Parallel Computing. Parallel Computing. Hwansoo Han

Size: px
Start display at page:

Download "Parallel Computing. Parallel Computing. Hwansoo Han"

Transcription

1 Parallel Computing Parallel Computing Hwansoo Han

2 What is Parallel Computing? Software with multiple threads Parallel vs. concurrent Parallel computing executes multiple threads at the same time on multiple processors performance Concurrent computing can either alternate multiple threads on a single processor or execute in parallel on multiple processors convenient design 2

3 What is Parallel Architecture? Machines with multiple processors Intel Quad Core i7 Sony Playstation 4 IBM Blue Gene Watson Parallel Computing vs. Distributed Computing Google Data Center Locations Facebook Data Center 3

4 What is Parallel Architecture? One definition A parallel computer is a collection of processing elements that cooperate to solve large problems fast Some general issues Resource Allocation Data access, Communication and Synchronization Performance and Scalability 4

5 Why Study Parallel Computing? 10 years ago Some important applications demand high performance With CPU clock frequency scaling, it is not enough Parallel computing provides higher performance Today Many interesting applications demand high performance CPU clock rates are no longer increasing! Instruction-level parallelism is not increasing either! Parallel computing is the only way to achieve higher performance in the foreseeable future 5

6 Why Study Parallel Architecture? Role of a computer architect To design and engineer the various levels of a computer system to maximize performance and programmability within limits of technology and cost Parallelism Provides alternative to faster clock for performance Applies at all levels of system design 6

7 Why Parallel Computing? Application demands Architectural Trends The impact of technology and power 7

8 Application Trends A positive feedback cycle between the two Delivered performance Applications demand for performance New Applications More Performance Example application domains Scientific computing: CFD, biology, meteorology, General purpose computing: video, graphics, Commercial computing: databases, 8

9 Speedup Goal of applications in using parallel machines Speedup (p processors) = Performance (p processors) Performance (1 processor) For a fixed problem size (input data set), performance = 1/time Speedup fixed problem (p processors) = Time (1 processor) Time (p processors) 9

10 Scientific Computing Demand 10

11 High Performance Computing (HPC) Terascale computing (10 12 ) IBM Watson Won in Jeopardy (2011) Hadoop, Distributed computing Petascale computing (10 15 ) Tianhe-2 (Top500 #1 since 2013) Difficulties in SW development (3.5GHz POWER7 x 2,880 threads) "It's like a giant with a super body but without the software to support its thinking soul," Chi said. Some users would need years or even a decade to write the necessary code, he added. [South China Morning Post June 30, 2014] Exascale computing (10 18 ) 2020? (16,000 nodes, 2 Xeon CPU s + 3 Xeon Phi s ) 11

12 Engineering Computing Large parallel machines are mainstays in many industries Petroleum reservoir analysis Automotive crash simulation, drag analysis, combustion efficiency Aeronautics airflow analysis, engine efficiency, structural mechanics, electromagnetism Computer-aided design VLSI layout Pharmaceuticals molecular modeling Visualization all the above, entertainment, architecture Financial modeling yield and derivative analysis 12

13 Commercial Computing Relies on parallelism for high end Computational power determines scale of business that can be handled e.g.) databases, online-transaction processing, decision support, data mining, data warehousing... TPC benchmarks TPC-C (order entry), TPC-D (decision support) Explicit scaling criteria provided Size of enterprise scales with size of system Problem size no longer fixed as p increases, so throughput is used as a performance measure, transactions per minute (tpm) 13

14 Commercial Computing Hardware threads in the Top-10 TPC-C machines 14

15 Why Parallel Computing? Application demands Architectural Trends The impact of technology and power 15

16 Architectural Trends Architecture translates technology s gifts into performance and capability Four generations of architectural history Tube, transistor, IC, VLSI Greatest delineation in VLSI has been in type of parallelism exploited 16

17 Architectural Trends Greatest trend in VLSI generation is Increase in parallelism Up to 1985: bit level parallelism 4-bit 8 bit 16-bit, slows after 32 bit Adoption of 64-bit now under way, 128-bit far (not performance issue) Great inflection point when 32-bit micro and cache fit on a chip Mid 80s to mid 90s: instruction level parallelism Pipelining and simple instruction sets + compiler advances (RISC) On-chip caches and functional units superscalar execution Greater sophistication: out of order execution, speculation, prediction To deal with control transfer and latency problems Since 2002: thread level parallelism Multicore processors 17

18 Transistors Phases in VLSI Generation 100,000,000 Bit-level parallelism Instruction-level Thread-level (?) 10,000,000 1,000, ,000 4bits 8bits 16bits 32bits i80286 R10000 Pentium i80386 R2000 R3000 Multicore / manycore Heterogenous multicore GPGPU 10,000 i8086 i8080 i8008 i4004 Pipelining Superscalar Branch prediction Out-of-order execution VLIW 1,

19 Fraction of total cycles (%) Speedup Limitation in ILP Number of instructions issued Instructions issued per cycle(issue width) Speedup begins to saturate after issue width of 4 Assumption of ideal machine Infinite resources and fetch bandwidth, perfect branch prediction and renaming But with realistic memory Real caches and non-zero miss latencies 19

20 Single-Thread Performance Curve Architecture -driven Technology -driven The rate of single-thread performance improvement has decreased [Computer Architectures Hennessy & Patterson] 20

