Algorithms for LTS regression

Size: px
Start display at page:

Download "Algorithms for LTS regression"

Transcription

1 Algorithms for LTS regression October 26, 2009

2 Outline Robust regression. LTS regression. Adding row algorithm. Branch and bound algorithm (BBA). Preordering BBA. Structured problems Generalized linear model. Seemingly unrelated regressions. Conclusions.

3 Robust regression Ordinary least squares (OLS) Ordinary linear model (OLM): y = Aβ + ε, where y R m, A R m n, β R n and ε R m. Objective function: RSS(β) = n ε 2 i. i=1 OLS estimation is sensitive to outliers.

4 Algorithms for LTS regression Robust regression Outliers outlier influential

5 Algorithms for LTS regression Robust regression Outliers outlier influential

6 Algorithms for LTS regression Robust regression Outliers outlier influential

7 Algorithms for LTS regression Robust regression Outliers outlier influential

8 Algorithms for LTS regression Robust regression Outliers outlier influential

9 Robust regression Robust regression Breakdown point: smallest fraction of contamination that can bias the estimator arbitrarily. OLS: one observation is enough to contaminate the estimator; i.e. breakdown point is 1/n 0. High-breakdown estimators can resist contamination of nearly 50% of the data. Known algorithms: least median of squares (LMS), least trimmed squares (LTS).

10 LTS regression LTS regression Objective function: RSS h (β) = h (ε 2 ) [i], i=1 where the coverage h may lie between m/2 and m. Equivalent to finding the h-subset with optimal LS objective function. Naive algorithm: enumerate all subsets. Number of h-subsets: ( ) m h = m! h!(m h)!. Computational load is prohibitive for m > 30.

11 LTS regression LTS regression Approximate algorithms: PROGRESS (Rousseeuw and Leroy, 1987), FSA (Hawkins, 1994), FAST-LTS (Rousseeuw and Van Driessen, 2006). Exact algorithm: branch and bound (Agulló, 2001).

12 LTS regression Issues In practice, coverage h = 50% is used. But: contamination rarely exceeds 15% 20% of data. High-breakdown seems like overkill: large portions of good data are ignored. Problem: find a good tradeoff between robustness (i.e. discard all bad data ) and efficiency (i.e. include all good data ). Choice of the unknown coverage parameter h?

13 Adding row algorithm Adding row algorithm (ARA) Strong correspondence between row-selection techniques and procedures for computing all-variable-subsets regression. Computes the all-observation-subsets regression for a range of coverage values [h min, h max ]. The organization of the algorithm is determined by the all-subsets tree. A node corresponds to an observation-subset model. The model is represented by the upper-triangular factor of the QR decomposition of (A, y). A Cholesky updating algorithm is employed to move from one node to another.

14 Adding row algorithm Regression tree [], [1234] [1], [234] [2], [34] [3], [4] [4], [] [12], [34] [13], [4] [14], [] [23], [4] [24], [] [34], [] [123], [4] [124], [] [134], [] [234], [] [1234], [] Number of observations: m = 4. Number of nodes: 2 m.

15 Adding row algorithm Cholesky update (R, z) (x T, y)

16 Adding row algorithm Cholesky update Givens rotation: G 1

17 Adding row algorithm Cholesky update Givens rotation: G 2

18 Adding row algorithm Cholesky update Givens rotation: G 3

19 Adding row algorithm Cholesky update Givens rotation: G 4

20 Adding row algorithm Cholesky update Givens rotation: G 5

21 Adding row algorithm Cholesky update The RSS.

22 Adding row algorithm Branch and bound algorithm (BBA) ARA is prohibitive even for a moderate number of observations. Fundamental property: given two subsets of observations S A and S B, RSS(S A ) RSS(S B ) if S A S B, where RSS(S Z ) denotes the residual sum of squares of the LS estimator of the model S Z. In other words: updating the model by one observation increases the RSS. Can be used to restrict the number of evaluated subsets (reduce search space i.e. number of generated nodes).

23 Adding row algorithm Cutting test k S k + 1 k + 2 k + 3 Residual lookup table:... < ρ k < ρ k+1 < ρ k+2 < ρ k+3 <... Cutting test: b S = RSS(S) > ρ k+3, where S is a set of k observations and b S the node bound.

