with respect to the normal in each medium, respectively. The question is: How are θ

Size: px
Start display at page:

Download "with respect to the normal in each medium, respectively. The question is: How are θ"

Transcription

1 Prof. Raghuveer Parthasarathy University of Oregon Physis 35 Winter 8 3 R EFRACTION When light travels from one medium to another, it may hange diretion. This phenomenon familiar whenever we see the bent shape of a straw poking out of a glass of water is known as refration. (The light may also hange its intensity at a boundary between media, whih we ll disuss soon.) Refration, like diffration, is a onsequene of the wave nature of light, and our analysis below applies also to waves in water, sound waves, et. 3. Snell s Law The basi setup for issues of refration is shown in Figure 3.: A ray of light rosses the boundary between two media, with indies of refration n and n, making angles θ with respet to the normal in eah medium, respetively. The question is: How are θ related? The answer is ruial to the propagation of light, and the design of lenses and other optial elements. The answer, as we ll derive, is that light obeys Snell s Law: nsinθ nsinθ. There are several ways to derive this result. We ould diretly examine the wave equations for eletromagneti fields and look for solutions onsistent with the presene of a boundary between two media, but this would be both painful and un-illuminating. There are simpler ways of thinking about light propagation; we ll briefly mention one, and then more fully disuss another. Figure 3.. Refration: The path taken by light traveling between two media bends at the interfae; the relation between the angles θ depends on the indies of refration of the two materials, and is given by Snell s Law. 3. Huygen s Priniple Several enturies ago, Huygens ame up with an interesting way of thinking about propagating waves, realizing that: Eah point in a propagating wave an be treated as a soure Notes on Optis R. Parthasarathy 8 Page

2 of spherial waves. (This idea was later fleshed out by Fresnel and others.) There s nothing too shoking here eah point at a wave is, by definition, a point, and points generate spherial waves, as we noted in Setion.. The envelope of the wavelets generated by all the points defines the shape of the wavefront as the wave progresses. There are some oneptual diffiulties inherent in Huygens idea whih we won t disuss. Keep in mind that it s just a piture that we employ to save us from having to solve the full wave equation. Furthermore, it s often painful to use Huygen s priniple to atually alulate anything quantitative. It does, however, provide a means for deriving Snell s Law, as desribed in last quarter s textbook (A.P. Frenh, Vibrations and Waves, p. 7-74). We won t go into the derivation here, but will rather take a different, and more generally useful, approah. 3.3 Fermat s Priniple 3.3. Minimal time paths and Snell s Law Another general priniple desribing wave motion was put forth by Fermat. It is sometimes stated as light travels from one point to another along the path that takes the minimal amount of time. This isn t quite orret we ll fix it in a few paragraphs but it s a good plae to start. We ll also return to justifying Fermat s priniple shortly. First, let s use it to derive Snell s Law. Imagine you re on a beah, and someone in the oean is drowning. You rush out to help, whih requires both running on land and swimming in the water. You an run faster than you an swim. What path should you take? With a bit of thought, you ll realize that a straight line between you and the drowning person isn t the best idea rather, you should redue the length of the swim to minimize the overall time to your target. How muh should you run and how muh should you swim? The same dilemma is enountered by our light beam, traveling from position A in a medium of index of refration n (your position on the beah, in the above analogy) to position B in a medium of n, (the swimmer s position, in the water) in Figure 3.3. The speed of light in medium is v / n and in medium is v / n. Within eah medium the light travels in a straight line itself a onsequene of Fermat s priniple, as you an onvine yourself later. There are many possible paths between A and B, as illustrated in the figure, that we an label based on the position x at whih they ross the interfae. One of these let s all it the one that goes through position x minimizes the total travel time. What is this path? (In other words, what is x?) The travel time in medium, t, is the distane traveled in medium divided by the speed in n medium : t d/ v y + x ; similarly the travel time in medium is Notes on Optis R. Parthasarathy 8 Page 3

3 n t d / v y + ( L x). (See Figure 3.3 for the geometry.) The total travel time is therefore n n t t+ t y + x + y + ( L x). dt To find the minimal time, we determine the x for whih dx ; all this x : dt n x n ( L x) dx dt dx x x n y + x y + ( L x) x ( L x ) n. y + x y + ( L x) (To show that x is a minimum we should also examine the seond derivative of t, but as we ll see later it does not atually matter if x is the site of a minimum or a maximum. Furthermore, we an intuit from the form of tx ( ) that this extremum is, in fat, a minimum.) Note from geometry that x sinθ y + x ( L x ) sinθ y + ( L x ) Therefore the above ondition beomes nsinθ nsinθ. We ve shown that when the above ondition is met, the travel time for light propagation is minimized. This is Snell s Law! (And a valuable tool for saving drowning swimmers.) Figure 3.3. Light traveling from point A in medium to point B in medium an take infinitely many possible paths onsisting of line segments in eah medium, four of whih are illustrated here. Eah path rosses the interfae at some position x, and hene makes some angles θ with respet to the normal to the interfae, as illustrated for one of the paths. Fermat s priniple states that the atual path the light takes is that for whih the total Notes on Optis R. Parthasarathy 8 Page 4

