ECE 172 Digital Systems. Chapter 15 Turbo Boost Technology. Herbert G. Mayer, PSU Status 8/13/2018

Size: px
Start display at page:

Download "ECE 172 Digital Systems. Chapter 15 Turbo Boost Technology. Herbert G. Mayer, PSU Status 8/13/2018"

Transcription

1 ECE 172 Digital Systems Chapter 15 Turbo Boost Technology Herbert G. Mayer, PSU Status 8/13/2018 1

2 Syllabus l Introduction l Speedup Parameters l Definitions l Turbo Boost l Turbo Boost, Actual Performance l Turbo Boost, on DP Configuration l Turbo Boost, for SPEC JBB 2005 l Bibliography 2

3 Introduction l Turbo Boost (turbo) first used on Intel Core TM i7 processors and Intel Xeon processor 5500 Series l Turbo dynamically enables some temporary performance boost l Turbo temporarily increases processor core clock in defined, discreet frequency steps (AKA bins) for the benefit of higher, but safe performance increase l Permissible, only while conditions on chip safely preserve the physical health of the CPU! l How much can core frequency raise as a function of number of active cores and of other architectural parameters? l Not to be confused with overclocking, or its opposite thermal throttling! 3

4 Introduction Key learnings for ECE students, who wish to work in future Hi Tech Processor Development: 1. Lab setup differs significantly from typical product environment 2. For performance evaluation: Take into account open vs. close chassis air flow! E.g. see page 26! 3. Consider blowing fans vs. passive heat sinks 4. Measure each performance data point repeatedly, and devise consistency policies, how to use various data measured for supposedly identical test case 5. Have objective method for: Which cases to throw out, which to keep? Which ones to measure repeatedly; why? Always use same method! 6. Whichever EE policy is adopted: use it consistently! 4

5 Introduction Core i7 introduced turbo: Intel 45 nm High-K Silicon technology, launched as High-End Desktop platform with 1 socket; later used as server with 2 sockets Frequency & Voltage Independent Interface C O R E 0 C O R E 1 C O R E 2 C O R E 3 C O R E S DRAMs DDR3 Last Level Cache Pwr & Clk IMC QPI QPI U N C O R E QPI High Level Nehalem Architecture 5

6 Speedup Parameters l Without changing any other μp design parameters, the following technologies can increase compute speed of a typical uni-processor CPU: l Faster core clock l Artificially cooling CPU, then accelerating core clock l Wider memory bus l Faster bus frequency l Larger data and I-caches l Single clock caches l Multi cache hierarchy l Faster memory technology (with lower latency) l Specialized instructions, to replace multiple ops with a single l Instructions that avoid change in flow of control, e.g. CMOV l Uniform instruction format, e.g. RISC l Generally accompanied by increased HW cost! 6

7 Definitions Enhanced Dynamic Acceleration Technology, or EDAT l Prior to Turbo Boost in Core i7, Intel s previous generation Core 2 Duo introduced EDAT l Allows one core to automatically increase operating frequency, if other cores are in sleep state or idle; i.e. is a safe boost! l First verify number of active threads and electrical and thermal parameters, before taking advantage of a clock boost; keep within product constraints l Like Turbo Boost, EDAT is a Green technology, as it provides performance on demand, while keeping power consumption low, when other processors operation is temporarily not needed 7

8 Definitions Turbo Boost l Turbo boost (AKA Turbo) is increase of clock l Turbo is distinct from overclocking & EDAT l Is natural attribute of silicon product spec. l Does not change durability of part, i.e. increased clock rate is defined attribute of silicon product! l Overclocking, by contrast, increases clock frequency by running outside parts spec.; will overheat the part; requires special cooling l Turbo technology runs processor within product specification; aims to take advantage of optional thermal headroom available during underutilized conditions, i.e. when other cores are idle 8

9 Definitions Turbo Boost Hyper-Thread Looks Like Multi-Processor Under Right Conditions 9

10 Definitions Overclocking l Overclocking is a forced increase of the natural processor clock speed beyond specification! l Is an Unnatural Act! unhealthy for life of CPU l Overclocking results in running processor outside specified limits, outside safe limits l Voids Warranty! l Overclocking is not a Green Technology as it forces increased power consumption, raising core temperature beyond safe limits l Overclocking can break a processor, so done in Las Vegas speed competitions; to run safely, requires extraordinary cooling methods 10

11 Definitions Overclocking Overclocking: A Special Distraction Meant for Performance Enthusiasts 11

12 Definitions Overclocking Not Meant for Stable Execution! 12

13 Definitions Thermal Throttling l When thermal parameters change, or when number of active cores increases, prior clock increase is reversed, saving the chip from melt-down, from self-destruction, and saving power l Thermal Throttling results in decreased performance of any such tamed μp l Assumes μp to be running in steady state of execution, acknowledges that temporary hot spots are possible l Which then results in thermal throttling to save chip from melt down! 13

14 Definitions Thermal Throttling, Cont d l Happens when typical mix of IO-bound & compute-bound execution is replaced by pure compute-bound execution, resulting in more heat generation than is safe l Similar to safety action taken in Turbo mode, the frequency is throttled, resulting in less current, less heat generation, ultimately in diminished performance l μp architect decides, which safe technology of performance boosting should be realized in silicon: EDAT, Turbo Boost, Overclocking, Thermal Throttling? 14

15 Definitions Turbo Boost, sometimes referred to as Dynamic Overclocking: 15

16 Detail on Turbo Boost 16

17 Turbo Boost l A number of dynamic parameters dictate upper limit of Turbo Boost speedup l E.g. the core s temperature, momentary frequency, the overall current, momentary power, and total number of active cores l Typical frequency step of turbo boost is MHz. For each SKU, fuse values are set during chip manufacturing, to define upper bound, by how many frequency steps maximally a core can grow safely l Parameters d-c-b-a mean: If 1 core is active, single core s frequency may increase by a bins; else if 2 cores are active, these 2 can grow by b frequency steps; etc. 17

