineering EE 459Lx - Embedded Systems Design Laboratory The Atmel ATmega168A Microcontroller by Allan G. Weber 1 Introduction The Atmel ATmega168A is one member of

More information

Implementation of Fingerprint Assist Wending Machine with Recharge Option

Implementation of Fingerprint Assist Wending Machine with Recharge Option Implementation of Fingerprint Assist Wending Machine with Recharge Option Ankush S. Deshmukh, Bhushan S. Kalamkar & S. S. Jadhav Dept. of Electronics Engineering, Govindrao Wanjari College of Engineering.

More information

GSM MODULE BASED SMART NOTICE BOARD

GSM MODULE BASED SMART NOTICE BOARD GSM MODULE BASED SMART NOTICE BOARD Manpreet Singh Gagandeep Singh Sodhi Azadwinder Singh Abstract-- The ways of addressing public at large viz; bus terminals, railway stations, colleges, universities

More information

Development KIT for TM2 GPRS modem User manual 1.2. Development KIT. Development KIT for TM2 GSM/GPRS modem User s manual 1.2

Development KIT for TM2 GPRS modem User manual 1.2. Development KIT. Development KIT for TM2 GSM/GPRS modem User s manual 1.2 Development KIT Development KIT for TM2 GSM/GPRS modem User s manual 1.2 1 Contents Attention!... 3 1. Basic Safety Requirements... 4 2. General Information... 5 2.1 Introduction... 5 2.2 About this document...

More information

8-bit Atmel Microcontroller with 16K/32K/64K Bytes In-System Programmable Flash

8-bit Atmel Microcontroller with 16K/32K/64K Bytes In-System Programmable Flash Features High-performance, Low-power Atmel AVR 8-bit Microcontroller Advanced RISC Architecture 131 Powerful Instructions Most Single-clock Cycle Execution 32 8 General Purpose Working Registers Fully

More information

CN310 Microprocessor Systems Design

CN310 Microprocessor Systems Design CN310 Microprocessor Systems Design Microcontroller Nawin Somyat Department of Electrical and Computer Engineering Thammasat University Outline Course Contents 1 Introduction 2 Simple Computer 3 Microprocessor

More information

AVR XMEGA Product Line Introduction AVR XMEGA TM. Product Introduction.

AVR XMEGA Product Line Introduction AVR XMEGA TM. Product Introduction. AVR XMEGA TM Product Introduction 32-bit AVR UC3 AVR Flash Microcontrollers The highest performance AVR in the world 8/16-bit AVR XMEGA Peripheral Performance 8-bit megaavr The world s most successful

More information

Doc: page 1 of 6

Doc: page 1 of 6 Cerebot Nano Reference Manual Revision: February 6, 2009 Note: This document applies to REV A of the board. www.digilentinc.com 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview

More information

AVR XMEGA TM. A New Reference for 8/16-bit Microcontrollers. Ingar Fredriksen AVR Product Marketing Director

AVR XMEGA TM. A New Reference for 8/16-bit Microcontrollers. Ingar Fredriksen AVR Product Marketing Director AVR XMEGA TM A New Reference for 8/16-bit Microcontrollers Ingar Fredriksen AVR Product Marketing Director Kristian Saether AVR Product Marketing Manager Atmel AVR Success Through Innovation First Flash

More information

Mega128-Net Mega128-Net Mega128 AVR Boot Loader Mega128-Net

Mega128-Net Mega128-Net Mega128 AVR Boot Loader Mega128-Net Mega128-Net Development Board Progressive Resources LLC 4105 Vincennes Road Indianapolis, IN 46268 (317) 471-1577 (317) 471-1580 FAX http://www.prllc.com GENERAL The Mega128-Net development board is designed

More information

PXA270 EPIC Computer with Power Over Ethernet & Six Serial Protocols SBC4670

PXA270 EPIC Computer with Power Over Ethernet & Six Serial Protocols SBC4670 PXA270 EPIC Computer with Power Over Ethernet & Six Serial Protocols SBC4670 Features RoHS 520MHz Low-power ARM processor w/ 800 x 600 Color LCD Power Over Ethernet and 10/100BASE-T Ethernet GPS module

More information

8051 Microcontroller

8051 Microcontroller 8051 Microcontroller The 8051, Motorola and PIC families are the 3 leading sellers in the microcontroller market. The 8051 microcontroller was originally developed by Intel in the late 1970 s. Today many

More information

[MG2420] MCU Module Datasheet. (No. ADS0705) V1.0

[MG2420] MCU Module Datasheet. (No. ADS0705) V1.0 [MG2420] MCU Module Datasheet (No. ADS0705) V1.0 REVISION HISTORY Version Date Description VER.1.0 2013.10.22 First version release. V1.0 Page:2/17 CONTENTS 1. INTRODUCTION... 4 1.1. DEFINITIONS... 4 2.