4 travel time is minimal. (Atually, Fermat s priniple states something slightly more subtle, as we ll disuss shortly.) Applying this priniple, we an derive Snell s Law. We an also use Fermat s priniple to derive Snell s Law of Refletion, whih states that the refleted ray makes the same angle with the interfae as the inident ray Explaining Fermat s Priniple Now let s explain Fermat s Priniple. Suppose light travels along many paths, all of whih interfere with one another. Paths for whih the phase differene is near zero will onstrutively interfere. Consider the minimal time path. As we saw in our derivation of Snell s Law above, this is the path for whih nd is minimal, where the sum runs over all the segments being onsidered (two segments in the above example) and d i is the length of segment i. Reall from Setion.., though, that minimizing nd is the equivalent to minimizing the phase traversed by the wave along the path. Therefore, the minimal time path is also the path of minimal phase, and is also the path of minimal nd all these statements are equivalent. This sum nd is more properly B written as an integral, and is alled the optial path length: OPL n( x) dx. Why should the path of minimal OPL be the path light takes? Let s all this path P. By dopl ( ) onstrution, is zero, where s indiates any variable that haraterizes the paths. d" s" P Therefore nearby paths are similar in phase, and so onstrutively interfere. Consider a path for dopl ( ) whih is not zero moving to a slightly different path, the OPL an hange appreiably, d" s" perhaps higher in one diretion, lower in another, et., and so we would not expet onstrutive interferene. You may be thinking: the minimal OPL path isn t the only one for whih we an guarantee onstrutive interferene. What about the maximal OPL path? This too provides onstrutive interferene. And so the proper formulation of Fermat s priniple is that light travels along paths of extremal optial path length. Typially these are minimal OPL paths, but in various geometries they an be maximal OPL paths as well. As we ll see in lass, Fermat s priniple provides a simple way to think about mirages on hot desert roads. 3.4 Total Internal Refletion n n Let s look more arefully at Snell s Law. What if n > n, is large, so that sin θ >? What θ an satisfy Snell s Law: nsinθ nsinθ? None, sine sin is bounded by A This an be seen as a restatement of Huygen s Priniple. Notes on Optis R. Parthasarathy 8 Page 5

5 ±. This means that there an be no wave transmitted to medium ; the light from medium is totally refleted at the interfae, a ondition known as total internal refletion. Fiber optis, whih underpin muh of modern ommuniation, work beause of total internal refletion. Consider a glass fiber ( n.5) surrounded by air ( n. ). We want the light to travel down the fiber and not leak out into the air (Figure 3.4). This is automatially taken are of by total internal refletion note the higher index of refration of the glass and the large inident angles of light traveling along the fiber (as long as the fiber is not severely bent). In a fiber opti able, light an propagate for kilometers with losses of a fration of a perent! Total internal refletion also has interesting appliations in mirosopy that we will disuss later. Figure 3.4. A fiber opti able. Glass (gray) is surrounded by a material of lower index of refration, e.g. air. Notes on Optis R. Parthasarathy 8 Page 6

Introduction to Seismology Spring 2008

Introduction to Seismology Spring 2008 MIT OpenCourseWare http://ow.mit.edu 1.510 Introdution to Seismology Spring 008 For information about iting these materials or our Terms of Use, visit: http://ow.mit.edu/terms. 1.510 Leture Notes 3.3.007

More information

Electromagnetic Waves

Electromagnetic Waves Eletromagneti Waves Physis 6C Eletromagneti (EM) waves are produed by an alternating urrent in a wire. As the harges in the wire osillate bak and forth, the eletri field around them osillates as well,

More information

PhysicsAndMathsTutor.com 12

PhysicsAndMathsTutor.com 12 PhysisAndMathsTutor.om M. (a) sin θ = or.33 sin θ =.47 sin44 or sin 0.768 () θ = 50.5, 50., 50.35 ( ) () answer seen to > sf (b) refrats towards normal () 44 shown () () (TIR) only when ray travels from

More information

Lecture 14: Refraction

Lecture 14: Refraction Lecture 14: Refraction We know from experience that there are several transparent substances through which light can travel air, water, and glass are three examples When light passes from one such medium

More information

11.2 Refraction. December 10, Wednesday, 11 December, 13

11.2 Refraction. December 10, Wednesday, 11 December, 13 11.2 Refraction December 10, 2013. Refraction Light bends when it passes from one medium (material) to another this bending is called refraction this is because the speed of light changes The Speed of

More information

INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface

INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface Chapter 8 GEOMETRICAL OPTICS Introduction Reflection and refraction at boundaries. Reflection at a single surface Refraction at a single boundary Dispersion Summary INTRODUCTION It has been shown that