18 Turbo Boost l Applying that encoding principle, this time starting at opposite (right) end, entry means: l For 3 or 4 cores being active, core frequency may increase by just 1 frequency step; note, frequency step AKA bin l But if only 2 cores are busy, clock speed may grow up to 4 steps, or 4 bins l And if only a single core is active, that core may grow by 8 frequency steps, amounting to 1.06 GHz of additional clock ticks (Hertz) 18

19 Turbo Boost l However, boost is reversed, if for any reason a predefined envelope of maximally allowable current or temperature is exceeded l Decrease is designed not only to save the microprocessor from thermal stress, but to save power and run more green l Similarly, as bound shows, other cores may become active, forcing the current boost rate to decrease, again to protect the processor l When Turbo Boost Technology promotes core to a higher frequency, the processor will draw more current than it would while running at nominal frequency 19

20 Turbo Boost l User incurs incremental cost for electrical power consumed in turbo mode l Such cost is minor compared to the power used by system as a whole l Users may choose to manually adjust the balance between performance and power consumption through OS power policies l Performance teams at Intel focused on workloads known to be CPU-centric, they concentrated on single- and multi-threaded workloads for turbo performance data... 20

21 Turbo Boost, Actual Performance l Then proceeded by running 3 baseline frequencies without enabling turbo l Base frequencies were 2.66 GHz, 2.8 GHz, and 2.93 GHz to simulate lower and upper bounds of the same workload l Setting affinity manually, and forcing workloads to run on a single CPU allowed maximum benefit from Turbo l Affinity: either associate a thread (SW) with a dedicated core (HW) l Or associate a thread (SW) with a hyperthread (HW) 21

22 Turbo Boost, Actual Performance Operating Frequency as a Function of the Number of Running Cores. TDP: Thermal Design Point 22

23 Turbo Boost, Actual Performance l Setting processor affinity: an application manually tells OS scheduler where to run. Restricts available cores or hyper-threads where this workload shall not run l E.g. setting Affinity = p3, tells the OS: to only run scheduler on Processor 3 l Setting Affinity = p0, p2, p3 allows an app to run on hardware thread 0, 2, or 3, not on 1! l Restricting affinity to few, even to a single core, improves performance for singly threaded SW, as thread migration and thus overhead is minimized l Can improve performance when practiced by sophisticated user! 23

24 Turbo Boost, on DP Configuration l Table next page summarizes DP Turbo setup l Used in engineering validation board, called Green City: has open top configuration -no lid l Creates different thermal conditions compared to end-user production environment in standard chassis l Each processor has individual heat sink with active fan attached, in addition to 4 external fans on the sides l If workload does not hit Turbo constraints, the core frequency can increase up to 3.33 GHz dynamically on μp used (Green City), depending on number of active cores 24

25 Turbo Boost, on DP Configuration DP Configuration Parameters for Experimental Setup 25

26 Turbo Boost, on DP Configuration DP Configuration Physical Setup 26

27 Turbo Boost, for SPEC JBB 2005 l Evaluated SPEC JBB 2005 benchmark l Quantifying impact of Simultaneous Multi- Threading (SMT) under Turbo mode l Turbo provides upside with and without SMT while best performance is achievable with SMT and Turbo for this workload l In this case, the benchmark rarely hit TDP, which is indicated by the unconstrained Turbo frequency Def: TDP is Thermal Design Power. AKA Thermal Design Point; is the maximum heat, generated by μp that the cooling system can handle 27

28 Turbo Boost, for SPEC Turbo Performance for SPEC JBB

29 Bibliography Markus Mattwandel, Herbert Mayer, et al. for Intel SW College: Architecture and Early Performance Results of Turbo Boost Technology on Intel Core TM i7 Processor and Intel Xeon Processor 5500 Series November 3, Intel website pressroom/kits/corei7/pdf/intel%c2%ae%20core %E2%84%A2%20i7_Overview.pdf Intel Core i7 Microprocessors, The Best Processor on The Planet 3. General SPEC website August, SPEC website for integer component of SPEC CPU2006: October, SPEC website for floating point component of SPEC CPU2000: 6. Intel Turbo Boost technology, technology/turboboost/ 7. Intel Turbo Boost technology 2.0: chttp:// content/www/us/en/architecture-and-technology/turbo-boost/ turbo-boost-technology.html 29

28x 29x 30x [ 24x] 3.20GHz ( 133x24) CPU Clock Ratio CPU Frequency. CPU Host Clock Control [ Enable] CPU Host Frequency ( MHz ) 133

28x 29x 30x [ 24x] 3.20GHz ( 133x24) CPU Clock Ratio CPU Frequency. CPU Host Clock Control [ Enable] CPU Host Frequency ( MHz ) 133 Intel Core i7 is a brand new architecture featuring the QPI bus which replaces the FSB bus. So, how does this affect overclocking? The Core i7 processor s frequency is Bclk * CPU multiplier. For ex. Intel

More information

Dell Dynamic Power Mode: An Introduction to Power Limits

Dell Dynamic Power Mode: An Introduction to Power Limits Dell Dynamic Power Mode: An Introduction to Power Limits By: Alex Shows, Client Performance Engineering Managing system power is critical to balancing performance, battery life, and operating temperatures.