24 Adding row algorithm Observation preordering BBA: computational efficiency rises when more nodes are cut i.e. when bigger subtrees are bounded with bigger values. Strategies: sort observations in decreasing order of 1. absolute LS residuals: estimate the observation-subset model and determine the residuals ˆε + cheap (solve one linear system); approximate bounds; 2. partial increment in RSS: (S,[123]) RSS([S,1])? RSS([S,2])? RSS([S,3])? expensive (m Cholesky updates); + exact bounds.

25 Adding row algorithm Computing the bound (R, z) (x T, y)

26 Adding row algorithm Computing the bound Givens rotation: G 1

27 Adding row algorithm Computing the bound Givens rotation: G 2

28 Adding row algorithm Computing the bound Givens rotation: G 3

29 Adding row algorithm Computing the bound Givens rotation: G 4

30 Adding row algorithm Computing the bound The RSS!

31 Adding row algorithm Computing the bound Benefits: the upper-triangular factor is not modified; half the computational cost; avoids matrix-copy operations.

32 Adding row algorithm Examples Example 1 Dataset: random data matrix X (m = 50,n = 4); fixed coefficients β; y = Xβ + ε. Outliers: construct modified model (X m, y m ) from (X, y) by replacing ten observations with random data. Compute LTS estimates and determine relative efficiencies: RE(h) = σ2 h σls 2, where h = h min,...,h max.

33 Adding row algorithm Examples Relative efficiencies: original model (X, y) re Index

34 Adding row algorithm Examples Relative efficiencies: contaminated model (X m, y m ) rem Index

35 Adding row algorithm Examples Example 2 Dataset: randomly generated according to y = x i,1 + x i, x i,n e i, where e i N(0, 1) is the error term and x i,j N(0, 100) are the explanatory variables. Outliers: replace some of the x i,1 by values that are normally distributed with mean 100 and variance 100.

36 Adding row algorithm Examples Relative efficiencies: original model (X, y) RE h

37 Adding row algorithm Examples Relative efficiencies: contaminated model (X m, y m ) RE h

38 Structured linear models General linear model Generalized least squares (GLS) The general linear model (GLM) is given by y = Xβ + ε, ε (0, σ 2 Ω) where y R m, X R m n, β R n and Ω R m m (m n). Ω is assumed to be of full rank. The BLUE of β minimizes the objective function Xβ y 2 Ω = (Xβ y) T Ω 1 (Xβ y). 1

39 Structured linear models General linear model Generalized linear least squares problem (GLLSP) The GLS is reformulated as ˆβ,û = argmin u subject to y = Xβ + Bu, β,u where B R m p such that Ω = BB T and u (0, σ 2 I m ) (p m n). Ω may be singular. Residual sum of squares (RSS): RSS(ˆβ) = û 2. Computational tool: generalized QR decomposition (GQRD) of X and B.

40 Structured linear models General linear model Solving the GLLSP In a node on level n of the ARA tree: A: S: y X B Compute GQRD and transform GLLSP: A: S: y R T

41 Structured linear models General linear model Updating the GLLSP For each new node: Ã: S: y R T Update GQRD and transform GLLSP: Ã: S: ỹ R T

42 Structured linear models General linear model Updating the GLLSP Reduce the GLLSP: Ã S ỹ R T

43 Structured linear models General linear model Givens sequence Update the GQRD by the use of Givens rotations. k 1 n n p

44 Structured linear models General linear model Givens sequence Update the GQRD by the use of Givens rotations.

45 Structured linear models General linear model Givens sequence Update the GQRD by the use of Givens rotations.

46 Structured linear models General linear model Givens sequence Update the GQRD by the use of Givens rotations.

47 Structured linear models General linear model Givens sequence Update the GQRD by the use of Givens rotations.

48 Structured linear models General linear model Givens sequence Update the GQRD by the use of Givens rotations.

49 Structured linear models General linear model Givens sequence Update the GQRD by the use of Givens rotations. n p 1 n k

50 Structured linear models Seemingly unrelated regressions Seemingly unrelated regressions (SUR) G regressions: y (i) = X (i) β (i) + ε (i), i = 1,..., G, where y (i) R m, X (i) R m n i (m n i ), β (i) R n i, ε (i) R m and E(ε (i) k ) = 0. Contemporaneous disturbances are correlated: Var(ε (i) t, ε (j) t ) = σ ij and Var(ε (i) s, ε (j) t ) = 0 if s t. Compact form: vec(y ) = G X (i) vec({β (i) } G ) + vec(e), i=1 where Y = ˆy (1) y (G) R m G, E = ˆε (1) ε (G) R m G, vec(e) (0, Σ I m) and Σ = ˆσ ij R G G.