More information

Wavefronts and Rays. When light or other electromagnetic waves interact with systems much larger than the wavelength, it s a good approximation to

Wavefronts and Rays. When light or other electromagnetic waves interact with systems much larger than the wavelength, it s a good approximation to Chapter 33: Optics Wavefronts and Rays When light or other electromagnetic waves interact with systems much larger than the wavelength, it s a good approximation to Neglect the wave nature of light. Consider

More information

The Mathematics of Simple Ultrasonic 2-Dimensional Sensing

The Mathematics of Simple Ultrasonic 2-Dimensional Sensing The Mathematis of Simple Ultrasoni -Dimensional Sensing President, Bitstream Tehnology The Mathematis of Simple Ultrasoni -Dimensional Sensing Introdution Our ompany, Bitstream Tehnology, has been developing

More information

Lecture Wave Optics. Physics Help Q&A: tutor.leiacademy.org

Lecture Wave Optics. Physics Help Q&A: tutor.leiacademy.org Lecture 1202 Wave Optics Physics Help Q&A: tutor.leiacademy.org Total Internal Reflection A phenomenon called total internal reflectioncan occur when light is directed from a medium having a given index

More information

Physics 202, Lecture 23

Physics 202, Lecture 23 Physics 202, Lecture 23 Today s Topics Lights and Laws of Geometric Optics Nature of Light Reflection and Refraction Law of Reflection Law of Refraction Index of Reflection, Snell s Law Total Internal

More information

Chapter 12 Notes: Optics

Chapter 12 Notes: Optics Chapter 12 Notes: Optics How can the paths traveled by light rays be rearranged in order to form images? In this chapter we will consider just one form of electromagnetic wave: visible light. We will be

More information

Physics 1C. Lecture 25B. "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton

Physics 1C. Lecture 25B. There are two ways of spreading light: to be the candle or the mirror that reflects it. --Edith Wharton Physics 1C Lecture 25B "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton Refraction of Light When light passes from one medium to another, it is

More information

Ch. 22 Properties of Light HW# 1, 5, 7, 9, 11, 15, 19, 22, 29, 37, 38

Ch. 22 Properties of Light HW# 1, 5, 7, 9, 11, 15, 19, 22, 29, 37, 38 Ch. 22 Properties of Light HW# 1, 5, 7, 9, 11, 15, 19, 22, 29, 37, 38 Brief History of the Nature of Light Up until 19 th century, light was modeled as a stream of particles. Newton was a proponent of

More information

Huygens and Fermat s s principles (Textbook 4.4, 4.5) Application to reflection & refraction at an interface

Huygens and Fermat s s principles (Textbook 4.4, 4.5) Application to reflection & refraction at an interface Huygens and Fermat s s principles (Textbook 4.4, 4.5) Application to reflection & refraction at an interface 1 Propagation of light: Sources E.g. point source a fundamental source Light is emitted in all

More information

Lab 2: Snell s Law Geology 202 Earth s Interior

Lab 2: Snell s Law Geology 202 Earth s Interior Introduction: Lab 2: Snell s Law Geology 202 Earth s Interior As we discussed in class, when waves travel from one material to another, they bend or refract according to Snell s Law: = constant (1) This

More information

θ =θ i r n sinθ = n sinθ

θ =θ i r n sinθ = n sinθ θ i = θ r n = 1 sinθ1 n2 sin θ 2 Index of Refraction Speed of light, c, in vacuum is 3x10 8 m/s Speed of light, v, in different medium can be v < c. index of refraction, n = c/v. frequency, f, does not

More information

Chapter 33 Continued Properties of Light. Law of Reflection Law of Refraction or Snell s Law Chromatic Dispersion Brewsters Angle

Chapter 33 Continued Properties of Light. Law of Reflection Law of Refraction or Snell s Law Chromatic Dispersion Brewsters Angle Chapter 33 Continued Properties of Light Law of Reflection Law of Refraction or Snell s Law Chromatic Dispersion Brewsters Angle Dispersion: Different wavelengths have different velocities and therefore

More information

LIGHT. Descartes particle theory, however, could not be used to explain diffraction of light.

LIGHT. Descartes particle theory, however, could not be used to explain diffraction of light. 1 LIGHT Theories of Light In the 17 th century Descartes, a French scientist, formulated two opposing theories to explain the nature of light. These two theories are the particle theory and the wave theory.