More information

Fundamentals of Quantitative Design and Analysis

Fundamentals of Quantitative Design and Analysis Fundamentals of Quantitative Design and Analysis Dr. Jiang Li Adapted from the slides provided by the authors Computer Technology Performance improvements: Improvements in semiconductor technology Feature

More information

Power Management in Intel Architecture Servers

Power Management in Intel Architecture Servers Power Management in Intel Architecture Servers White Paper Intel Architecture Servers During the last decade, Intel has added several new technologies that enable users to improve the power efficiency

More information

MICROPROCESSOR TECHNOLOGY

MICROPROCESSOR TECHNOLOGY MICROPROCESSOR TECHNOLOGY Assis. Prof. Hossam El-Din Moustafa Lecture 20 Ch.10 Intel Core Duo Processor Architecture 2-Jun-15 1 Chapter Objectives Understand the concept of dual core technology. Look inside

More information

Intel Architecture for Software Developers

Intel Architecture for Software Developers Intel Architecture for Software Developers 1 Agenda Introduction Processor Architecture Basics Intel Architecture Intel Core and Intel Xeon Intel Atom Intel Xeon Phi Coprocessor Use Cases for Software

More information

POWER YOUR CREATIVITY WITH THE INTEL CORE X-SERIES PROCESSOR FAMILY

POWER YOUR CREATIVITY WITH THE INTEL CORE X-SERIES PROCESSOR FAMILY Product Brief POWER YOUR CREATIVITY WITH THE INTEL CORE X-SERIES PROCESSOR FAMILY The Ultimate Creator PC Platform Made to create, the latest X-series processor family is powered by up to 18 cores and

More information

MSI Z390 Overclocking Guide Push Core i9-9900k Over 5GHz & Memory to 4000MHz OCT. 2018

MSI Z390 Overclocking Guide Push Core i9-9900k Over 5GHz & Memory to 4000MHz OCT. 2018 MSI Z390 Overclocking Guide Push Core i9-9900k Over 5GHz & Memory to 4000MHz OCT. 2018 Table of Contents Table of Contents Get prepared for overclocking i9-9900k 1 Intel 9 th Gen Processor OC capability

More information

GIGABYTE X399 Guide to Overclocking AMD 2nd Gen. Ryzen Threadripper-Series Processors

GIGABYTE X399 Guide to Overclocking AMD 2nd Gen. Ryzen Threadripper-Series Processors GIGABYTE X399 Guide to Overclocking AMD 2nd Gen. Ryzen Threadripper-Series Processors Chapter 1: Intro Ryzen Threadripper 2 establishes AMD at the top of HEDT systems The King is back and stronger than

More information

DEMYSTIFYING INTEL IVY BRIDGE MICROARCHITECTURE

DEMYSTIFYING INTEL IVY BRIDGE MICROARCHITECTURE DEMYSTIFYING INTEL IVY BRIDGE MICROARCHITECTURE Roger Luis Uy College of Computer Studies, De La Salle University Abstract: Tick-Tock is a model introduced by Intel Corporation in 2006 to show the improvement

More information

Transistors and Wires

Transistors and Wires Computer Architecture A Quantitative Approach, Fifth Edition Chapter 1 Fundamentals of Quantitative Design and Analysis Part II These slides are based on the slides provided by the publisher. The slides

More information

AMD Opteron 4200 Series Processor

AMD Opteron 4200 Series Processor What s new in the AMD Opteron 4200 Series Processor (Codenamed Valencia ) and the new Bulldozer Microarchitecture? Platform Processor Socket Chipset Opteron 4000 Opteron 4200 C32 56x0 / 5100 (codenamed

More information

Intel Core i7 Processor

Intel Core i7 Processor Intel Core i7 Processor Vishwas Raja 1, Mr. Danish Ather 2 BSc (Hons.) C.S., CCSIT, TMU, Moradabad 1 Assistant Professor, CCSIT, TMU, Moradabad 2 1 vishwasraja007@gmail.com 2 danishather@gmail.com Abstract--The

More information

Aim High. Intel Technical Update Teratec 07 Symposium. June 20, Stephen R. Wheat, Ph.D. Director, HPC Digital Enterprise Group

Aim High. Intel Technical Update Teratec 07 Symposium. June 20, Stephen R. Wheat, Ph.D. Director, HPC Digital Enterprise Group Aim High Intel Technical Update Teratec 07 Symposium June 20, 2007 Stephen R. Wheat, Ph.D. Director, HPC Digital Enterprise Group Risk Factors Today s s presentations contain forward-looking statements.

More information

Migrating from E/X5600 Processors

Migrating from E/X5600 Processors Migrating from E/X5600 Processors Which Processor is Right for Me? Introduction The new E5-2600 family of processors from Intel offer a wide variety of choices, from frequency optimized low core count

More information

SU Dual and Quad-Core Xeon UP Server

SU Dual and Quad-Core Xeon UP Server SU4-1300 Dual and Quad-Core Xeon UP Server www.eslim.co.kr Dual and Quad-Core Server Computing Leader!! ESLIM KOREA INC. 1. Overview eslim SU4-1300 The ideal entry-level server Intel Xeon processor 3000/3200

More information

ECE 486/586. Computer Architecture. Lecture # 2

ECE 486/586. Computer Architecture. Lecture # 2 ECE 486/586 Computer Architecture Lecture # 2 Spring 2015 Portland State University Recap of Last Lecture Old view of computer architecture: Instruction Set Architecture (ISA) design Real computer architecture:

More information

Simultaneous Multithreading on Pentium 4

Simultaneous Multithreading on Pentium 4 Hyper-Threading: Simultaneous Multithreading on Pentium 4 Presented by: Thomas Repantis trep@cs.ucr.edu CS203B-Advanced Computer Architecture, Spring 2004 p.1/32 Overview Multiple threads executing on

More information

GPU > CPU. FOR HIGH PERFORMANCE COMPUTING PRESENTATION BY - SADIQ PASHA CHETHANA DILIP

GPU > CPU. FOR HIGH PERFORMANCE COMPUTING PRESENTATION BY - SADIQ PASHA CHETHANA DILIP GPU > CPU. FOR HIGH PERFORMANCE COMPUTING PRESENTATION BY - SADIQ PASHA CHETHANA DILIP INTRODUCTION or With the exponential increase in computational power of todays hardware, the complexity of the problem

More information

Six-Core AMD Opteron Processor

Six-Core AMD Opteron Processor What s you should know about the Six-Core AMD Opteron Processor (Codenamed Istanbul ) Six-Core AMD Opteron Processor Versatility Six-Core Opteron processors offer an optimal mix of performance, energy