51 Structured linear models Seemingly unrelated regressions GLLSP of the SUR model SUR-GLLSP: {ˆβ (i) } G, Û = argmin {β (i) } G,U U F subject to ( ) G vec(y ) = X (i) vec({β (i) } G ) + K vec(u), i=1 where E = UC T, C R G G is upper triangular such that CC T = Σ, K = C I m, vec(u) (0, σ 2 I M ) and M = Gm. Objective function: RSS({ˆβ (i) } G ) = Û F.

52 Structured linear models Seemingly unrelated regressions Solving the SUR-GLLSP On level n G of the subsets tree: vec(y) X (i) K Orthogonal transformation Q T from the left:

53 Structured linear models Seemingly unrelated regressions Solving the SUR-GLLSP Permute rows and columns: Orthogonal transformation P T from the right:

54 Structured linear models Seemingly unrelated regressions Solving the SUR-GLLSP Reduce SUR-GLLSP: vec({z (i) }) R (i) T 11

55 Structured linear models Seemingly unrelated regressions Updating the SUR-GLLSP For each new new node: vec({z (i) }) R (i) T 11 C Apply orthogonal tramsformation Q T from the left:

56 Structured linear models Seemingly unrelated regressions Updating the SUR-GLLSP Apply orthogonal transformation P T from the right: Reduce SUR-GLLSP: vec({ z (i) }) R (i) T 11

57 Conclusions Conclusions Efficient method to compute exact LTS estimates for a coverage range. Allows to assess the quality (i.e. degree of contamination) of the data; to identify outliers; to choose the best (e.g. the most efficient) estimate. Algorithm can be applied to other, structured linear models: black box. R package.

Lecture 13: Model selection and regularization

Lecture 13: Model selection and regularization Lecture 13: Model selection and regularization Reading: Sections 6.1-6.2.1 STATS 202: Data mining and analysis October 23, 2017 1 / 17 What do we know so far In linear regression, adding predictors always

More information

Chapter 9 Robust Regression Examples

Chapter 9 Robust Regression Examples Chapter 9 Robust Regression Examples Chapter Table of Contents OVERVIEW...177 FlowChartforLMS,LTS,andMVE...179 EXAMPLES USING LMS AND LTS REGRESSION...180 Example 9.1 LMS and LTS with Substantial Leverage

More information

Robust Regression. Robust Data Mining Techniques By Boonyakorn Jantaranuson

Robust Regression. Robust Data Mining Techniques By Boonyakorn Jantaranuson Robust Regression Robust Data Mining Techniques By Boonyakorn Jantaranuson Outline Introduction OLS and important terminology Least Median of Squares (LMedS) M-estimator Penalized least squares What is

More information

A MODIFIED FORWARD SEARCH APPROACH APPLIED TO TIME SERIES ANALYSIS

A MODIFIED FORWARD SEARCH APPROACH APPLIED TO TIME SERIES ANALYSIS A MODIFIED FORWARD SEARCH APPROACH APPLIED TO TIME SERIES ANALYSIS M. Pesenti a, M. Piras a a Politecnico di Torino, DITAG, Land, 1019 Turin, Italy - (manuele.pesenti, marco.piras)@polito.it KEY WORDS:

More information

Divide and Conquer Kernel Ridge Regression

Divide and Conquer Kernel Ridge Regression Divide and Conquer Kernel Ridge Regression Yuchen Zhang John Duchi Martin Wainwright University of California, Berkeley COLT 2013 Yuchen Zhang (UC Berkeley) Divide and Conquer KRR COLT 2013 1 / 15 Problem

More information

mcssubset: Efficient Computation of Best Subset Linear Regressions in R

mcssubset: Efficient Computation of Best Subset Linear Regressions in R mcssubset: Efficient Computation of Best Subset Linear Regressions in R Marc Hofmann Université de Neuchâtel Cristian Gatu Université de Neuchâtel Erricos J. Kontoghiorghes Birbeck College Achim Zeileis