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3. Chapter 20. Classic and Modern Optics. Dr. Armen Kocharian

HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3. Chapter 20. Classic and Modern Optics. Dr. Armen Kocharian HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3 Chapter 20 Classic and Modern Optics Dr. Armen Kocharian Electromagnetic waves and matter: A Brief History of Light 1000 AD It was proposed that light consisted

More information

Reflection & refraction

Reflection & refraction 2015 EdExcel A Level Physics 2015 EdExcel A Level Physics Topic Topic 5 5 Reflection & refraction Reflection revision Reflection is the bouncing of light rays off a surface Reflection from a mirror: Normal

More information

Chapter 22. Reflection and Refraction of Light

Chapter 22. Reflection and Refraction of Light Chapter 22 Reflection and Refraction of Light Nature of Light Light has a dual nature. Particle Wave Wave characteristics will be discussed in this chapter. Reflection Refraction These characteristics

More information

The geometry of reflection and refraction Wave conversion and reflection coefficient

The geometry of reflection and refraction Wave conversion and reflection coefficient 7.2.2 Reflection and Refraction The geometry of reflection and refraction Wave conversion and reflection coefficient The geometry of reflection and refraction A wave incident on a boundary separating two

More information

Chapter 24. Geometric optics. Assignment No. 11, due April 27th before class: Problems 24.4, 24.11, 24.13, 24.15, 24.24

Chapter 24. Geometric optics. Assignment No. 11, due April 27th before class: Problems 24.4, 24.11, 24.13, 24.15, 24.24 Chapter 24 Geometric optics Assignment No. 11, due April 27th before class: Problems 24.4, 24.11, 24.13, 24.15, 24.24 A Brief History of Light 1000 AD It was proposed that light consisted of tiny particles

More information

Review: 22.4: Dispersion. Refraction in a Prism. Announcements

Review: 22.4: Dispersion. Refraction in a Prism. Announcements Announcements The second midterm exam is coming Monday, Nov 8 Will cover from 18.1 thru 22.7 Same format as Exam 1 20 multiple choice questions Room assignments TBA QUESTIONS? PLEASE ASK! Review: Light

More information

Pre-Critical incidence

Pre-Critical incidence Seismi methods: Refration I Refration reading: Sharma p58-86 Pre-Critial inidene Refletion and refration Snell s Law: sin i sin R sin r P P P P P P where p is the ray parameter and is onstant along eah

More information

Lecture 7 Notes: 07 / 11. Reflection and refraction

Lecture 7 Notes: 07 / 11. Reflection and refraction Lecture 7 Notes: 07 / 11 Reflection and refraction When an electromagnetic wave, such as light, encounters the surface of a medium, some of it is reflected off the surface, while some crosses the boundary

More information

Refraction Ch. 29 in your text book

Refraction Ch. 29 in your text book Refraction Ch. 29 in your text book Objectives Students will be able to: 1) Identify incident and refracted angles 2) Explain what the index of refraction tells about a material 3) Calculate the index

More information

PY106 Class31. Index of refraction. Refraction. Index of refraction. Sample values of n. Rays and wavefronts. index of refraction: n v.

PY106 Class31. Index of refraction. Refraction. Index of refraction. Sample values of n. Rays and wavefronts. index of refraction: n v. Refraction Index of refraction When an EM wave travels in a vacuum, its speed is: c = 3.00 x 10 8 m/s. In any other medium, light generally travels at a slower speed. The speed of light v in a material

More information

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 26 Physics, 4 th Edition James S. Walker Chapter 26 Geometrical Optics Units of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing

More information

(Equation 24.1: Index of refraction) We can make sense of what happens in Figure 24.1

(Equation 24.1: Index of refraction) We can make sense of what happens in Figure 24.1 24-1 Refraction To understand what happens when light passes from one medium to another, we again use a model that involves rays and wave fronts, as we did with reflection. Let s begin by creating a short

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 1 Overview of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing and the Mirror Equation The Refraction of Light Ray Tracing

More information

1. Inversions. A geometric construction relating points O, A and B looks as follows.

1. Inversions. A geometric construction relating points O, A and B looks as follows. 1. Inversions. 1.1. Definitions of inversion. Inversion is a kind of symmetry about a irle. It is defined as follows. he inversion of degree R 2 entered at a point maps a point to the point on the ray

More information

Physics 10. Lecture 28A. "If Dracula can t see his reflection in the mirror, how come his hair is always so neatly combed?

Physics 10. Lecture 28A. If Dracula can t see his reflection in the mirror, how come his hair is always so neatly combed? Physics 10 Lecture 28A "If Dracula can t see his reflection in the mirror, how come his hair is always so neatly combed?" --Steven Wright The Nature of Light From now on we will have to treat light as

More information

12. Reflection and Refraction

12. Reflection and Refraction 12. Reflection and Refraction Wave fronts Spherical waves are solutions to Maxwell s equations Molecules scatter spherical waves Spherical waves can add up to plane waves Reflection and refraction from

More information

Lecture Ray Model of Light. Physics Help Q&A: tutor.leiacademy.org

Lecture Ray Model of Light. Physics Help Q&A: tutor.leiacademy.org Lecture 1201 Ray Model of Light Physics Help Q&A: tutor.leiacademy.org Reflection of Light A ray of light, the incident ray, travels in a medium. When it encounters a boundary with a second medium, part

More information

Introduction: The Nature of Light

Introduction: The Nature of Light O1 Introduction: The Nature of Light Introduction Optical elements and systems Basic properties O1.1 Overview Generally Geometrical Optics is considered a less abstract subject than Waves or Physical Optics

More information

Today s Topic: Refraction / Snell s Law

Today s Topic: Refraction / Snell s Law Today s Topic: Refraction / Snell s Law Learning Goal: Students will be able to calculate the angle of reflection of a bent light wave. Take out your notes from yesterday as we learn about Snell s Law.