21 Why Parallel Computing? Application demands Architectural Trends The impact of technology and power 21

22 Desperate Cooling? 22

23 Cooling Power delivery, packaging, and cooling costs Increased cost of thermal packing $1 per watt for CPUs more than 35W [Tiwari, DAC98] At high-end, 1W of cooling for every 1W of power Cooling Physical solutions Heatsink, thermal paste, fan APM (advanced power management) BIOS manages clock speed Triggered by thermal diodes ACPI (Advanced Configuration and Power Interface) OS manages power for all devices Idle, nap, sleep modes 23

24 Power Consumption Trend 1000 Watts/cm Nuclear Reactor Rocket Nozzle 10 Hot plate 1 Reason for power trends Smaller feature size Increased compaction High clock frequency More complicated processors Process Transistors Supply voltage Frequency Power nm 90nm 55nm 3nm 0.2B 1.2B 7.8B 50B V V 0.7V 0.5V 1GHz 3GHz 10GHz 30GHz 100W 175W 300W 540W source: Intel (2002) 24

25 Power Consumption (watts) Core2Quad 3.0GHz Core2duo 3.0GHz Core2duo 2.4GHz (mobile) Core2duo 1.2GHz (mobile) Source: MIT IAP 25

26 Recent Intel Processors The future is not higher clock rate, but multiple cores per die We are dedicating all of our future product development to multicore designs. We believe this is a key inflection point for the industry. - Paul Otellini, Intel President (IDF 2005) year Transistors Clock(GHz) Power(W) Pentium M 1.3~3.8 21~115 Pentium M M 0.8~ ~27 Core Duo M 1.06~ ~49 Core 2 Duo M 1.06~ ~65 Core 2 Quad M 2.1~ ~150 Core i7 (Quad) M 1.6~3.5 45~130 Xeon ~ ~130 source: wikipedia : comparison of Intel processors 26

27 Summary: Why Parallel Computing? If you can t exploit parallelism, performance will be a zero sum game If you want to add a new feature and maintain performance, you will need to remove something else. The future is multicore (i.e. parallel) according to all major processor vendors We expect more and more cores will be delivered with each generation Starting now, everyone will need to know how to write parallel programs It is no longer a niche area: it is a mainstream. 27

Why Parallel Architecture

Why Parallel Architecture Why Parallel Architecture and Programming? Todd C. Mowry 15-418 January 11, 2011 What is Parallel Programming? Software with multiple threads? Multiple threads for: convenience: concurrent programming

More information

Why Parallel Computing? Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Why Parallel Computing? Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Why Parallel Computing? Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu What is Parallel Computing? Software with multiple threads Parallel vs. concurrent

More information

Parallel Computer Architecture

Parallel Computer Architecture Parallel Computer Architecture What is Parallel Architecture? A parallel computer is a collection of processing elements that cooperate to solve large problems fast Some broad issues: Resource Allocation:»

More information

Why Parallel Computing?

Why Parallel Computing? Why Parallel Computing? Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE3054: Multicore Systems, Spring 2017, Jinkyu Jeong (jinkyu@skku.edu) What

More information

Parallel Programming: Principle and Practice

Parallel Programming: Principle and Practice Parallel Programming: Principle and Practice INTRODUCTION Course Goals The students will get the skills to use some of the best existing parallel programming tools, and be exposed to a number of open research

More information

Lecture 1: Introduction

Lecture 1: Introduction Contemporary Computer Architecture Instruction set architecture Lecture 1: Introduction CprE 581 Computer Systems Architecture, Fall 2016 Reading: Textbook, Ch. 1.1-1.7 Microarchitecture; examples: Pipeline

More information

Multicore and Parallel Processing

Multicore and Parallel Processing Multicore and Parallel Processing Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University P & H Chapter 4.10 11, 7.1 6 xkcd/619 2 Pitfall: Amdahl s Law Execution time after improvement

More information

NOW Handout Page 1 NO! Today s Goal: CS 258 Parallel Computer Architecture. What will you get out of CS258? Will it be worthwhile?

NOW Handout Page 1 NO! Today s Goal: CS 258 Parallel Computer Architecture. What will you get out of CS258? Will it be worthwhile? Today s Goal: CS 258 Parallel Computer Architecture Introduce you to Parallel Computer Architecture Answer your questions about CS 258 Provide you a sense of the trends that shape the field CS 258, Spring

More information

Multithreading: Exploiting Thread-Level Parallelism within a Processor

Multithreading: Exploiting Thread-Level Parallelism within a Processor Multithreading: Exploiting Thread-Level Parallelism within a Processor Instruction-Level Parallelism (ILP): What we ve seen so far Wrap-up on multiple issue machines Beyond ILP Multithreading Advanced

More information

Introduction to Multicore architecture. Tao Zhang Oct. 21, 2010

Introduction to Multicore architecture. Tao Zhang Oct. 21, 2010 Introduction to Multicore architecture Tao Zhang Oct. 21, 2010 Overview Part1: General multicore architecture Part2: GPU architecture Part1: General Multicore architecture Uniprocessor Performance (ECint)

More information

CSC 447: Parallel Programming for Multi- Core and Cluster Systems

CSC 447: Parallel Programming for Multi- Core and Cluster Systems CSC 447: Parallel Programming for Multi- Core and Cluster Systems Why Parallel Computing? Haidar M. Harmanani Spring 2017 Definitions What is parallel? Webster: An arrangement or state that permits several