More information

Dominick Lovicott Enterprise Thermal Engineering. One Dell Way One Dell Way Round Rock, Texas

Dominick Lovicott Enterprise Thermal Engineering. One Dell Way One Dell Way Round Rock, Texas One Dell Way One Dell Way Round Rock, Texas 78682 www.dell.com DELL ENTERPRISE WHITEPAPER THERMAL DESIGN OF THE DELL POWEREDGE T610, R610, AND R710 SERVERS Dominick Lovicott Enterprise Thermal Engineering

More information

Moorestown Platform: Based on Lincroft SoC Designed for Next Generation Smartphones

Moorestown Platform: Based on Lincroft SoC Designed for Next Generation Smartphones Moorestown Platform: Based on Lincroft SoC Designed for Next Generation Smartphones HOT CHIPS 2009 August 24 2009 Rajesh Patel Lead Architect, Lincroft SoC Intel Corporation Legal Disclaimer INFORMATION

More information

Philippe Thierry Sr Staff Engineer Intel Corp.

Philippe Thierry Sr Staff Engineer Intel Corp. HPC@Intel Philippe Thierry Sr Staff Engineer Intel Corp. IBM, April 8, 2009 1 Agenda CPU update: roadmap, micro-μ and performance Solid State Disk Impact What s next Q & A Tick Tock Model Perenity market

More information

What is This Course About? CS 356 Unit 0. Today's Digital Environment. Why is System Knowledge Important?

What is This Course About? CS 356 Unit 0. Today's Digital Environment. Why is System Knowledge Important? 0.1 What is This Course About? 0.2 CS 356 Unit 0 Class Introduction Basic Hardware Organization Introduction to Computer Systems a.k.a. Computer Organization or Architecture Filling in the "systems" details

More information

Core 2 vs I-series. How Far Have We Really Come?

Core 2 vs I-series. How Far Have We Really Come? Core 2 vs I-series How Far Have We Really Come? Appendix 1. Introduction 2. Road map 3. General specifications 4. Hardware subtleties 5. Technology difference 6. Advantages of the new architecture 7. Conclusion

More information

Data Sheet FUJITSU Server PRIMERGY CX2550 M1 Dual Socket Server Node

Data Sheet FUJITSU Server PRIMERGY CX2550 M1 Dual Socket Server Node Data Sheet FUJITSU Server PRIMERGY CX2550 M1 Dual Socket Server Node Data Sheet FUJITSU Server PRIMERGY CX2550 M1 Dual Socket Server Node Standard server node for PRIMERGY CX400 M1 multi-node server system

More information

Agenda. What is Ryzen? History. Features. Zen Architecture. SenseMI Technology. Master Software. Benchmarks

Agenda. What is Ryzen? History. Features. Zen Architecture. SenseMI Technology. Master Software. Benchmarks Ryzen Agenda What is Ryzen? History Features Zen Architecture SenseMI Technology Master Software Benchmarks The Ryzen Chip What is Ryzen? CPU chip family released by AMD in 2017, which uses their latest

More information

Best Practices for Setting BIOS Parameters for Performance

Best Practices for Setting BIOS Parameters for Performance White Paper Best Practices for Setting BIOS Parameters for Performance Cisco UCS E5-based M3 Servers May 2013 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page

More information

CS3350B Computer Architecture CPU Performance and Profiling

CS3350B Computer Architecture CPU Performance and Profiling CS3350B Computer Architecture CPU Performance and Profiling Marc Moreno Maza http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html Department of Computer Science University of Western Ontario, Canada

More information

A Comparative Performance Evaluation of Different Application Domains on Server Processor Architectures

A Comparative Performance Evaluation of Different Application Domains on Server Processor Architectures A Comparative Performance Evaluation of Different Application Domains on Server Processor Architectures W.M. Roshan Weerasuriya and D.N. Ranasinghe University of Colombo School of Computing A Comparative

More information

Turbo Boost Up, AVX Clock Down: Complications for Scaling Tests

Turbo Boost Up, AVX Clock Down: Complications for Scaling Tests Turbo Boost Up, AVX Clock Down: Complications for Scaling Tests Steve Lantz 12/8/2017 1 What Is CPU Turbo? (Sandy Bridge) = nominal frequency http://www.hotchips.org/wp-content/uploads/hc_archives/hc23/hc23.19.9-desktop-cpus/hc23.19.921.sandybridge_power_10-rotem-intel.pdf

More information

Low latency & Mechanical Sympathy: Issues and solutions

Low latency & Mechanical Sympathy: Issues and solutions Low latency & Mechanical Sympathy: Issues and solutions Jean-Philippe BEMPEL Performance Architect @jpbempel http://jpbempel.blogspot.com ULLINK 2016 Low latency order router pure Java SE application FIX

More information

Intel Core X-Series. The Ultimate platform with unprecedented scalability. The Intel Core i9 Extreme Edition processor

Intel Core X-Series. The Ultimate platform with unprecedented scalability. The Intel Core i9 Extreme Edition processor Product Brief New Intel Core X-series Processor Family Introducing the NEW Intel Core X-Series Processor Family The Ultimate platform with unprecedented scalability The Intel Core i9 Extreme Edition processor

More information

Copyright 2012, Elsevier Inc. All rights reserved.

Copyright 2012, Elsevier Inc. All rights reserved. Computer Architecture A Quantitative Approach, Fifth Edition Chapter 1 Fundamentals of Quantitative Design and Analysis 1 Computer Technology Performance improvements: Improvements in semiconductor technology

More information

Munara Tolubaeva Technical Consulting Engineer. 3D XPoint is a trademark of Intel Corporation in the U.S. and/or other countries.