More information

Outline The Refraction of Light Forming Images with a Plane Mirror 26-3 Spherical Mirror 26-4 Ray Tracing and the Mirror Equation

Outline The Refraction of Light Forming Images with a Plane Mirror 26-3 Spherical Mirror 26-4 Ray Tracing and the Mirror Equation Chapter 6 Geometrical Optics Outline 6-1 The Reflection of Light 6- Forming Images with a Plane Mirror 6-3 Spherical Mirror 6-4 Ray Tracing and the Mirror Equation 6-5 The Refraction of Light 6-6 Ray Tracing

More information

Light. Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see

Light. Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see Light Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see Facts About Light The speed of light, c, is constant in a vacuum. Light can be: REFLECTED ABSORBED REFRACTED

More information

Physics 132: Lecture Fundamentals of Physics II Agenda for Today

Physics 132: Lecture Fundamentals of Physics II Agenda for Today Physics 132: Lecture Fundamentals of Physics II Agenda for Today Reflection of light Law of reflection Refraction of light Snell s law Dispersion PHY132 Lecture 17, Pg1 Electromagnetic waves A changing

More information

Chapter 33. The Nature of Light and Propagation of Light (lecture 1) Dr. Armen Kocharian

Chapter 33. The Nature of Light and Propagation of Light (lecture 1) Dr. Armen Kocharian Chapter 33 The Nature of Light and Propagation of Light (lecture 1) Dr. Armen Kocharian The Nature of Light Before the beginning of the nineteenth century, light was considered to be a stream of particles

More information

College Physics B - PHY2054C

College Physics B - PHY2054C Young College - PHY2054C Wave Optics: 10/29/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Outline Young 1 2 3 Young 4 5 Assume a thin soap film rests on a flat glass surface. Young Young

More information

Refraction of Light. This bending of the ray is called refraction

Refraction of Light. This bending of the ray is called refraction Refraction & Lenses Refraction of Light When a ray of light traveling through a transparent medium encounters a boundary leading into another transparent medium, part of the ray is reflected and part of

More information

speed of light in vacuum = speed of light in the material

speed of light in vacuum = speed of light in the material Chapter 5 Let Us Entertain You Snell s law states that as light enters a substance such as acrylic (high index of refraction) from air (low index of refraction), the light bends toward the normal. When

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 26.1 The Reflection of Light 26.2 Forming Images With a Plane Mirror 26.3 Spherical Mirrors 26.4 Ray Tracing and the Mirror Equation 26.5 The Refraction of Light 26.6 Ray

More information

Chapter 18 Ray Optics

Chapter 18 Ray Optics Chapter 18 Ray Optics Chapter Goal: To understand and apply the ray model of light. Slide 18-1 Chapter 18 Preview Looking Ahead Text p. 565 Slide 18-2 Wavefronts and Rays When visible light or other electromagnetic

More information

Review (Law of sines and cosine) cosines)

Review (Law of sines and cosine) cosines) Date:03/7,8/01 Review 6.1-6. Objetive: Apply the onept to use the law of the sines and osines to solve oblique triangles Apply the onept to find areas using the law of sines and osines Agenda: Bell ringer

More information

Image Formation by Refraction

Image Formation by Refraction Image Formation by Refraction If you see a fish that appears to be swimming close to the front window of the aquarium, but then look through the side of the aquarium, you ll find that the fish is actually

More information

LECTURE 37: Ray model of light and Snell's law

LECTURE 37: Ray model of light and Snell's law Lectures Page 1 Select LEARNING OBJECTIVES: LECTURE 37: Ray model of light and Snell's law Understand when the ray model of light is applicable. Be able to apply Snell's Law of Refraction to any system.

More information

Ray Optics I. Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex

Ray Optics I. Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex Phys 531 Lecture 8 20 September 2005 Ray Optics I Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex Today shift gears, start applying

More information

normal angle of incidence increases special angle no light is reflected

normal angle of incidence increases special angle no light is reflected Reflection from transparent materials (Chapt. 33 last part) When unpolarized light strikes a transparent surface like glass there is both transmission and reflection, obeying Snell s law and the law of

More information

Physics 1C. Lecture 22A. "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton

Physics 1C. Lecture 22A. There are two ways of spreading light: to be the candle or the mirror that reflects it. --Edith Wharton Physics 1C Lecture 22A "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton The Nature of Light An interesting question developed as to the nature of