More information

CSE 141: Computer Architecture. Professor: Michael Taylor. UCSD Department of Computer Science & Engineering

CSE 141: Computer Architecture. Professor: Michael Taylor. UCSD Department of Computer Science & Engineering CSE 141: Computer 0 Architecture Professor: Michael Taylor RF UCSD Department of Computer Science & Engineering Computer Architecture from 10,000 feet foo(int x) {.. } Class of application Physics Computer

More information

Performance of computer systems

Performance of computer systems Performance of computer systems Many different factors among which: Technology Raw speed of the circuits (clock, switching time) Process technology (how many transistors on a chip) Organization What type

More information

Computer Architecture

Computer Architecture Computer Architecture Slide Sets WS 2013/2014 Prof. Dr. Uwe Brinkschulte M.Sc. Benjamin Betting Part 10 Thread and Task Level Parallelism Computer Architecture Part 10 page 1 of 36 Prof. Dr. Uwe Brinkschulte,

More information

Chapter 1: Fundamentals of Quantitative Design and Analysis

Chapter 1: Fundamentals of Quantitative Design and Analysis 1 / 12 Chapter 1: Fundamentals of Quantitative Design and Analysis Be careful in this chapter. It contains a tremendous amount of information and data about the changes in computer architecture since the

More information

Parallelism, Multicore, and Synchronization

Parallelism, Multicore, and Synchronization Parallelism, Multicore, and Synchronization Hakim Weatherspoon CS 3410 Computer Science Cornell University [Weatherspoon, Bala, Bracy, McKee, and Sirer, Roth, Martin] xkcd/619 3 Big Picture: Multicore

More information

Revisiting the Past 25 Years: Lessons for the Future. Guri Sohi University of Wisconsin-Madison

Revisiting the Past 25 Years: Lessons for the Future. Guri Sohi University of Wisconsin-Madison Revisiting the Past 25 Years: Lessons for the Future Guri Sohi University of Wisconsin-Madison Outline VLIW OOO Superscalar Enhancing Superscalar And the future 2 Beyond pipelining to ILP Late 1980s to

More information

Lecture1: Introduction. Administrative info

Lecture1: Introduction. Administrative info Lecture1: Introduction 1 Administrative info Welcome to ECE669! Welcome off-campus students! Csaba Andras Moritz, Associate Professor @ ECE/UMASS Questions/discussions/email questions are welcome! My Focus:

More information

CS 654 Computer Architecture Summary. Peter Kemper

CS 654 Computer Architecture Summary. Peter Kemper CS 654 Computer Architecture Summary Peter Kemper Chapters in Hennessy & Patterson Ch 1: Fundamentals Ch 2: Instruction Level Parallelism Ch 3: Limits on ILP Ch 4: Multiprocessors & TLP Ap A: Pipelining

More information

Copyright 2012, Elsevier Inc. All rights reserved.

Copyright 2012, Elsevier Inc. All rights reserved. Computer Architecture A Quantitative Approach, Fifth Edition Chapter 1 Fundamentals of Quantitative Design and Analysis 1 Computer Technology Performance improvements: Improvements in semiconductor technology

More information

Parallel Computing. Hwansoo Han (SKKU)

Parallel Computing. Hwansoo Han (SKKU) Parallel Computing Hwansoo Han (SKKU) Unicore Limitations Performance scaling stopped due to Power consumption Wire delay DRAM latency Limitation in ILP 10000 SPEC CINT2000 2 cores/chip Xeon 3.0GHz Core2duo

More information

Prof. Hakim Weatherspoon CS 3410, Spring 2015 Computer Science Cornell University. P & H Chapter 4.10, 1.7, 1.8, 5.10, 6

Prof. Hakim Weatherspoon CS 3410, Spring 2015 Computer Science Cornell University. P & H Chapter 4.10, 1.7, 1.8, 5.10, 6 Prof. Hakim Weatherspoon CS 3410, Spring 2015 Computer Science Cornell University P & H Chapter 4.10, 1.7, 1.8, 5.10, 6 Why do I need four computing cores on my phone?! Why do I need eight computing

More information

Goals of this lecture

Goals of this lecture Power Density (W/cm 2 ) Goals of this lecture Design of Parallel and High-Performance Computing Fall 2017 Lecture: Introduction Motivate you! Trends High performance computing Programming models Course

More information

CSCI 402: Computer Architectures. Computer Abstractions and Technology (4) Fengguang Song Department of Computer & Information Science IUPUI.

CSCI 402: Computer Architectures. Computer Abstractions and Technology (4) Fengguang Song Department of Computer & Information Science IUPUI. CSCI 402: Computer Architectures Computer Abstractions and Technology (4) Fengguang Song Department of Computer & Information Science IUPUI Contents 1.7 - End of Chapter 1 Power wall The multicore era

More information

Multicore computer: Combines two or more processors (cores) on a single die. Also called a chip-multiprocessor.