More information

AVR Microcontrollers Architecture

AVR Microcontrollers Architecture ก ก There are two fundamental architectures to access memory 1. Von Neumann Architecture 2. Harvard Architecture 2 1 Harvard Architecture The term originated from the Harvard Mark 1 relay-based computer,

More information

Gemalto EHS6T-USB Terminal Starter Kit. Getting Started Guide

Gemalto EHS6T-USB Terminal Starter Kit. Getting Started Guide Gemalto EHS6T-USB Terminal Starter Kit Getting Started Guide EHS6T-USB Terminal Starter Kit Contents Image is for a Kit A version. Other versions with different antenna may be available. This manual is

More information

[Mule, 4(2), February, 2017] ISSN: IMPACT FACTOR

[Mule, 4(2), February, 2017] ISSN: IMPACT FACTOR SOLDIER TRACKING AND HEALTH MONITORING SYSTEM USING GSM OR GPS. Ketan Mule* 1, Yogesh Shelar 2 & Sanket Bhalerao 3 *1, 2,&3 Research Scholar, Department of Electronics & Telecommunication Engineering,

More information

Embedded Systems Lab Lab 1 Introduction to Microcontrollers Eng. Dalia A. Awad

Embedded Systems Lab Lab 1 Introduction to Microcontrollers Eng. Dalia A. Awad Embedded Systems Lab Lab 1 Introduction to Microcontrollers Eng. Dalia A. Awad Objectives To be familiar with microcontrollers, PIC18F4550 microcontroller. Tools PIC18F4550 Microcontroller, MPLAB software,

More information

Cerebot Nano Reference Manual. Overview. Revised April 15, 2016 This manual applies to the Cerebot Nano rev. A

Cerebot Nano Reference Manual. Overview. Revised April 15, 2016 This manual applies to the Cerebot Nano rev. A 1300 Henley Court Pullman, WA 99163 509.334.6306 www.digilentinc.com Cerebot Nano Reference Manual Revised April 15, 2016 This manual applies to the Cerebot Nano rev. A Overview The Cerebot Nano is the

More information

Vikas Kumar, EE Department, BKBIET, Pilani, Rajasthan, India

Vikas Kumar, EE Department, BKBIET, Pilani, Rajasthan, India Checking correct billing system using GSM modem with Wireless SCADA Vikas Kumar, EE Department, BKBIET, Pilani, Rajasthan, India vicky.bkbiet@gmail.com Abstract: Energy meter are monitored using automatic

More information

USE OF GSM TECHNILOGY TO CONTROL THE SPEED OF STEPPER MOTOR

USE OF GSM TECHNILOGY TO CONTROL THE SPEED OF STEPPER MOTOR USE OF GSM TECHNILOGY TO CONTROL THE SPEED OF STEPPER MOTOR Srushti Chafle 1, S wati Bhandarkar 2 Department of Electrical Engineering, Datta meghe Institute of Engineering technology and research, Sawangi(Meghe),Wardha

More information

SECURITY FOR ORGANIZING GSM DIGITAL NOTICE BOARD Dr. Sreeja Mole S S 1, D.Gurunath 2, Yasmeen 3

SECURITY FOR ORGANIZING GSM DIGITAL NOTICE BOARD Dr. Sreeja Mole S S 1, D.Gurunath 2, Yasmeen 3 SECURITY FOR ORGANIZING GSM DIGITAL NOTICE BOARD Dr. Sreeja Mole S S 1, D.Gurunath 2, Yasmeen 3 1 Professor/HOD, Department of ECE, CJITS, Janagon. 2 Assistant Professor, CJITS, Janangon 3 CJITS, Janagon

More information

8-bit Microcontroller with 1K Byte of In-System Programmable Flash AT90S1200

8-bit Microcontroller with 1K Byte of In-System Programmable Flash AT90S1200 Features Utilizes the AVR RISC Architecture AVR High-performance and Low-power RISC Architecture 89 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General-purpose Working Registers Up to

More information

3.3V regulator. JA H-bridge. Doc: page 1 of 7

3.3V regulator. JA H-bridge. Doc: page 1 of 7 Digilent Cerebot Board Reference Manual Revision: 11/17/2005 www.digilentinc.com 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The Digilent Cerebot Board is a useful tool for