More information

Finding the Equation of a Straight Line

Finding the Equation of a Straight Line Finding the Equation of a Straight Line You should have, before now, ome aross the equation of a straight line, perhaps at shool. Engineers use this equation to help determine how one quantity is related

More information

University Physics 227N/232N Chapters 30-32: Optics Homework Optics 1 Due This Friday at Class Time Quiz This Friday

University Physics 227N/232N Chapters 30-32: Optics Homework Optics 1 Due This Friday at Class Time Quiz This Friday University Physics 227N/232N Chapters 30-32: Optics Homework Optics 1 Due This Friday at Class Time Quiz This Friday Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2014-odu

More information

Plot-to-track correlation in A-SMGCS using the target images from a Surface Movement Radar

Plot-to-track correlation in A-SMGCS using the target images from a Surface Movement Radar Plot-to-trak orrelation in A-SMGCS using the target images from a Surfae Movement Radar G. Golino Radar & ehnology Division AMS, Italy ggolino@amsjv.it Abstrat he main topi of this paper is the formulation

More information

The Alpha Torque and Quantum Physics

The Alpha Torque and Quantum Physics The Alpha Torque and Quantum Physis Zhiliang Cao, Henry Cao williamao15000@yahoo.om, henry.gu.ao@gmail.om July 18, 010 Abstrat In the enter of the unierse, there isn t a super massie blak hole or any speifi

More information

The Propagation of Light:

The Propagation of Light: Lecture 8 Chapter 4 The Propagation of Light: Transmission Reflection Refraction Macroscopic manifestations of scattering and interference occurring at the atomic level Reflection Reflection Inside the

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture XIII Refraction of light Snell s law Dispersion and rainbow Mirrors and lens Plane mirrors Concave and convex mirrors Thin lenses http://www.physics.wayne.edu/~apetrov/phy2130/

More information

Chapter 35. The Nature of Light and the Laws of Geometric Optics

Chapter 35. The Nature of Light and the Laws of Geometric Optics Chapter 35 The Nature of Light and the Laws of Geometric Optics Introduction to Light Light is basic to almost all life on Earth. Light is a form of electromagnetic radiation. Light represents energy transfer

More information

Investigation 21A: Refraction of light

Investigation 21A: Refraction of light Investigation 21A: Refraction of light Essential question: How does light refract at a boundary? What is the index of refraction of water? Refraction may change the direction of light rays passing from

More information

Refraction and Lenses. Honors Physics

Refraction and Lenses. Honors Physics Refraction and Lenses Honors Physics Refraction Refraction is based on the idea that LIGHT is passing through one MEDIUM into another. The question is, WHAT HAPPENS? Suppose you are running on the beach

More information

Physics. Bending Light ID: 8878

Physics. Bending Light ID: 8878 Bending Light ID: 8878 By Peter Fox Time required 45 minutes Activity Overview In this activity, students explore the refraction of a single light ray. They begin by exploring light traveling from a less

More information

Refraction of Light. c = m / s. n = c v. The index of refraction is never less than 1. Some common indices of refraction are listed below.

Refraction of Light. c = m / s. n = c v. The index of refraction is never less than 1. Some common indices of refraction are listed below. Refraction of Light The speed of light in a vacuum is c = 3.00 10 8 m / s In air, the speed is only slightly less. In other transparent materials, such as glass and water, the speed is always less than

More information

Chapter 3 Geometrical Optics

Chapter 3 Geometrical Optics Chapter 3 Geometrical Optics Gabriel Popescu University of Illinois at Urbana Champaign Beckman Institute Quantitative Light Imaging Laboratory http://light.ece.uiuc.edu Principles of Optical Imaging Electrical

More information

Physics I : Oscillations and Waves Prof. S Bharadwaj Department of Physics & Meteorology Indian Institute of Technology, Kharagpur

Physics I : Oscillations and Waves Prof. S Bharadwaj Department of Physics & Meteorology Indian Institute of Technology, Kharagpur Physics I : Oscillations and Waves Prof. S Bharadwaj Department of Physics & Meteorology Indian Institute of Technology, Kharagpur Lecture - 20 Diffraction - I We have been discussing interference, the

More information

Geometrical optics: Refraction *

Geometrical optics: Refraction * OpenStax-CNX module: m40065 1 Geometrical optics: Refraction * Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0

More information

Chapter 33 The Nature and Propagation of Light by C.-R. Hu

Chapter 33 The Nature and Propagation of Light by C.-R. Hu Chapter 33 The Nature and Propagation of Light by C.-R. Hu Light is a transverse wave of the electromagnetic field. In 1873, James C. Maxwell predicted it from the Maxwell equations. The speed of all electromagnetic

More information

Physics 1502: Lecture 28 Today s Agenda

Physics 1502: Lecture 28 Today s Agenda Physics 1502: Lecture 28 Today s Agenda Announcements: Midterm 2: Monday Nov. 16 Homework 08: due next Friday Optics Waves, Wavefronts, and Rays Reflection Index of Refraction 1 Waves, Wavefronts, and

More information

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light.