Multicore computer: Combines two or more processors (cores) on a single die. Also called a chip-multiprocessor. CS 320 Ch. 18 Multicore Computers Multicore computer: Combines two or more processors (cores) on a single die. Also called a chip-multiprocessor. Definitions: Hyper-threading Intel's proprietary simultaneous

More information

EITF20: Computer Architecture Part1.1.1: Introduction

EITF20: Computer Architecture Part1.1.1: Introduction EITF20: Computer Architecture Part1.1.1: Introduction Liang Liu liang.liu@eit.lth.se 1 Course Factor Computer Architecture (7.5HP) http://www.eit.lth.se/kurs/eitf20 EIT s Course Service Desk (studerandeexpedition)

More information

Administration. Coursework. Prerequisites. CS 378: Programming for Performance. 4 or 5 programming projects

Administration. Coursework. Prerequisites. CS 378: Programming for Performance. 4 or 5 programming projects CS 378: Programming for Performance Administration Instructors: Keshav Pingali (Professor, CS department & ICES) 4.126 ACES Email: pingali@cs.utexas.edu TA: Hao Wu (Grad student, CS department) Email:

More information

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture. Lecture 9: Multiprocessors

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture. Lecture 9: Multiprocessors Computer and Information Sciences College / Computer Science Department CS 207 D Computer Architecture Lecture 9: Multiprocessors Challenges of Parallel Processing First challenge is % of program inherently

More information

Computer Performance Evaluation and Benchmarking. EE 382M Dr. Lizy Kurian John

Computer Performance Evaluation and Benchmarking. EE 382M Dr. Lizy Kurian John Computer Performance Evaluation and Benchmarking EE 382M Dr. Lizy Kurian John Evolution of Single-Chip Transistor Count 10K- 100K Clock Frequency 0.2-2MHz Microprocessors 1970 s 1980 s 1990 s 2010s 100K-1M

More information

CS5222 Advanced Computer Architecture. Lecture 1 Introduction

CS5222 Advanced Computer Architecture. Lecture 1 Introduction CS5222 Advanced Computer Architecture Lecture 1 Introduction Overview Teaching Staff Introduction to Computer Architecture History Future / Trends Significance The course Content Workload Administrative

More information

Supercomputing and Mass Market Desktops

Supercomputing and Mass Market Desktops Supercomputing and Mass Market Desktops John Manferdelli Microsoft Corporation This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary.

More information

CMSC 411 Computer Systems Architecture Lecture 13 Instruction Level Parallelism 6 (Limits to ILP & Threading)

CMSC 411 Computer Systems Architecture Lecture 13 Instruction Level Parallelism 6 (Limits to ILP & Threading) CMSC 411 Computer Systems Architecture Lecture 13 Instruction Level Parallelism 6 (Limits to ILP & Threading) Limits to ILP Conflicting studies of amount of ILP Benchmarks» vectorized Fortran FP vs. integer

More information

Chapter 18 - Multicore Computers

Chapter 18 - Multicore Computers Chapter 18 - Multicore Computers Luis Tarrataca luis.tarrataca@gmail.com CEFET-RJ Luis Tarrataca Chapter 18 - Multicore Computers 1 / 28 Table of Contents I 1 2 Where to focus your study Luis Tarrataca

More information

Administration. Prerequisites. CS 395T: Topics in Multicore Programming. Why study parallel programming? Instructors: TA:

Administration. Prerequisites. CS 395T: Topics in Multicore Programming. Why study parallel programming? Instructors: TA: CS 395T: Topics in Multicore Programming Administration Instructors: Keshav Pingali (CS,ICES) 4.126A ACES Email: pingali@cs.utexas.edu TA: Aditya Rawal Email: 83.aditya.rawal@gmail.com University of Texas,

More information

Aim High. Intel Technical Update Teratec 07 Symposium. June 20, Stephen R. Wheat, Ph.D. Director, HPC Digital Enterprise Group

Aim High. Intel Technical Update Teratec 07 Symposium. June 20, Stephen R. Wheat, Ph.D. Director, HPC Digital Enterprise Group Aim High Intel Technical Update Teratec 07 Symposium June 20, 2007 Stephen R. Wheat, Ph.D. Director, HPC Digital Enterprise Group Risk Factors Today s s presentations contain forward-looking statements.

More information

Computer Architecture Crash course

Computer Architecture Crash course Computer Architecture Crash course Frédéric Haziza Department of Computer Systems Uppsala University Summer 2008 Conclusions The multicore era is already here cost of parallelism is dropping

More information

EECS4201 Computer Architecture

EECS4201 Computer Architecture Computer Architecture A Quantitative Approach, Fifth Edition Chapter 1 Fundamentals of Quantitative Design and Analysis These slides are based on the slides provided by the publisher. The slides will be

More information

6 February Parallel Computing: A View From Berkeley. E. M. Hielscher. Introduction. Applications and Dwarfs. Hardware. Programming Models

6 February Parallel Computing: A View From Berkeley. E. M. Hielscher. Introduction. Applications and Dwarfs. Hardware. Programming Models Parallel 6 February 2008 Motivation All major processor manufacturers have switched to parallel architectures This switch driven by three Walls : the Power Wall, Memory Wall, and ILP Wall Power = Capacitance

More information

Several Common Compiler Strategies. Instruction scheduling Loop unrolling Static Branch Prediction Software Pipelining

Several Common Compiler Strategies. Instruction scheduling Loop unrolling Static Branch Prediction Software Pipelining Several Common Compiler Strategies Instruction scheduling Loop unrolling Static Branch Prediction Software Pipelining Basic Instruction Scheduling Reschedule the order of the instructions to reduce the

More information

ECE 486/586. Computer Architecture. Lecture # 2

ECE 486/586. Computer Architecture. Lecture # 2 ECE 486/586 Computer Architecture Lecture # 2 Spring 2015 Portland State University Recap of Last Lecture Old view of computer architecture: Instruction Set Architecture (ISA) design Real computer architecture:

More information

45-year CPU Evolution: 1 Law -2 Equations

45-year CPU Evolution: 1 Law -2 Equations 4004 8086 PowerPC 601 Pentium 4 Prescott 1971 1978 1992 45-year CPU Evolution: 1 Law -2 Equations Daniel Etiemble LRI Université Paris Sud 2004 Xeon X7560 Power9 Nvidia Pascal 2010 2017 2016 Are there

More information

Fundamentals of Quantitative Design and Analysis

Fundamentals of Quantitative Design and Analysis Fundamentals of Quantitative Design and Analysis Dr. Jiang Li Adapted from the slides provided by the authors Computer Technology Performance improvements: Improvements in semiconductor technology Feature

More information

Hyperthreading Technology

Hyperthreading Technology Hyperthreading Technology Aleksandar Milenkovic Electrical and Computer Engineering Department University of Alabama in Huntsville milenka@ece.uah.edu www.ece.uah.edu/~milenka/ Outline What is hyperthreading?

More information

Higher Level Programming Abstractions for FPGAs using OpenCL

Higher Level Programming Abstractions for FPGAs using OpenCL Higher Level Programming Abstractions for FPGAs using OpenCL Desh Singh Supervising Principal Engineer Altera Corporation Toronto Technology Center ! Technology scaling favors programmability CPUs."#/0$*12'$-*

More information

Advanced processor designs

Advanced processor designs Advanced processor designs We ve only scratched the surface of CPU design. Today we ll briefly introduce some of the big ideas and big words behind modern processors by looking at two example CPUs. The

More information

Microarchitecture Overview. Performance

Microarchitecture Overview. Performance Microarchitecture Overview Prof. Scott Rixner Duncan Hall 3028 rixner@rice.edu January 18, 2005 Performance 4 Make operations faster Process improvements Circuit improvements Use more transistors to make

More information

Computer Architecture A Quantitative Approach, Fifth Edition. Chapter 1. Copyright 2012, Elsevier Inc. All rights reserved. Computer Technology

Computer Architecture A Quantitative Approach, Fifth Edition. Chapter 1. Copyright 2012, Elsevier Inc. All rights reserved. Computer Technology Computer Architecture A Quantitative Approach, Fifth Edition Chapter 1 Fundamentals of Quantitative Design and Analysis 1 Computer Technology Performance improvements: Improvements in semiconductor technology

More information

Parallel Processors. The dream of computer architects since 1950s: replicate processors to add performance vs. design a faster processor

Parallel Processors. The dream of computer architects since 1950s: replicate processors to add performance vs. design a faster processor Multiprocessing Parallel Computers Definition: A parallel computer is a collection of processing elements that cooperate and communicate to solve large problems fast. Almasi and Gottlieb, Highly Parallel

More information

CS 498 Hot Topics in High Performance Computing. Networks and Fault Tolerance. 1. Introduction to Parallel Computer Architecture (I)

CS 498 Hot Topics in High Performance Computing. Networks and Fault Tolerance. 1. Introduction to Parallel Computer Architecture (I) CS 498 Hot Topics in High Performance Computing Networks and Fault Tolerance 1. Introduction to Parallel Computer Architecture (I) Our teaching style As interactive as possible Ask many questions, immediately

More information

Administration. Course material. Prerequisites. CS 395T: Topics in Multicore Programming. Instructors: TA: Course in computer architecture

Administration. Course material. Prerequisites. CS 395T: Topics in Multicore Programming. Instructors: TA: Course in computer architecture CS 395T: Topics in Multicore Programming Administration Instructors: Keshav Pingali (CS,ICES) 4.26A ACES Email: pingali@cs.utexas.edu TA: Xin Sui Email: xin@cs.utexas.edu University of Texas, Austin Fall

More information

COMP 633 Parallel Computing.

COMP 633 Parallel Computing. COMP 633 Parallel Computing http://www.cs.unc.edu/~prins/classes/633/ Parallel computing What is it? multiple processors cooperating to solve a single problem hopefully faster than a single processor!

More information

Advanced Computer Architecture

Advanced Computer Architecture Advanced Computer Architecture 1 L E C T U R E 0 J A N L E M E I R E Course Objectives 2 Intel 4004 1971 2.3K trans. Intel Core 2 Duo 2006 291M trans. Where have all the transistors gone? Turing Machine

More information

Spring 2011 Parallel Computer Architecture Lecture 4: Multi-core. Prof. Onur Mutlu Carnegie Mellon University

Spring 2011 Parallel Computer Architecture Lecture 4: Multi-core. Prof. Onur Mutlu Carnegie Mellon University 18-742 Spring 2011 Parallel Computer Architecture Lecture 4: Multi-core Prof. Onur Mutlu Carnegie Mellon University Research Project Project proposal due: Jan 31 Project topics Does everyone have a topic?