More information

GSM Based Remote Control Design for LCD Publicity Display

GSM Based Remote Control Design for LCD Publicity Display IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-302, ISSN (p): 2278-879 Vol 04, Issue 2 (December 204), V2 PP 49-53 wwwiosrjenorg GSM Based Remote Control Design for LCD Publicity Display Noaman AbdElnou

More information

Transmission Line Security System Based on RFID and GSM Technology

Transmission Line Security System Based on RFID and GSM Technology Transmission Line Security System Based on RFID and GSM Technology Swati Chandrakar Completed B.E in Electrical and Electronics from CSIT in 2014. Right Now She is Working as a Teacher at Yugantar Institute

More information

AC : INFRARED COMMUNICATIONS FOR CONTROLLING A ROBOT

AC : INFRARED COMMUNICATIONS FOR CONTROLLING A ROBOT AC 2007-1527: INFRARED COMMUNICATIONS FOR CONTROLLING A ROBOT Ahad Nasab, Middle Tennessee State University SANTOSH KAPARTHI, Middle Tennessee State University American Society for Engineering Education,

More information

Assistive Technology for Intellectually Disabled and Physically Challenged People

Assistive Technology for Intellectually Disabled and Physically Challenged People International Journal of Innovative Research in Electronics and Communications (IJIREC) Volume 3, Issue 2, 2016, PP 24-34 ISSN 2349-4042 (Print) & ISSN 2349-4050 (Online) www.arcjournals.org Assistive

More information

Demand Side Management by Using GSM Interfacing with Arduino (UNO)

Demand Side Management by Using GSM Interfacing with Arduino (UNO) Demand Side Management by Using Interfacing with Arduino (UNO) 1 Madhuri Mahajan, 2 Swati Patharwat, 3 Anuruddha Ingale, 4 Rohit Chaudhari, 5 Ishwar Patil, 6 Prof. Atul Barhate 1,2,3,4,5,6 Department of

More information

Amarjeet Singh. January 30, 2012

Amarjeet Singh. January 30, 2012 Amarjeet Singh January 30, 2012 Website updated - https://sites.google.com/a/iiitd.ac.in/emsys2012/ Lecture slides, audio from last class Assignment-2 How many of you have already finished it? Final deadline

More information

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Serial Port Communication Module No: CS/ES/11 Quadrant 1 e-text

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Serial Port Communication Module No: CS/ES/11 Quadrant 1 e-text e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Serial Port Communication Module No: CS/ES/11 Quadrant 1 e-text In this lecture, serial port communication will be discussed in

More information

Embedded Technology for Remote Data Logging, Monitoring and Controlling Using GSM/GPRS

Embedded Technology for Remote Data Logging, Monitoring and Controlling Using GSM/GPRS Embedded Technology for Remote Data Logging, Monitoring and Controlling Using GSM/GPRS Sonika Bhagwatrao Jadhav 1, Prof. Ajay S. Wadhawe 2 Research Scholar (M.E.), Dept of ECE, SSIEMS, Parbhani, Maharashtra,

More information

POWER SAVER METER USING MICROCONTROLLER TO SAVE ELECTRICITY UPTO 30-40%

POWER SAVER METER USING MICROCONTROLLER TO SAVE ELECTRICITY UPTO 30-40% POWER SAVER METER USING MICROCONTROLLER TO SAVE ELECTRICITY UPTO 30-40% Prof. Dipesh. M.Patel 1 Kandarp mehta 2 Himanshu amrutiya 3 Ravi bhalodia 4 Chirag amrutiya 5 1. Head, Electrical Engg. Department,

More information

Application Note. SIM7100_SMS_Application_Note_V

Application Note. SIM7100_SMS_Application_Note_V SIM7100 Application Note SMS 0 SIM7100_SMS_Application_Note_V0.01 2014-11-8 Document Title: SIM7100 SMS Application Note Version: 0.01 Date: 2015-02-10 Status: Document ID: Release SIM7100_SMS_Application_Note_V0.01

More information

Design and Installation of Home Automation and Security System Using Microcontroller and ZigBee Modulation

Design and Installation of Home Automation and Security System Using Microcontroller and ZigBee Modulation Design and Installation of Home Automation and Security System Using Microcontroller and ZigBee Modulation Bhargav Mypati, Naseer Ahamed, Gopa Sai Chandra School of Electrical Engineering (SELECT), VIT

More information

C H A P T E R 1 INTRODUCTION

C H A P T E R 1 INTRODUCTION C H A P T E R 1 INTRODUCTION The mentioned project is based on the worlds most powerful intel controller 8051. Most of the services provided in todays world are voice interactive, you call up your bank

More information

Development Tools. 8-Bit Development Tools. Development Tools. AVR Development Tools