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light. Chapter 7: Geometrical Optics The branch of physics which studies the properties of light using the ray model of light. Overview Geometrical Optics Spherical Mirror Refraction Thin Lens f u v r and f 2

More information

New topic: Diffraction only one slit, but wide. From Last time. Huygen s principle. Overlapping diffraction patterns. Diffraction from other objects

New topic: Diffraction only one slit, but wide. From Last time. Huygen s principle. Overlapping diffraction patterns. Diffraction from other objects New topic: Diffraction only one slit, but wide From Last time Two-source interference: Interference-like pattern from a single slit. For a slit: a θ central width ~ 2 Diffraction grating Week3HW on Mastering

More information

Optics: Laser Light Show Student Advanced Version

Optics: Laser Light Show Student Advanced Version Optics: Laser Light Show Student Advanced Version In this lab, you will explore the behavior of light. You will observe reflection and refraction of a laser beam in jello, and use a diffraction pattern

More information

Assignment 10 Solutions Due May 1, start of class. Physics 122, sections and 8101 Laura Lising

Assignment 10 Solutions Due May 1, start of class. Physics 122, sections and 8101 Laura Lising Physics 122, sections 502-4 and 8101 Laura Lising Assignment 10 Solutions Due May 1, start of class 1) Revisiting the last question from the problem set before. Suppose you have a flashlight or a laser

More information

PHYSICS. Chapter 34 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 34 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 34 Lecture RANDALL D. KNIGHT Chapter 34 Ray Optics IN THIS CHAPTER, you will learn about and apply the ray model of light Slide 34-2

More information

Refraction of Light Finding the Index of Refraction and the Critical Angle

Refraction of Light Finding the Index of Refraction and the Critical Angle Finding the Index of Refraction and the Critical Angle OBJECTIVE Students will verify the law of refraction for light passing from water into air. Measurements of the angle of incidence and the angle of

More information

Physics 228 Today: Diffraction, diffraction grating

Physics 228 Today: Diffraction, diffraction grating Physics 228 Today: Diffraction, diffraction grating Website: Sakai 01:750:228 or www.physics.rutgers.edu/ugrad/228 Diffraction is a further expansion of the idea of interference. We expand from two sources

More information

Phys 102 Lecture 17 Introduction to ray optics

Phys 102 Lecture 17 Introduction to ray optics Phys 102 Lecture 17 Introduction to ray optics 1 Physics 102 lectures on light Light as a wave Lecture 15 EM waves Lecture 16 Polarization Lecture 22 & 23 Interference & diffraction Light as a ray Lecture

More information

Light. Electromagnetic wave with wave-like nature Refraction Interference Diffraction

Light. Electromagnetic wave with wave-like nature Refraction Interference Diffraction Light Electromagnetic wave with wave-like nature Refraction Interference Diffraction Light Electromagnetic wave with wave-like nature Refraction Interference Diffraction Photons with particle-like nature

More information

We P9 16 Eigenray Tracing in 3D Heterogeneous Media

We P9 16 Eigenray Tracing in 3D Heterogeneous Media We P9 Eigenray Traing in 3D Heterogeneous Media Z. Koren* (Emerson), I. Ravve (Emerson) Summary Conventional two-point ray traing in a general 3D heterogeneous medium is normally performed by a shooting

More information

Physical or wave optics

Physical or wave optics Physical or wave optics In the last chapter, we have been studying geometric optics u light moves in straight lines u can summarize everything by indicating direction of light using a ray u light behaves

More information

Diffraction: Propagation of wave based on Huygens s principle.

Diffraction: Propagation of wave based on Huygens s principle. Diffraction: In addition to interference, waves also exhibit another property diffraction, which is the bending of waves as they pass by some objects or through an aperture. The phenomenon of diffraction

More information

History of Light. 5 th Century B.C.

History of Light. 5 th Century B.C. History of Light 5 th Century B.C. Philosophers thought light was made up of streamers emitted by the eye making contact with an object Others thought that light was made of particles that traveled from

More information

Reflection and Refraction of Light

Reflection and Refraction of Light PC1222 Fundamentals of Physics II Reflection and Refraction of Light 1 Objectives Investigate for reflection of rays from a plane surface, the dependence of the angle of reflection on the angle of incidence.

More information

Optics. a- Before the beginning of the nineteenth century, light was considered to be a stream of particles.