More information

Lecture 7 Instruction Level Parallelism (5) EEC 171 Parallel Architectures John Owens UC Davis

Lecture 7 Instruction Level Parallelism (5) EEC 171 Parallel Architectures John Owens UC Davis Lecture 7 Instruction Level Parallelism (5) EEC 171 Parallel Architectures John Owens UC Davis Credits John Owens / UC Davis 2007 2009. Thanks to many sources for slide material: Computer Organization

More information

CISC 662 Graduate Computer Architecture Lecture 13 - Limits of ILP

CISC 662 Graduate Computer Architecture Lecture 13 - Limits of ILP CISC 662 Graduate Computer Architecture Lecture 13 - Limits of ILP Michela Taufer http://www.cis.udel.edu/~taufer/teaching/cis662f07 Powerpoint Lecture Notes from John Hennessy and David Patterson s: Computer

More information

COSC 6385 Computer Architecture - Thread Level Parallelism (I)

COSC 6385 Computer Architecture - Thread Level Parallelism (I) COSC 6385 Computer Architecture - Thread Level Parallelism (I) Edgar Gabriel Spring 2014 Long-term trend on the number of transistor per integrated circuit Number of transistors double every ~18 month

More information

Evolution of Computers & Microprocessors. Dr. Cahit Karakuş

Evolution of Computers & Microprocessors. Dr. Cahit Karakuş Evolution of Computers & Microprocessors Dr. Cahit Karakuş Evolution of Computers First generation (1939-1954) - vacuum tube IBM 650, 1954 Evolution of Computers Second generation (1954-1959) - transistor

More information

CIT 668: System Architecture

CIT 668: System Architecture CIT 668: System Architecture Computer Systems Architecture I 1. System Components 2. Processor 3. Memory 4. Storage 5. Network 6. Operating System Topics Images courtesy of Majd F. Sakr or from Wikipedia

More information

Microarchitecture Overview. Performance

Microarchitecture Overview. Performance Microarchitecture Overview Prof. Scott Rixner Duncan Hall 3028 rixner@rice.edu January 15, 2007 Performance 4 Make operations faster Process improvements Circuit improvements Use more transistors to make

More information

Processor (IV) - advanced ILP. Hwansoo Han

Processor (IV) - advanced ILP. Hwansoo Han Processor (IV) - advanced ILP Hwansoo Han Instruction-Level Parallelism (ILP) Pipelining: executing multiple instructions in parallel To increase ILP Deeper pipeline Less work per stage shorter clock cycle

More information

In the early days of computing, the best way to increase the speed of a computer was to use faster logic devices.

In the early days of computing, the best way to increase the speed of a computer was to use faster logic devices. acroarchitecture vs. microarchitecture icroarchitecture is concerned with how processors and other components are put together. acroarchitecture is concerned with how processors and other components can

More information

Power dissipation! The VLSI Interconnect Challenge. Interconnect is the crux of the problem. Interconnect is the crux of the problem.

Power dissipation! The VLSI Interconnect Challenge. Interconnect is the crux of the problem. Interconnect is the crux of the problem. The VLSI Interconnect Challenge Avinoam Kolodny Electrical Engineering Department Technion Israel Institute of Technology VLSI Challenges System complexity Performance Tolerance to digital noise and faults

More information

Introduction. What is Parallel Architecture? Why Parallel Architecture? Evolution and Convergence of Parallel Architectures. Fundamental Design Issues

Introduction. What is Parallel Architecture? Why Parallel Architecture? Evolution and Convergence of Parallel Architectures. Fundamental Design Issues What is Parallel Architecture? Why Parallel Architecture? Evolution and Convergence of Parallel Architectures Fundamental Design Issues 2 What is Parallel Architecture? A parallel computer is a collection

More information

Computer Architecture. Fall Dongkun Shin, SKKU

Computer Architecture. Fall Dongkun Shin, SKKU Computer Architecture Fall 2018 1 Syllabus Instructors: Dongkun Shin Office : Room 85470 E-mail : dongkun@skku.edu Office Hours: Wed. 15:00-17:30 or by appointment Lecture notes nyx.skku.ac.kr Courses

More information

Parallelism and Concurrency. COS 326 David Walker Princeton University

Parallelism and Concurrency. COS 326 David Walker Princeton University Parallelism and Concurrency COS 326 David Walker Princeton University Parallelism What is it? Today's technology trends. How can we take advantage of it? Why is it so much harder to program? Some preliminary

More information

Parallel Functional Programming Lecture 1. John Hughes

Parallel Functional Programming Lecture 1. John Hughes Parallel Functional Programming Lecture 1 John Hughes Moore s Law (1965) The number of transistors per chip increases by a factor of two every year two years (1975) Number of transistors What shall we

More information

ECE 588/688 Advanced Computer Architecture II

ECE 588/688 Advanced Computer Architecture II ECE 588/688 Advanced Computer Architecture II Instructor: Alaa Alameldeen alaa@ece.pdx.edu Fall 2009 Portland State University Copyright by Alaa Alameldeen and Haitham Akkary 2009 1 When and Where? When:

More information

CSC 447: Parallel Programming for Multi- Core and Cluster Systems. Lectures TTh, 11:00-12:15 from January 16, 2018 until 25, 2018 Prerequisites

CSC 447: Parallel Programming for Multi- Core and Cluster Systems. Lectures TTh, 11:00-12:15 from January 16, 2018 until 25, 2018 Prerequisites CSC 447: Parallel Programming for Multi- Core and Cluster Systems Introduction and A dministrivia Haidar M. Harmanani Spring 2018 Course Introduction Lectures TTh, 11:00-12:15 from January 16, 2018 until

More information

CMSC 611: Advanced. Parallel Systems

CMSC 611: Advanced. Parallel Systems CMSC 611: Advanced Computer Architecture Parallel Systems Parallel Computers Definition: A parallel computer is a collection of processing elements that cooperate and communicate to solve large problems