More information

Linear Methods for Regression and Shrinkage Methods

Linear Methods for Regression and Shrinkage Methods Linear Methods for Regression and Shrinkage Methods Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer 1 Linear Regression Models Least Squares Input vectors

More information

2014 Stat-Ease, Inc. All Rights Reserved.

2014 Stat-Ease, Inc. All Rights Reserved. What s New in Design-Expert version 9 Factorial split plots (Two-Level, Multilevel, Optimal) Definitive Screening and Single Factor designs Journal Feature Design layout Graph Columns Design Evaluation

More information

Branch-and-Bound Algorithms for Computing the Best-Subset Regression Models

Branch-and-Bound Algorithms for Computing the Best-Subset Regression Models Branch-and-Bound Algorithms for Computing the Best-Subset Regression Models Cristian GATU and Erricos John KONTOGHIORGHES An efficient branch-and-bound algorithm for computing the best-subset regression

More information

Example 1 of panel data : Data for 6 airlines (groups) over 15 years (time periods) Example 1

Example 1 of panel data : Data for 6 airlines (groups) over 15 years (time periods) Example 1 Panel data set Consists of n entities or subjects (e.g., firms and states), each of which includes T observations measured at 1 through t time period. total number of observations : nt Panel data have

More information

Regression Analysis and Linear Regression Models

Regression Analysis and Linear Regression Models Regression Analysis and Linear Regression Models University of Trento - FBK 2 March, 2015 (UNITN-FBK) Regression Analysis and Linear Regression Models 2 March, 2015 1 / 33 Relationship between numerical

More information

Robust Linear Regression (Passing- Bablok Median-Slope)

Robust Linear Regression (Passing- Bablok Median-Slope) Chapter 314 Robust Linear Regression (Passing- Bablok Median-Slope) Introduction This procedure performs robust linear regression estimation using the Passing-Bablok (1988) median-slope algorithm. Their

More information

A Robust Optimum Response Surface Methodology based On MM-estimator

A Robust Optimum Response Surface Methodology based On MM-estimator A Robust Optimum Response Surface Methodology based On MM-estimator, 2 HABSHAH MIDI,, 2 MOHD SHAFIE MUSTAFA,, 2 ANWAR FITRIANTO Department of Mathematics, Faculty Science, University Putra Malaysia, 434,

More information

Practical Least-Squares for Computer Graphics

Practical Least-Squares for Computer Graphics Outline Least Squares with Generalized Errors Robust Least Squares Constrained Least Squares Practical Least-Squares for Computer Graphics Outline Least Squares with Generalized Errors Robust Least Squares

More information

Regression on SAT Scores of 374 High Schools and K-means on Clustering Schools

Regression on SAT Scores of 374 High Schools and K-means on Clustering Schools Regression on SAT Scores of 374 High Schools and K-means on Clustering Schools Abstract In this project, we study 374 public high schools in New York City. The project seeks to use regression techniques

More information

A Performance Comparison of Piecewise Linear Estimation Methods

A Performance Comparison of Piecewise Linear Estimation Methods A Performance Comparison of Piecewise Linear Estimation Methods Manjula A. Iyer, Morgan M. Harris, and Layne T. Watson Departments of Computer Science and Mathematics Virginia Polytechnic Institute and

More information

Clustering. Robert M. Haralick. Computer Science, Graduate Center City University of New York

Clustering. Robert M. Haralick. Computer Science, Graduate Center City University of New York Clustering Robert M. Haralick Computer Science, Graduate Center City University of New York Outline K-means 1 K-means 2 3 4 5 Clustering K-means The purpose of clustering is to determine the similarity

More information

A Practical Approximation Algorithm for the LTS Estimator

A Practical Approximation Algorithm for the LTS Estimator A Practical Approximation Algorithm for the LTS Estimator David M. Mount a,1,, Nathan S. Netanyahu b,c, Christine D. Piatko d, Angela Y. Wu e, Ruth Silverman c a Department of Computer Science, University

More information

This is called a linear basis expansion, and h m is the mth basis function For example if X is one-dimensional: f (X) = β 0 + β 1 X + β 2 X 2, or