Optics. a- Before the beginning of the nineteenth century, light was considered to be a stream of particles. Optics 1- Light Nature: a- Before the beginning of the nineteenth century, light was considered to be a stream of particles. The particles were either emitted by the object being viewed or emanated from

More information

Ray optics! Postulates Optical components GRIN optics Matrix optics

Ray optics! Postulates Optical components GRIN optics Matrix optics Ray optics! Postulates Optical components GRIN optics Matrix optics Ray optics! 1. Postulates of ray optics! 2. Simple optical components! 3. Graded index optics! 4. Matrix optics!! From ray optics to

More information

Physics 272 Lecture 27 Interference (Ch ) Diffraction (Ch )

Physics 272 Lecture 27 Interference (Ch ) Diffraction (Ch ) Physics 272 Lecture 27 Interference (Ch 35.4-5) Diffraction (Ch 36.1-3) Thin Film Interference 1 2 n 0 =1 (air) t n 1 (thin film) n 2 Get two waves by reflection off of two different interfaces. Ray 2

More information

Polarisation and Diffraction

Polarisation and Diffraction 2015 EdExcel A Level Physics 2015 EdExcel A Level Physics Topic Topic 5 5 Polarisation and Diffraction Polarization Polarization is a characteristic of all transverse waves. Oscillation which take places

More information

Outline: Software Design

Outline: Software Design Outline: Software Design. Goals History of software design ideas Design priniples Design methods Life belt or leg iron? (Budgen) Copyright Nany Leveson, Sept. 1999 A Little History... At first, struggling

More information

Home Lab 7 Refraction, Ray Tracing, and Snell s Law

Home Lab 7 Refraction, Ray Tracing, and Snell s Law Home Lab Week 7 Refraction, Ray Tracing, and Snell s Law Home Lab 7 Refraction, Ray Tracing, and Snell s Law Activity 7-1: Snell s Law Objective: Verify Snell s law Materials Included: Laser pointer Cylindrical

More information

Chapter 37. Wave Optics

Chapter 37. Wave Optics Chapter 37 Wave Optics Wave Optics Wave optics is a study concerned with phenomena that cannot be adequately explained by geometric (ray) optics. Sometimes called physical optics These phenomena include:

More information

Ray Optics. Lecture 23. Chapter 23. Physics II. Course website:

Ray Optics. Lecture 23. Chapter 23. Physics II. Course website: Lecture 23 Chapter 23 Physics II Ray Optics Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Let s finish talking about a diffraction grating Diffraction Grating Let s improve (more

More information

Purpose: To determine the index of refraction of glass, plastic and water.

Purpose: To determine the index of refraction of glass, plastic and water. LAB 9 REFRACTION-THE BENDING OF LIGHT Purpose: To determine the index of refraction of glass, plastic and water. Materials: Common pins, glass block, plastic block, small semi-circular water container,

More information

Theme Music: Pat Green Wave on Wave Cartoon: Bill Watterson Calvin & Hobbes

Theme Music: Pat Green Wave on Wave Cartoon: Bill Watterson Calvin & Hobbes April 29, 2013 Physics 132 Prof. E. F. Redish Theme Music: Pat Green Wave on Wave Cartoon: Bill Watterson Calvin & Hobbes 1 Reading question At what point can we stop adding models and admit that nobody

More information

PHYS 219 General Physics: Electricity, Light and Modern Physics

PHYS 219 General Physics: Electricity, Light and Modern Physics PHYS 219 General Physics: Electricity, Light and Modern Physics Exam 2 is scheduled on Tuesday, March 26 @ 8 10 PM In Physics 114 It will cover four Chapters 21, 22, 23, and 24. Start reviewing lecture

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics The Reflection of Light: Mirrors: Mirrors produce images because the light that strikes them is reflected, rather than absorbed. Reflected light does much more than produce

More information

ENGR142 PHYS 115 Geometrical Optics and Lenses

ENGR142 PHYS 115 Geometrical Optics and Lenses ENGR142 PHYS 115 Geometrical Optics and Lenses Part A: Rays of Light Part B: Lenses: Objects, Images, Aberration References Pre-lab reading Serway and Jewett, Chapters 35 and 36. Introduction Optics play

More information

How can the body make sound bend?

How can the body make sound bend? HPP Activity 54v2 How can the body make sound bend? Exploration To this point, you ve seen or heard waves bounce off of and pass through interfaces. But what happens if a sound wave strikes an interface

More information

1 The Knuth-Morris-Pratt Algorithm

1 The Knuth-Morris-Pratt Algorithm 5-45/65: Design & Analysis of Algorithms September 26, 26 Leture #9: String Mathing last hanged: September 26, 27 There s an entire field dediated to solving problems on strings. The book Algorithms on

More information

Algorithms for External Memory Lecture 6 Graph Algorithms - Weighted List Ranking

Algorithms for External Memory Lecture 6 Graph Algorithms - Weighted List Ranking Algorithms for External Memory Leture 6 Graph Algorithms - Weighted List Ranking Leturer: Nodari Sithinava Sribe: Andi Hellmund, Simon Ohsenreither 1 Introdution & Motivation After talking about I/O-effiient

More information

index of refraction-light speed

index of refraction-light speed AP Physics Study Guide Chapters 22, 23, 24 Reflection, Refraction and Interference Name Write each of the equations specified below, include units for all quantities. Law of Reflection Lens-Mirror Equation

More information