Munara Tolubaeva Technical Consulting Engineer. 3D XPoint is a trademark of Intel Corporation in the U.S. and/or other countries. Munara Tolubaeva Technical Consulting Engineer 3D XPoint is a trademark of Intel Corporation in the U.S. and/or other countries. notices and disclaimers Intel technologies features and benefits depend

More information

9 GENERATION INTEL CORE DESKTOP PROCESSORS

9 GENERATION INTEL CORE DESKTOP PROCESSORS PRODUCT BRIEF 9 GENERATION INTEL CORE DESKTOP PROCESSORS TH The Most Powerful Generation of Intel Core Processors Introducing the NEW 9th Gen Intel Core desktop processors - the most powerful generation

More information

Computer System Architecture

Computer System Architecture CSC 203 1.5 Computer System Architecture Budditha Hettige Department of Statistics and Computer Science University of Sri Jayewardenepura Microprocessors 2011 Budditha Hettige 2 Processor Instructions

More information

Part 1 of 3 -Understand the hardware components of computer systems

Part 1 of 3 -Understand the hardware components of computer systems Part 1 of 3 -Understand the hardware components of computer systems The main circuit board, the motherboard provides the base to which a number of other hardware devices are connected. Devices that connect

More information

Response Time and Throughput

Response Time and Throughput Response Time and Throughput Response time How long it takes to do a task Throughput Total work done per unit time e.g., tasks/transactions/ per hour How are response time and throughput affected by Replacing

More information

EECS4201 Computer Architecture

EECS4201 Computer Architecture Computer Architecture A Quantitative Approach, Fifth Edition Chapter 1 Fundamentals of Quantitative Design and Analysis These slides are based on the slides provided by the publisher. The slides will be

More information

IMPROVING ENERGY EFFICIENCY THROUGH PARALLELIZATION AND VECTORIZATION ON INTEL R CORE TM

IMPROVING ENERGY EFFICIENCY THROUGH PARALLELIZATION AND VECTORIZATION ON INTEL R CORE TM IMPROVING ENERGY EFFICIENCY THROUGH PARALLELIZATION AND VECTORIZATION ON INTEL R CORE TM I5 AND I7 PROCESSORS Juan M. Cebrián 1 Lasse Natvig 1 Jan Christian Meyer 2 1 Depart. of Computer and Information

More information

Performance, Power, Die Yield. CS301 Prof Szajda

Performance, Power, Die Yield. CS301 Prof Szajda Performance, Power, Die Yield CS301 Prof Szajda Administrative HW #1 assigned w Due Wednesday, 9/3 at 5:00 pm Performance Metrics (How do we compare two machines?) What to Measure? Which airplane has the

More information

Four-Socket Server Consolidation Using SQL Server 2008

Four-Socket Server Consolidation Using SQL Server 2008 Four-Socket Server Consolidation Using SQL Server 28 A Dell Technical White Paper Authors Raghunatha M Leena Basanthi K Executive Summary Businesses of all sizes often face challenges with legacy hardware

More information

Intel Hyper-Threading technology

Intel Hyper-Threading technology Intel Hyper-Threading technology technology brief Abstract... 2 Introduction... 2 Hyper-Threading... 2 Need for the technology... 2 What is Hyper-Threading?... 3 Inside the technology... 3 Compatibility...

More information

Chapter 1: Fundamentals of Quantitative Design and Analysis

Chapter 1: Fundamentals of Quantitative Design and Analysis 1 / 12 Chapter 1: Fundamentals of Quantitative Design and Analysis Be careful in this chapter. It contains a tremendous amount of information and data about the changes in computer architecture since the

More information

Temperature measurement in the Intel CoreTM Duo Processor

Temperature measurement in the Intel CoreTM Duo Processor Temperature measurement in the Intel CoreTM Duo Processor E. Rotem, J. Hermerding, A. Cohen, H. Cain To cite this version: E. Rotem, J. Hermerding, A. Cohen, H. Cain. Temperature measurement in the Intel

More information

Legal Notices and Important Information

Legal Notices and Important Information 1 September, 2009 Legal Notices and Important Information Regarding the performance measurements in this presentation Intel processor numbers are not a measure of performance. Processor numbers differentiate

More information

Scheduling the Intel Core i7

Scheduling the Intel Core i7 Third Year Project Report University of Manchester SCHOOL OF COMPUTER SCIENCE Scheduling the Intel Core i7 Ibrahim Alsuheabani Degree Programme: BSc Software Engineering Supervisor: Prof. Alasdair Rawsthorne

More information

Building a home lab : From OK to Bada$$$ By Maxime Mercier

Building a home lab : From OK to Bada$$$ By Maxime Mercier Building a home lab : From OK to Bada$$$ By Maxime Mercier Disclaimer The following presentation is a generic guideline on building a home lab. It should not be used for production servers without proper

More information

ECE 571 Advanced Microprocessor-Based Design Lecture 24

ECE 571 Advanced Microprocessor-Based Design Lecture 24 ECE 571 Advanced Microprocessor-Based Design Lecture 24 Vince Weaver http://www.eece.maine.edu/ vweaver vincent.weaver@maine.edu 25 April 2013 Project/HW Reminder Project Presentations. 15-20 minutes.

More information

Outline Marquette University

Outline Marquette University COEN-4710 Computer Hardware Lecture 1 Computer Abstractions and Technology (Ch.1) Cristinel Ababei Department of Electrical and Computer Engineering Credits: Slides adapted primarily from presentations

More information

LS-DYNA Performance Benchmark and Profiling. October 2017

LS-DYNA Performance Benchmark and Profiling. October 2017 LS-DYNA Performance Benchmark and Profiling October 2017 2 Note The following research was performed under the HPC Advisory Council activities Participating vendors: LSTC, Huawei, Mellanox Compute resource

More information

Advanced Computer Architecture (CS620)

Advanced Computer Architecture (CS620) Advanced Computer Architecture (CS620) Background: Good understanding of computer organization (eg.cs220), basic computer architecture (eg.cs221) and knowledge of probability, statistics and modeling (eg.cs433).