This is called a linear basis expansion, and h m is the mth basis function For example if X is one-dimensional: f (X) = β 0 + β 1 X + β 2 X 2, or STA 450/4000 S: February 2 2005 Flexible modelling using basis expansions (Chapter 5) Linear regression: y = Xβ + ɛ, ɛ (0, σ 2 ) Smooth regression: y = f (X) + ɛ: f (X) = E(Y X) to be specified Flexible

More information

ES-2 Lecture: Fitting models to data

ES-2 Lecture: Fitting models to data ES-2 Lecture: Fitting models to data Outline Motivation: why fit models to data? Special case (exact solution): # unknowns in model =# datapoints Typical case (approximate solution): # unknowns in model

More information

Bayes Estimators & Ridge Regression

Bayes Estimators & Ridge Regression Bayes Estimators & Ridge Regression Readings ISLR 6 STA 521 Duke University Merlise Clyde October 27, 2017 Model Assume that we have centered (as before) and rescaled X o (original X) so that X j = X o

More information

Chapter 10: Variable Selection. November 12, 2018

Chapter 10: Variable Selection. November 12, 2018 Chapter 10: Variable Selection November 12, 2018 1 Introduction 1.1 The Model-Building Problem The variable selection problem is to find an appropriate subset of regressors. It involves two conflicting

More information

Resources for statistical assistance. Quantitative covariates and regression analysis. Methods for predicting continuous outcomes.

Resources for statistical assistance. Quantitative covariates and regression analysis. Methods for predicting continuous outcomes. Resources for statistical assistance Quantitative covariates and regression analysis Carolyn Taylor Applied Statistics and Data Science Group (ASDa) Department of Statistics, UBC January 24, 2017 Department

More information

Lecture 7: Linear Regression (continued)

Lecture 7: Linear Regression (continued) Lecture 7: Linear Regression (continued) Reading: Chapter 3 STATS 2: Data mining and analysis Jonathan Taylor, 10/8 Slide credits: Sergio Bacallado 1 / 14 Potential issues in linear regression 1. Interactions

More information

Lecture 20: Outliers and Influential Points

Lecture 20: Outliers and Influential Points Lecture 20: Outliers and Influential Points An outlier is a point with a large residual. An influential point is a point that has a large impact on the regression. Surprisingly, these are not the same

More information

Frequencies, Unequal Variance Weights, and Sampling Weights: Similarities and Differences in SAS

Frequencies, Unequal Variance Weights, and Sampling Weights: Similarities and Differences in SAS ABSTRACT Paper 1938-2018 Frequencies, Unequal Variance Weights, and Sampling Weights: Similarities and Differences in SAS Robert M. Lucas, Robert M. Lucas Consulting, Fort Collins, CO, USA There is confusion

More information

Multicollinearity and Validation CIVL 7012/8012

Multicollinearity and Validation CIVL 7012/8012 Multicollinearity and Validation CIVL 7012/8012 2 In Today s Class Recap Multicollinearity Model Validation MULTICOLLINEARITY 1. Perfect Multicollinearity 2. Consequences of Perfect Multicollinearity 3.

More information

Recent advances in Metamodel of Optimal Prognosis. Lectures. Thomas Most & Johannes Will

Recent advances in Metamodel of Optimal Prognosis. Lectures. Thomas Most & Johannes Will Lectures Recent advances in Metamodel of Optimal Prognosis Thomas Most & Johannes Will presented at the Weimar Optimization and Stochastic Days 2010 Source: www.dynardo.de/en/library Recent advances in

More information

Variable selection is intended to select the best subset of predictors. But why bother?

Variable selection is intended to select the best subset of predictors. But why bother? Chapter 10 Variable Selection Variable selection is intended to select the best subset of predictors. But why bother? 1. We want to explain the data in the simplest way redundant predictors should be removed.

More information

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University DS 4400 Machine Learning and Data Mining I Alina Oprea Associate Professor, CCIS Northeastern University September 20 2018 Review Solution for multiple linear regression can be computed in closed form

More information

Lasso. November 14, 2017

Lasso. November 14, 2017 Lasso November 14, 2017 Contents 1 Case Study: Least Absolute Shrinkage and Selection Operator (LASSO) 1 1.1 The Lasso Estimator.................................... 1 1.2 Computation of the Lasso Solution............................