Development Tools. 8-Bit Development Tools. Development Tools. AVR Development Tools Development Tools AVR Development Tools This section describes some of the development tools that are available for the 8-bit AVR family. Atmel AVR Assembler Atmel AVR Simulator IAR ANSI C-Compiler, Assembler,

More information

LED Matrix Scrolling using ATmega32 microcontroller

LED Matrix Scrolling using ATmega32 microcontroller LED Matrix Scrolling using ATmega32 microcontroller Deepti Rawat 1, Gunjan Aggarwal 2, Dinesh Kumar Yadav 3, S.K. Mahajan 4 Department of Electronics and Communication Engineering IIMT college of Engineering,

More information

TEVATRON TECHNOLOGIES PVT. LTD Embedded! Robotics! IoT! VLSI Design! Projects! Technical Consultancy! Education! STEM! Software!

TEVATRON TECHNOLOGIES PVT. LTD Embedded! Robotics! IoT! VLSI Design! Projects! Technical Consultancy! Education! STEM! Software! Summer Training 2016 Advance Embedded Systems Fast track of AVR and detailed working on STM32 ARM Processor with RTOS- Real Time Operating Systems Covering 1. Hands on Topics and Sessions Covered in Summer

More information

MT2 Introduction Embedded Systems. MT2.1 Mechatronic systems

MT2 Introduction Embedded Systems. MT2.1 Mechatronic systems MT2 Introduction Embedded Systems MT2.1 Mechatronic systems Mechatronics is the synergistic integration of mechanical engineering, with electronics and intelligent computer control in the design and manufacturing

More information

8-bit Microcontroller with 4K Bytes In-System Programmable Flash. ATtiny40. Preliminary

8-bit Microcontroller with 4K Bytes In-System Programmable Flash. ATtiny40. Preliminary Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 54 Powerful Instructions Most Single Clock Cycle Execution 16 x 8 General Purpose Working Registers Fully Static

More information

CMS-8GP32. A Motorola MC68HC908GP32 Microcontroller Board. xiom anufacturing

CMS-8GP32. A Motorola MC68HC908GP32 Microcontroller Board. xiom anufacturing CMS-8GP32 A Motorola MC68HC908GP32 Microcontroller Board xiom anufacturing 2000 717 Lingco Dr., Suite 209 Richardson, TX 75081 (972) 994-9676 FAX (972) 994-9170 email: Gary@axman.com web: http://www.axman.com

More information

PIC16F87X. 28/40-pin 8-Bit CMOS FLASH Microcontrollers. Devices Included in this Data Sheet: Pin Diagram PDIP. Microcontroller Core Features:

PIC16F87X. 28/40-pin 8-Bit CMOS FLASH Microcontrollers. Devices Included in this Data Sheet: Pin Diagram PDIP. Microcontroller Core Features: PIC16F7X 2/40-pin -Bit CMOS FLASH Microcontrollers Devices Included in this Data Sheet: PIC16F7 PIC16F74 PIC16F76 PIC16F77 Microcontroller Core Features: High-performance RISC CPU Only 5 single word instructions

More information

Hardware Manual. Crumb128. Rapid Prototyping Module with the Atmega128 AVR Microcontroller

Hardware Manual. Crumb128. Rapid Prototyping Module with the Atmega128 AVR Microcontroller Hardware Manual Crumb128 Rapid Prototyping Module with the Atmega128 AVR Microcontroller Version 1.1 Copyright 2004 Dr. Erik Lins, Development and Distribution of Hardware and Software. All right reserved.

More information

DEVBOARD3 DATASHEET. 10Mbits Ethernet & SD card Development Board PIC18F67J60 MICROCHIP

DEVBOARD3 DATASHEET. 10Mbits Ethernet & SD card Development Board PIC18F67J60 MICROCHIP DEVBOARD3 DATASHEET 10Mbits Ethernet & SD card PIC18F67J60 MICROCHIP Version 1.0 - March 2009 DEVBOARD3 Version 1.0 March 2009 Page 1 of 7 The DEVBOARD3 is a proto-typing board used to quickly and easily

More information

AVR-TLCD-128CAN development board Users Manual

AVR-TLCD-128CAN development board Users Manual AVR-TLCD-128CAN development board Users Manual Rev.A, July 2008 Copyright(c) 2008, OLIMEX Ltd, All rights reserved INTRODUCTION: AVR-TLCD-128CAN adds cool LCD and touchscreen interface to your next project.