More information

Parallelism: The Real Y2K Crisis. Darek Mihocka August 14, 2008

Parallelism: The Real Y2K Crisis. Darek Mihocka August 14, 2008 Parallelism: The Real Y2K Crisis Darek Mihocka August 14, 2008 The Free Ride For decades, Moore's Law allowed CPU vendors to rely on steady clock speed increases: late 1970's: 1 MHz (6502) mid 1980's:

More information

CS671 Parallel Programming in the Many-Core Era

CS671 Parallel Programming in the Many-Core Era CS671 Parallel Programming in the Many-Core Era Lecture 1: Introduction Zheng Zhang Rutgers University CS671 Course Information Instructor information: instructor: zheng zhang website: www.cs.rutgers.edu/~zz124/

More information

Advanced Computer Architecture

Advanced Computer Architecture Advanced Computer Architecture Chapter 1 Introduction into the Sequential and Pipeline Instruction Execution Martin Milata What is a Processors Architecture Instruction Set Architecture (ISA) Describes

More information

Transistors and Wires

Transistors and Wires Computer Architecture A Quantitative Approach, Fifth Edition Chapter 1 Fundamentals of Quantitative Design and Analysis Part II These slides are based on the slides provided by the publisher. The slides

More information

CS 194 Parallel Programming. Why Program for Parallelism?

CS 194 Parallel Programming. Why Program for Parallelism? CS 194 Parallel Programming Why Program for Parallelism? Katherine Yelick yelick@cs.berkeley.edu http://www.cs.berkeley.edu/~yelick/cs194f07 8/29/2007 CS194 Lecure 1 What is Parallel Computing? Parallel

More information

Outline EEL 5764 Graduate Computer Architecture. Chapter 3 Limits to ILP and Simultaneous Multithreading. Overcoming Limits - What do we need??

Outline EEL 5764 Graduate Computer Architecture. Chapter 3 Limits to ILP and Simultaneous Multithreading. Overcoming Limits - What do we need?? Outline EEL 7 Graduate Computer Architecture Chapter 3 Limits to ILP and Simultaneous Multithreading! Limits to ILP! Thread Level Parallelism! Multithreading! Simultaneous Multithreading Ann Gordon-Ross

More information

Advanced Computer Architecture (CS620)

Advanced Computer Architecture (CS620) Advanced Computer Architecture (CS620) Background: Good understanding of computer organization (eg.cs220), basic computer architecture (eg.cs221) and knowledge of probability, statistics and modeling (eg.cs433).

More information

Lecture 21: Parallelism ILP to Multicores. Parallel Processing 101

Lecture 21: Parallelism ILP to Multicores. Parallel Processing 101 18 447 Lecture 21: Parallelism ILP to Multicores S 10 L21 1 James C. Hoe Dept of ECE, CMU April 7, 2010 Announcements: Handouts: Lab 4 due this week Optional reading assignments below. The Microarchitecture

More information

COSC4201 Multiprocessors

COSC4201 Multiprocessors COSC4201 Multiprocessors Prof. Mokhtar Aboelaze Parts of these slides are taken from Notes by Prof. David Patterson (UCB) Multiprocessing We are dedicating all of our future product development to multicore

More information

The Processor: Instruction-Level Parallelism

The Processor: Instruction-Level Parallelism The Processor: Instruction-Level Parallelism Computer Organization Architectures for Embedded Computing Tuesday 21 October 14 Many slides adapted from: Computer Organization and Design, Patterson & Hennessy

More information

ENGN1640: Design of Computing Systems Topic 06: Advanced Processor Design

ENGN1640: Design of Computing Systems Topic 06: Advanced Processor Design ENGN1640: Design of Computing Systems Topic 06: Advanced Processor Design Professor Sherief Reda http://scale.engin.brown.edu Electrical Sciences and Computer Engineering School of Engineering Brown University

More information

COMPUTING ELEMENT EVOLUTION AND ITS IMPACT ON SIMULATION CODES

COMPUTING ELEMENT EVOLUTION AND ITS IMPACT ON SIMULATION CODES COMPUTING ELEMENT EVOLUTION AND ITS IMPACT ON SIMULATION CODES P(ND) 2-2 2014 Guillaume Colin de Verdière OCTOBER 14TH, 2014 P(ND)^2-2 PAGE 1 CEA, DAM, DIF, F-91297 Arpajon, France October 14th, 2014 Abstract:

More information

Tutorial 11. Final Exam Review

Tutorial 11. Final Exam Review Tutorial 11 Final Exam Review Introduction Instruction Set Architecture: contract between programmer and designers (e.g.: IA-32, IA-64, X86-64) Computer organization: describe the functional units, cache

More information

Processor Performance and Parallelism Y. K. Malaiya

Processor Performance and Parallelism Y. K. Malaiya Processor Performance and Parallelism Y. K. Malaiya Processor Execution time The time taken by a program to execute is the product of n Number of machine instructions executed n Number of clock cycles

More information

The Implications of Multi-core

The Implications of Multi-core The Implications of Multi- What I want to do today Given that everyone is heralding Multi- Is it really the Holy Grail? Will it cure cancer? A lot of misinformation has surfaced What multi- is and what

More information

Serial. Parallel. CIT 668: System Architecture 2/14/2011. Topics. Serial and Parallel Computation. Parallel Computing

Serial. Parallel. CIT 668: System Architecture 2/14/2011. Topics. Serial and Parallel Computation. Parallel Computing CIT 668: System Architecture Parallel Computing Topics 1. What is Parallel Computing? 2. Why use Parallel Computing? 3. Types of Parallelism 4. Amdahl s Law 5. Flynn s Taxonomy of Parallel Computers 6.