More information

Two algorithms for large-scale L1-type estimation in regression

Two algorithms for large-scale L1-type estimation in regression Two algorithms for large-scale L1-type estimation in regression Song Cai The University of British Columbia June 3, 2012 Song Cai (UBC) Two algorithms for large-scale L1-type regression June 3, 2012 1

More information

D-Optimal Designs. Chapter 888. Introduction. D-Optimal Design Overview

D-Optimal Designs. Chapter 888. Introduction. D-Optimal Design Overview Chapter 888 Introduction This procedure generates D-optimal designs for multi-factor experiments with both quantitative and qualitative factors. The factors can have a mixed number of levels. For example,

More information

Regularization and model selection

Regularization and model selection CS229 Lecture notes Andrew Ng Part VI Regularization and model selection Suppose we are trying select among several different models for a learning problem. For instance, we might be using a polynomial

More information

Supplementary text S6 Comparison studies on simulated data

Supplementary text S6 Comparison studies on simulated data Supplementary text S Comparison studies on simulated data Peter Langfelder, Rui Luo, Michael C. Oldham, and Steve Horvath Corresponding author: shorvath@mednet.ucla.edu Overview In this document we illustrate

More information

Using Machine Learning to Optimize Storage Systems

Using Machine Learning to Optimize Storage Systems Using Machine Learning to Optimize Storage Systems Dr. Kiran Gunnam 1 Outline 1. Overview 2. Building Flash Models using Logistic Regression. 3. Storage Object classification 4. Storage Allocation recommendation

More information

Bivariate Linear Regression James M. Murray, Ph.D. University of Wisconsin - La Crosse Updated: October 04, 2017

Bivariate Linear Regression James M. Murray, Ph.D. University of Wisconsin - La Crosse Updated: October 04, 2017 Bivariate Linear Regression James M. Murray, Ph.D. University of Wisconsin - La Crosse Updated: October 4, 217 PDF file location: http://www.murraylax.org/rtutorials/regression_intro.pdf HTML file location:

More information

Splines and penalized regression

Splines and penalized regression Splines and penalized regression November 23 Introduction We are discussing ways to estimate the regression function f, where E(y x) = f(x) One approach is of course to assume that f has a certain shape,

More information

Parameter Estimation with MOCK algorithm

Parameter Estimation with MOCK algorithm Parameter Estimation with MOCK algorithm Bowen Deng (bdeng2) November 28, 2015 1 Introduction Wine quality has been considered a difficult task that only few human expert could evaluate. However, it is

More information

Matrix algorithms: fast, stable, communication-optimizing random?!

Matrix algorithms: fast, stable, communication-optimizing random?! Matrix algorithms: fast, stable, communication-optimizing random?! Ioana Dumitriu Department of Mathematics University of Washington (Seattle) Joint work with Grey Ballard, James Demmel, Olga Holtz, Robert

More information

Lecture 26: Missing data

Lecture 26: Missing data Lecture 26: Missing data Reading: ESL 9.6 STATS 202: Data mining and analysis December 1, 2017 1 / 10 Missing data is everywhere Survey data: nonresponse. 2 / 10 Missing data is everywhere Survey data:

More information

Fitting. Fitting. Slides S. Lazebnik Harris Corners Pkwy, Charlotte, NC

Fitting. Fitting. Slides S. Lazebnik Harris Corners Pkwy, Charlotte, NC Fitting We ve learned how to detect edges, corners, blobs. Now what? We would like to form a higher-level, more compact representation of the features in the image by grouping multiple features according

More information

ROBUST FACE RECOGNITION USING TRIMMED LINEAR REGRESSION. Jian Lai and Xudong Jiang

ROBUST FACE RECOGNITION USING TRIMMED LINEAR REGRESSION. Jian Lai and Xudong Jiang ROBUST FACE RECOGNITION USING TRIMMED LINEAR REGRESSION Jian Lai and Xudong Jiang School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 {jlai1, exdjiang}@ntu.edu.sg

More information

Module 25.1: nag lin reg Regression Analysis. Contents

Module 25.1: nag lin reg Regression Analysis. Contents Correlation and Regression Analysis Module Contents Module 25.1: nag lin reg Regression Analysis nag lin reg contains procedures that perform a simple or multiple linear regression analysis. Contents Introduction...