More information

Scaling through more cores

Scaling through more cores Scaling through more cores From single to multi core by Thomas Walther Seminar on 30.11.2015 1/32 Index 1. Introduction 2. Scaling with single core until 2005 Problems and barriers 3. Solution through

More information

Quantifying power consumption variations of HPC systems using SPEC MPI benchmarks

Quantifying power consumption variations of HPC systems using SPEC MPI benchmarks Center for Information Services and High Performance Computing (ZIH) Quantifying power consumption variations of HPC systems using SPEC MPI benchmarks EnA-HPC, Sept 16 th 2010, Robert Schöne, Daniel Molka,

More information

Advanced Thermal Solution Dynamic Heat Conduction System (DHCS) Introduction

Advanced Thermal Solution Dynamic Heat Conduction System (DHCS) Introduction August 31, 2015 Version 1. 0 Advanced Thermal Solution Dynamic Heat Conduction System (DHCS) Introduction Author: Irene.Wu E-mail: Irene.Wu@advantech.com.tw August 31, 2015 Version 1. 0 Table of Contents

More information

Non-Volatile Memory Cache Enhancements: Turbo-Charging Client Platform Performance

Non-Volatile Memory Cache Enhancements: Turbo-Charging Client Platform Performance Non-Volatile Memory Cache Enhancements: Turbo-Charging Client Platform Performance By Robert E Larsen NVM Cache Product Line Manager Intel Corporation August 2008 1 Legal Disclaimer INFORMATION IN THIS

More information

System Design of Kepler Based HPC Solutions. Saeed Iqbal, Shawn Gao and Kevin Tubbs HPC Global Solutions Engineering.

System Design of Kepler Based HPC Solutions. Saeed Iqbal, Shawn Gao and Kevin Tubbs HPC Global Solutions Engineering. System Design of Kepler Based HPC Solutions Saeed Iqbal, Shawn Gao and Kevin Tubbs HPC Global Solutions Engineering. Introduction The System Level View K20 GPU is a powerful parallel processor! K20 has

More information

Multi-Core Microprocessor Chips: Motivation & Challenges

Multi-Core Microprocessor Chips: Motivation & Challenges Multi-Core Microprocessor Chips: Motivation & Challenges Dileep Bhandarkar, Ph. D. Architect at Large DEG Architecture & Planning Digital Enterprise Group Intel Corporation October 2005 Copyright 2005

More information

A+ Guide to Hardware, 4e. Chapter 4 Processors and Chipsets

A+ Guide to Hardware, 4e. Chapter 4 Processors and Chipsets A+ Guide to Hardware, 4e Chapter 4 Processors and Chipsets Objectives Learn about the many different processors used for personal computers and notebook computers Learn about chipsets and how they work

More information

AN504: Memory Options and Performance on the Intel 955X Express Chip Set. John Beekley, VP Applications Engineering, Corsair Memory, Inc.

AN504: Memory Options and Performance on the Intel 955X Express Chip Set. John Beekley, VP Applications Engineering, Corsair Memory, Inc. APPLICATIONS NOTE AN504: Memory Options and Performance on the Intel 955X Express Chip Set John Beekley, VP Applications Engineering, Corsair Memory, Inc. Introduction This white paper will examine memory

More information

Parallel Computing. Parallel Computing. Hwansoo Han

Parallel Computing. Parallel Computing. Hwansoo Han Parallel Computing Parallel Computing Hwansoo Han What is Parallel Computing? Software with multiple threads Parallel vs. concurrent Parallel computing executes multiple threads at the same time on multiple

More information

Adjust speed as you wish! P5B-Plus MENU SEARCH

Adjust speed as you wish! P5B-Plus MENU SEARCH MENU SEARCH P5B-Plus Adjust speed as you wish! - Support Intel next generation 45nm Multi-core CPU - Intel LGA775 Platform - Intel Core 2 Quad/ Extreme / Core 2 Duo Ready - Intel Pentium Extreme / Pentium

More information

goals review some basic concepts and terminology

goals review some basic concepts and terminology goals review some basic concepts and terminology understand the major components of a computer and issues surrounding selection CPU motherboard (mainboard) and chipset storage and other high-performance

More information

Intel Core TM i7-4702ec Processor for Communications Infrastructure

Intel Core TM i7-4702ec Processor for Communications Infrastructure Intel Core TM i7-4702ec Processor for Communications Infrastructure Application Power Guidelines Addendum May 2014 Document Number: 330009-001US Introduction INFORMATION IN THIS DOCUMENT IS PROVIDED IN

More information

AMD Opteron Processors In the Cloud

AMD Opteron Processors In the Cloud AMD Opteron Processors In the Cloud Pat Patla Vice President Product Marketing AMD DID YOU KNOW? By 2020, every byte of data will pass through the cloud *Source IDC 2 AMD Opteron In The Cloud October,

More information

Innovate. Integrate. Innovate. Integrate.

Innovate. Integrate. Innovate. Integrate. Innovate. Integrate. Innovate. Integrate. Tick Tock Tick Tock Tick Tock Tick Tock 65nm 45nm 32nm Silicon Process Technology Intel Core Microarchitecture Nehalem Microarchitecture Sandy Bridge Microarchitecture

More information

H61MLV Intel Core i7 LGA 1155 Processor. Intel Core i5 LGA 1155 Processor. Intel Core i3 LGA 1155 Processor. Intel Pentium LGA 1155 Processor

H61MLV Intel Core i7 LGA 1155 Processor. Intel Core i5 LGA 1155 Processor. Intel Core i3 LGA 1155 Processor. Intel Pentium LGA 1155 Processor H61MLV3 8.0 Socket LGA 1155 Supported the Intel 3rd and 2nd generation Core i7/ i5/ i3 processors in the 1155 package Supported 2 DIMM of DDR3 1600/1333/1066MHz Supports BIO-Remote 2 Technology Chipset

More information

D D R 4 W H I T E P A P E R

D D R 4 W H I T E P A P E R Introduction DDR3 has been with us for a long time, and Corsair has been there pushing the bleeding edge of performance, cooperating with Intel, AMD, and motherboard manufacturers to produce the fastest

More information

Enjoy better computing performance with faster data transfer

Enjoy better computing performance with faster data transfer Now you can enjoy the great experiences you ve wanted from your notebook, convertible, or desktop PC with the security and connectivity options you need for a protected, mobile lifestyle with the new Intel

More information

The Power Wall. Why Aren t Modern CPUs Faster? What Happened in the Late 1990 s?