More information

New Challenges in Microarchitecture and Compiler Design

New Challenges in Microarchitecture and Compiler Design New Challenges in Microarchitecture and Compiler Design Contributors: Jesse Fang Tin-Fook Ngai Fred Pollack Intel Fellow Director of Microprocessor Research Labs Intel Corporation fred.pollack@intel.com

More information

William Stallings Computer Organization and Architecture 8 th Edition. Chapter 18 Multicore Computers

William Stallings Computer Organization and Architecture 8 th Edition. Chapter 18 Multicore Computers William Stallings Computer Organization and Architecture 8 th Edition Chapter 18 Multicore Computers Hardware Performance Issues Microprocessors have seen an exponential increase in performance Improved

More information

Parallelism Marco Serafini

Parallelism Marco Serafini Parallelism Marco Serafini COMPSCI 590S Lecture 3 Announcements Reviews First paper posted on website Review due by this Wednesday 11 PM (hard deadline) Data Science Career Mixer (save the date!) November

More information

Control Hazards. Branch Prediction

Control Hazards. Branch Prediction Control Hazards The nub of the problem: In what pipeline stage does the processor fetch the next instruction? If that instruction is a conditional branch, when does the processor know whether the conditional

More information

How What When Why CSC3501 FALL07 CSC3501 FALL07. Louisiana State University 1- Introduction - 1. Louisiana State University 1- Introduction - 2

How What When Why CSC3501 FALL07 CSC3501 FALL07. Louisiana State University 1- Introduction - 1. Louisiana State University 1- Introduction - 2 Computer Organization and Design Dr. Arjan Durresi Louisiana State University Baton Rouge, LA 70803 durresi@csc.lsu.edu d These slides are available at: http://www.csc.lsu.edu/~durresi/csc3501_07/ Louisiana

More information

The Power Wall. Why Aren t Modern CPUs Faster? What Happened in the Late 1990 s?

The Power Wall. Why Aren t Modern CPUs Faster? What Happened in the Late 1990 s? The Power Wall Why Aren t Modern CPUs Faster? What Happened in the Late 1990 s? Edward L. Bosworth, Ph.D. Associate Professor TSYS School of Computer Science Columbus State University Columbus, Georgia

More information

Benchmark Performance Results for Pervasive PSQL v11. A Pervasive PSQL White Paper September 2010

Benchmark Performance Results for Pervasive PSQL v11. A Pervasive PSQL White Paper September 2010 Benchmark Performance Results for Pervasive PSQL v11 A Pervasive PSQL White Paper September 2010 Table of Contents Executive Summary... 3 Impact Of New Hardware Architecture On Applications... 3 The Design

More information

Fundamentals of Computers Design

Fundamentals of Computers Design Computer Architecture J. Daniel Garcia Computer Architecture Group. Universidad Carlos III de Madrid Last update: September 8, 2014 Computer Architecture ARCOS Group. 1/45 Introduction 1 Introduction 2

More information

Lecture 9: More ILP. Today: limits of ILP, case studies, boosting ILP (Sections )

Lecture 9: More ILP. Today: limits of ILP, case studies, boosting ILP (Sections ) Lecture 9: More ILP Today: limits of ILP, case studies, boosting ILP (Sections 3.8-3.14) 1 ILP Limits The perfect processor: Infinite registers (no WAW or WAR hazards) Perfect branch direction and target

More information

Embedded Systems. 8. Hardware Components. Lothar Thiele. Computer Engineering and Networks Laboratory

Embedded Systems. 8. Hardware Components. Lothar Thiele. Computer Engineering and Networks Laboratory Embedded Systems 8. Hardware Components Lothar Thiele Computer Engineering and Networks Laboratory Do you Remember? 8 2 8 3 High Level Physical View 8 4 High Level Physical View 8 5 Implementation Alternatives

More information

Outline Marquette University

Outline Marquette University COEN-4710 Computer Hardware Lecture 1 Computer Abstractions and Technology (Ch.1) Cristinel Ababei Department of Electrical and Computer Engineering Credits: Slides adapted primarily from presentations

More information

Lec 25: Parallel Processors. Announcements

Lec 25: Parallel Processors. Announcements Lec 25: Parallel Processors Kavita Bala CS 340, Fall 2008 Computer Science Cornell University PA 3 out Hack n Seek Announcements The goal is to have fun with it Recitations today will talk about it Pizza

More information

Multiple Issue ILP Processors. Summary of discussions

Multiple Issue ILP Processors. Summary of discussions Summary of discussions Multiple Issue ILP Processors ILP processors - VLIW/EPIC, Superscalar Superscalar has hardware logic for extracting parallelism - Solutions for stalls etc. must be provided in hardware

More information

Control Hazards. Prediction

Control Hazards. Prediction Control Hazards The nub of the problem: In what pipeline stage does the processor fetch the next instruction? If that instruction is a conditional branch, when does the processor know whether the conditional

More information

Intel Enterprise Processors Technology

Intel Enterprise Processors Technology Enterprise Processors Technology Kosuke Hirano Enterprise Platforms Group March 20, 2002 1 Agenda Architecture in Enterprise Xeon Processor MP Next Generation Itanium Processor Interconnect Technology

More information