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Rebecca C. Steorts, Duke University STA 325, Chapter 3 ISL 1 / 49 Agenda How to extend beyond a SLR Multiple Linear Regression (MLR) Relationship Between the Response and Predictors

More information

Model Fitting, RANSAC. Jana Kosecka

Model Fitting, RANSAC. Jana Kosecka Model Fitting, RANSAC Jana Kosecka Fitting: Overview If we know which points belong to the line, how do we find the optimal line parameters? Least squares What if there are outliers? Robust fitting, RANSAC

More information

Outline. Topic 16 - Other Remedies. Ridge Regression. Ridge Regression. Ridge Regression. Robust Regression. Regression Trees. Piecewise Linear Model

Outline. Topic 16 - Other Remedies. Ridge Regression. Ridge Regression. Ridge Regression. Robust Regression. Regression Trees. Piecewise Linear Model Topic 16 - Other Remedies Ridge Regression Robust Regression Regression Trees Outline - Fall 2013 Piecewise Linear Model Bootstrapping Topic 16 2 Ridge Regression Modification of least squares that addresses

More information

Statistical Matching using Fractional Imputation

Statistical Matching using Fractional Imputation Statistical Matching using Fractional Imputation Jae-Kwang Kim 1 Iowa State University 1 Joint work with Emily Berg and Taesung Park 1 Introduction 2 Classical Approaches 3 Proposed method 4 Application:

More information

Dense Image-based Motion Estimation Algorithms & Optical Flow

Dense Image-based Motion Estimation Algorithms & Optical Flow Dense mage-based Motion Estimation Algorithms & Optical Flow Video A video is a sequence of frames captured at different times The video data is a function of v time (t) v space (x,y) ntroduction to motion

More information

CALCULATING RANKS, NULL SPACES AND PSEUDOINVERSE SOLUTIONS FOR SPARSE MATRICES USING SPQR

CALCULATING RANKS, NULL SPACES AND PSEUDOINVERSE SOLUTIONS FOR SPARSE MATRICES USING SPQR CALCULATING RANKS, NULL SPACES AND PSEUDOINVERSE SOLUTIONS FOR SPARSE MATRICES USING SPQR Leslie Foster Department of Mathematics, San Jose State University October 28, 2009, SIAM LA 09 DEPARTMENT OF MATHEMATICS,

More information

EE613 Machine Learning for Engineers LINEAR REGRESSION. Sylvain Calinon Robot Learning & Interaction Group Idiap Research Institute Nov.

EE613 Machine Learning for Engineers LINEAR REGRESSION. Sylvain Calinon Robot Learning & Interaction Group Idiap Research Institute Nov. EE613 Machine Learning for Engineers LINEAR REGRESSION Sylvain Calinon Robot Learning & Interaction Group Idiap Research Institute Nov. 4, 2015 1 Outline Multivariate ordinary least squares Singular value

More information

A Two Stage Zone Regression Method for Global Characterization of a Project Database

A Two Stage Zone Regression Method for Global Characterization of a Project Database A Two Stage Zone Regression Method for Global Characterization 1 Chapter I A Two Stage Zone Regression Method for Global Characterization of a Project Database J. J. Dolado, University of the Basque Country,

More information

Machine Learning Techniques for Data Mining

Machine Learning Techniques for Data Mining Machine Learning Techniques for Data Mining Eibe Frank University of Waikato New Zealand 10/25/2000 1 PART VII Moving on: Engineering the input and output 10/25/2000 2 Applying a learner is not all Already

More information

Applied Statistics and Econometrics Lecture 6

Applied Statistics and Econometrics Lecture 6 Applied Statistics and Econometrics Lecture 6 Giuseppe Ragusa Luiss University gragusa@luiss.it http://gragusa.org/ March 6, 2017 Luiss University Empirical application. Data Italian Labour Force Survey,

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Features and Feature Selection Hamid R. Rabiee Jafar Muhammadi Spring 2012 http://ce.sharif.edu/courses/90-91/2/ce725-1/ Agenda Features and Patterns The Curse of Size and