More information

Embedded programming, AVR intro

Embedded programming, AVR intro Applied mechatronics, Lab project Embedded programming, AVR intro Sven Gestegård Robertz Department of Computer Science, Lund University 2017 Outline 1 Low-level programming Bitwise operators Masking and

More information

INTERFACING HARDWARE WITH MICROCONTROLLER

INTERFACING HARDWARE WITH MICROCONTROLLER INTERFACING HARDWARE WITH MICROCONTROLLER P.Raghavendra Prasad Final Yr EEE What is a Microcontroller? A microcontroller (or MCU) is acomputer-on-a-chip. It is a type of microprocessor emphasizing self-

More information

Introduction to Microcontroller Apps for Amateur Radio Projects Using the HamStack Platform.

Introduction to Microcontroller Apps for Amateur Radio Projects Using the HamStack Platform. Introduction to Microcontroller Apps for Amateur Radio Projects Using the HamStack Platform www.sierraradio.net www.hamstack.com Topics Introduction Hardware options Software development HamStack project

More information

SECURE DIGITAL ACCESS SYSTEM USING IBUTTON

SECURE DIGITAL ACCESS SYSTEM USING IBUTTON SECURE DIGITAL ACCESS SYSTEM USING IBUTTON Access control forms a vital link in a security chain. Here we describe a secure digital access system using ibutton that allows only authorised persons to access

More information

8-bit Microcontroller with 16K Bytes In-System Programmable Flash. ATmega169V ATmega169. Features. Notice: Not recommended in new designs.

8-bit Microcontroller with 16K Bytes In-System Programmable Flash. ATmega169V ATmega169. Features. Notice: Not recommended in new designs. Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 130 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static

More information

8-bit Microcontroller with 8K Bytes Programmable Flash AT90C8534. Preliminary

8-bit Microcontroller with 8K Bytes Programmable Flash AT90C8534. Preliminary Features Utilizes the AVR RISC Architecture AVR High-performance and Low-power RISC Architecture 118 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General-purpose Working Registers Up

More information

PRACTICAL DESIGN TECHNIQUES FOR SENSOR SIGNAL CONDITIONING

PRACTICAL DESIGN TECHNIQUES FOR SENSOR SIGNAL CONDITIONING 9 PRACTICAL DESIGN TECHNIQUES FOR SENSOR SIGNAL CONDITIONING 1 Introduction 2 Bridge Circuits 3 Amplifiers for Signal Conditioning 4 Strain, Force, Pressure, and Flow Measurements 5 High Impedance Sensors

More information

LOW COST ECG MACHINE DESIGN USING 8-BIT MICROCONTROLLER

LOW COST ECG MACHINE DESIGN USING 8-BIT MICROCONTROLLER LOW COST ECG MACHINE DESIGN USING 8-BIT MICROCONTROLLER 1 Vinod J. Kadam, 2 Sanjay U. Waikar 1 Assistant Professor, Department of Information Technology, 2 System Analyst, Department of Computer Engineering,

More information

Cinterion BGS2T (RS232) Terminal Starter Kit. Getting Started Guide

Cinterion BGS2T (RS232) Terminal Starter Kit. Getting Started Guide Cinterion BGS2T (RS232) Terminal Starter Kit Getting Started Guide BGS2T (RS232) Terminal Starter Kit Contents PLEASE NOTE KIT CONTENTS MAY VARY ACCORDING TO ORIGIN AND THE INTENDED COUNTRY OF OPERATION

More information

MACHINE BREAKDOWN DETECTION SYSTEM

MACHINE BREAKDOWN DETECTION SYSTEM MACHINE BREAKDOWN DETECTION SYSTEM Yogita P. Desale 1 1 student, Electronics and telecommunication Department, MCOERC, Maharashtra, ABSTRACT Industrial situation is very critical and is subject to several

More information

Various power connectors. 3.3V regulator. 64K Flash (Internal) 2K EEPROM (Internal) 4K SRAM (Internal) JA Mem Adr/ Data. Doc: page 1 of 9

Various power connectors. 3.3V regulator. 64K Flash (Internal) 2K EEPROM (Internal) 4K SRAM (Internal) JA Mem Adr/ Data. Doc: page 1 of 9 Cerebot II Board Reference Manual Revision: September 14, 2007 Note: This document applies to REV B of the board. www.digilentinc.com 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview

More information

Cost Effective Bus Intimation System for the Public Using GPS and GSM Technology

Cost Effective Bus Intimation System for the Public Using GPS and GSM Technology Cost Effective Bus Intimation System for Public Using GPS and GSM Technology R. Pradeep Saravana Kumar 1, V. Goudham 2 1, 2 B. Tech, Department of Electronics and Communication engineering, Amrita Vishwa

More information