The Power Wall. Why Aren t Modern CPUs Faster? What Happened in the Late 1990 s? The Power Wall Why Aren t Modern CPUs Faster? What Happened in the Late 1990 s? Edward L. Bosworth, Ph.D. Associate Professor TSYS School of Computer Science Columbus State University Columbus, Georgia

More information

Intel Core TM Processor i C Embedded Application Power Guideline Addendum

Intel Core TM Processor i C Embedded Application Power Guideline Addendum Intel Core TM Processor i3-2115 C Embedded Application Power Guideline Addendum August 2012 Document Number: 327874-001US INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO

More information

Introduction: Modern computer architecture. The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes

Introduction: Modern computer architecture. The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes Introduction: Modern computer architecture The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes Motivation: Multi-Cores where and why Introduction: Moore s law Intel

More information

Computer Architecture A Quantitative Approach, Fifth Edition. Chapter 1. Copyright 2012, Elsevier Inc. All rights reserved. Computer Technology

Computer Architecture A Quantitative Approach, Fifth Edition. Chapter 1. Copyright 2012, Elsevier Inc. All rights reserved. Computer Technology Computer Architecture A Quantitative Approach, Fifth Edition Chapter 1 Fundamentals of Quantitative Design and Analysis 1 Computer Technology Performance improvements: Improvements in semiconductor technology

More information

Computer Systems Architecture

Computer Systems Architecture Computer Systems Architecture Lecture 23 Mahadevan Gomathisankaran April 27, 2010 04/27/2010 Lecture 23 CSCE 4610/5610 1 Reminder ABET Feedback: http://www.cse.unt.edu/exitsurvey.cgi?csce+4610+001 Student

More information

TEMPERATURE MANAGEMENT IN DATA CENTERS: WHY SOME (MIGHT) LIKE IT HOT

TEMPERATURE MANAGEMENT IN DATA CENTERS: WHY SOME (MIGHT) LIKE IT HOT TEMPERATURE MANAGEMENT IN DATA CENTERS: WHY SOME (MIGHT) LIKE IT HOT Nosayba El-Sayed, Ioan Stefanovici, George Amvrosiadis, Andy A. Hwang, Bianca Schroeder {nosayba, ioan, gamvrosi, hwang, bianca}@cs.toronto.edu

More information

Performance of computer systems

Performance of computer systems Performance of computer systems Many different factors among which: Technology Raw speed of the circuits (clock, switching time) Process technology (how many transistors on a chip) Organization What type

More information

for Power Energy and

for Power Energy and Engineered for Power Management: Dell PowerEdge Servers Are Designed to Help Save Energy and Reduce Costs ABSTRACT Keeping up with the rising cost of energy is one of the greatest challenges facing IT

More information

8205-E6C ENERGY STAR Power and Performance Data Sheet

8205-E6C ENERGY STAR Power and Performance Data Sheet 8205-E6C ENERGY STAR Power and Performance Data Sheet ii 8205-E6C ENERGY STAR Power and Performance Data Sheet Contents 8205-E6C ENERGY STAR Power and Performance Data Sheet........ 1 iii iv 8205-E6C ENERGY

More information

WHITE PAPER FUJITSU PRIMERGY SERVERS PERFORMANCE REPORT PRIMERGY BX924 S2

WHITE PAPER FUJITSU PRIMERGY SERVERS PERFORMANCE REPORT PRIMERGY BX924 S2 WHITE PAPER PERFORMANCE REPORT PRIMERGY BX924 S2 WHITE PAPER FUJITSU PRIMERGY SERVERS PERFORMANCE REPORT PRIMERGY BX924 S2 This document contains a summary of the benchmarks executed for the PRIMERGY BX924

More information

Your World is Hybrid:

Your World is Hybrid: Your World is Hybrid: HPE ProLiant Gen10 Server Innovation - Intelligent System Tuning Lisa Kolkmann Solution Architect Intelligent System Tuning HPE Innovative Server Tuning Technology Developed In-Part

More information

Hardware-Efficient Parallelized Optimization with COMSOL Multiphysics and MATLAB

Hardware-Efficient Parallelized Optimization with COMSOL Multiphysics and MATLAB Hardware-Efficient Parallelized Optimization with COMSOL Multiphysics and MATLAB Frommelt Thomas* and Gutser Raphael SGL Carbon GmbH *Corresponding author: Werner-von-Siemens Straße 18, 86405 Meitingen,

More information

Computer Systems Architecture

Computer Systems Architecture Computer Systems Architecture Lecture 24 Mahadevan Gomathisankaran April 29, 2010 04/29/2010 Lecture 24 CSCE 4610/5610 1 Reminder ABET Feedback: http://www.cse.unt.edu/exitsurvey.cgi?csce+4610+001 Student

More information

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture Computer and Information Sciences College / Computer Science Department CS 207 D Computer Architecture The Computer Revolution Progress in computer technology Underpinned by Moore s Law Makes novel applications

More information

POWER MANAGEMENT AND ENERGY EFFICIENCY

POWER MANAGEMENT AND ENERGY EFFICIENCY POWER MANAGEMENT AND ENERGY EFFICIENCY * Adopted Power Management for Embedded Systems, Minsoo Ryu 2017 Operating Systems Design Euiseong Seo (euiseong@skku.edu) Need for Power Management Power consumption

More information

Update for New Implementations. As new implementations of the Itanium architecture

Update for New Implementations. As new implementations of the Itanium architecture U Update for New Implementations As new implementations of the Itanium architecture are announced, we attempt to post appropriate updates on the support page for Itanium Architecture for Programmers: Understanding

More information

Managing Data Center Power and Cooling

Managing Data Center Power and Cooling Managing Data Center Power and Cooling with AMD Opteron Processors and AMD PowerNow! Technology Avoiding unnecessary energy use in enterprise data centers can be critical for success. This article discusses

More information

Accelerating HPC. (Nash) Dr. Avinash Palaniswamy High Performance Computing Data Center Group Marketing

Accelerating HPC. (Nash) Dr. Avinash Palaniswamy High Performance Computing Data Center Group Marketing Accelerating HPC (Nash) Dr. Avinash Palaniswamy High Performance Computing Data Center Group Marketing SAAHPC, Knoxville, July 13, 2010 Legal Disclaimer Intel may make changes to specifications and product

More information

CS/EE 6810: Computer Architecture

CS/EE 6810: Computer Architecture CS/EE 6810: Computer Architecture Class format: Most lectures on YouTube *BEFORE* class Use class time for discussions, clarifications, problem-solving, assignments 1 Introduction Background: CS 3810 or

More information

Embedded Systems Architecture

Embedded Systems Architecture Embedded System Architecture Software and hardware minimizing energy consumption Conscious engineer protects the natur M. Eng. Mariusz Rudnicki 1/47 Software and hardware minimizing energy consumption

More information

Meet the Increased Demands on Your Infrastructure with Dell and Intel. ServerWatchTM Executive Brief

Meet the Increased Demands on Your Infrastructure with Dell and Intel. ServerWatchTM Executive Brief Meet the Increased Demands on Your Infrastructure with Dell and Intel ServerWatchTM Executive Brief a QuinStreet Excutive Brief. 2012 Doing more with less is the mantra that sums up much of the past decade,

More information

Microprocessors. Chapter The McGraw-Hill Companies, Inc. All rights reserved. Mike Meyers CompTIA A+ Guide to Managing and Troubleshooting PCs

Microprocessors. Chapter The McGraw-Hill Companies, Inc. All rights reserved. Mike Meyers CompTIA A+ Guide to Managing and Troubleshooting PCs Microprocessors Chapter 6 Overview In this chapter, you will learn how to Identify the core components of a CPU Describe the relationship of CPUs and memory Explain the varieties of modern CPUs Select

More information

The mobile computing evolution. The Griffin architecture. Memory enhancements. Power management. Thermal management

The mobile computing evolution. The Griffin architecture. Memory enhancements. Power management. Thermal management Next-Generation Mobile Computing: Balancing Performance and Power Efficiency HOT CHIPS 19 Jonathan Owen, AMD Agenda The mobile computing evolution The Griffin architecture Memory enhancements Power management

More information

eslim SV Dual and Quad-Core Xeon Server Dual and Quad-Core Server Computing Leader!! ESLIM KOREA INC.

eslim SV Dual and Quad-Core Xeon Server  Dual and Quad-Core Server Computing Leader!! ESLIM KOREA INC. eslim SV7-2186 Dual and Quad-Core Xeon Server www.eslim.co.kr Dual and Quad-Core Server Computing Leader!! ESLIM KOREA INC. 1. Overview eslim SV7-2186 Server Dual and Quad-Core Intel Xeon Processors 4

More information

Building blocks for high performance DWH Computing

Building blocks for high performance DWH Computing Building blocks for high performance DWH Computing Wolfgang Höfer, Nuremberg, 18 st November 2010 Copyright 2010 Fujitsu Technology Solutions Current trends (1) Intel/AMD CPU performance is growing fast

More information

ECE 172 Digital Systems. Chapter 10 Instruction Set Architecture (ISA) Herbert G. Mayer, PSU Status 7/31/2018

ECE 172 Digital Systems. Chapter 10 Instruction Set Architecture (ISA) Herbert G. Mayer, PSU Status 7/31/2018 ECE 172 Digital Systems Chapter 10 Instruction Set Architecture (ISA) Herbert G. Mayer, PSU Status 7/31/2018 1 Syllabus l Introduction l CISC vs. RISC l If Statement HW l Processor μpc l μpc Simulator

More information

Operating System Support for Shared-ISA Asymmetric Multi-core Architectures

Operating System Support for Shared-ISA Asymmetric Multi-core Architectures Operating System Support for Shared-ISA Asymmetric Multi-core Architectures Tong Li, Paul Brett, Barbara Hohlt, Rob Knauerhase, Sean McElderry, Scott Hahn Intel Corporation Contact: tong.n.li@intel.com

More information

Core. for Embedded Computing. Processors T9400, P8400, SL9400, SL9380, SP9300, SU9300, T7500, T7400, L7500, L7400 and U7500.

Core. for Embedded Computing. Processors T9400, P8400, SL9400, SL9380, SP9300, SU9300, T7500, T7400, L7500, L7400 and U7500. Intel Core 2 Duo Processors Embedded Computing Intel Core 2 Duo Processors for Embedded Computing Processors T9400, P8400, SL9400, SL9380, SP9300, SU9300, T7500, T7400, L7500, L7400 and U7500 Product Overview

More information

Reduce Your System Power Consumption with Altera FPGAs Altera Corporation Public

Reduce Your System Power Consumption with Altera FPGAs Altera Corporation Public Reduce Your System Power Consumption with Altera FPGAs Agenda Benefits of lower power in systems Stratix III power technology Cyclone III power Quartus II power optimization and estimation tools Summary

More information

Designing for Performance. Patrick Happ Raul Feitosa

Designing for Performance. Patrick Happ Raul Feitosa Designing for Performance Patrick Happ Raul Feitosa Objective In this section we examine the most common approach to assessing processor and computer system performance W. Stallings Designing for Performance

More information