More information

ELEG Compressive Sensing and Sparse Signal Representations

ELEG Compressive Sensing and Sparse Signal Representations ELEG 867 - Compressive Sensing and Sparse Signal Representations Gonzalo R. Arce Depart. of Electrical and Computer Engineering University of Delaware Fall 211 Compressive Sensing G. Arce Fall, 211 1 /

More information

Convex Optimization / Homework 2, due Oct 3

Convex Optimization / Homework 2, due Oct 3 Convex Optimization 0-725/36-725 Homework 2, due Oct 3 Instructions: You must complete Problems 3 and either Problem 4 or Problem 5 (your choice between the two) When you submit the homework, upload a

More information

Chapter 2 Basic Structure of High-Dimensional Spaces

Chapter 2 Basic Structure of High-Dimensional Spaces Chapter 2 Basic Structure of High-Dimensional Spaces Data is naturally represented geometrically by associating each record with a point in the space spanned by the attributes. This idea, although simple,

More information

Slides for Data Mining by I. H. Witten and E. Frank

Slides for Data Mining by I. H. Witten and E. Frank Slides for Data Mining by I. H. Witten and E. Frank 7 Engineering the input and output Attribute selection Scheme-independent, scheme-specific Attribute discretization Unsupervised, supervised, error-

More information

3D Motion from Image Derivatives Using the Least Trimmed Square Regression

3D Motion from Image Derivatives Using the Least Trimmed Square Regression 3D Motion from Image Derivatives Using the Least Trimmed Square Regression Fadi Dornaika and Angel D. Sappa Computer Vision Center Edifici O, Campus UAB 08193 Bellaterra, Barcelona, Spain {dornaika, sappa}@cvc.uab.es

More information

1 Training/Validation/Testing

1 Training/Validation/Testing CPSC 340 Final (Fall 2015) Name: Student Number: Please enter your information above, turn off cellphones, space yourselves out throughout the room, and wait until the official start of the exam to begin.

More information

Chapter 7: Numerical Prediction

Chapter 7: Numerical Prediction Ludwig-Maximilians-Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Knowledge Discovery in Databases SS 2016 Chapter 7: Numerical Prediction Lecture: Prof. Dr.

More information

Jeff Howbert Introduction to Machine Learning Winter

Jeff Howbert Introduction to Machine Learning Winter Collaborative Filtering Nearest es Neighbor Approach Jeff Howbert Introduction to Machine Learning Winter 2012 1 Bad news Netflix Prize data no longer available to public. Just after contest t ended d

More information

Robust Kernel Methods in Clustering and Dimensionality Reduction Problems

Robust Kernel Methods in Clustering and Dimensionality Reduction Problems Robust Kernel Methods in Clustering and Dimensionality Reduction Problems Jian Guo, Debadyuti Roy, Jing Wang University of Michigan, Department of Statistics Introduction In this report we propose robust

More information

Outline. Multivariate analysis: Least-squares linear regression Curve fitting

Outline. Multivariate analysis: Least-squares linear regression Curve fitting DATA ANALYSIS Outline Multivariate analysis: principal component analysis (PCA) visualization of high-dimensional data clustering Least-squares linear regression Curve fitting e.g. for time-course data

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribes: Jeremy Pollock and Neil Alldrin LECTURE 14 Robust Feature Matching 14.1. Introduction Last lecture we learned how to find interest points

More information

International Journal of Industrial Engineering Computations

International Journal of Industrial Engineering Computations International Journal of Industrial Engineering Computations 2 (211) 81 862 Contents lists available at GrowingScience International Journal of Industrial Engineering Computations homepage: www.growingscience.com/ijiec

More information

Elemental Set Methods. David Banks Duke University

Elemental Set Methods. David Banks Duke University Elemental Set Methods David Banks Duke University 1 1. Introduction Data mining deals with complex, high-dimensional data. This means that datasets often combine different kinds of structure. For example:

More information

The Use of Biplot Analysis and Euclidean Distance with Procrustes Measure for Outliers Detection

The Use of Biplot Analysis and Euclidean Distance with Procrustes Measure for Outliers Detection Volume-8, Issue-1 February 2018 International Journal of Engineering and Management Research Page Number: 194-200 The Use of Biplot Analysis and Euclidean Distance with Procrustes Measure for Outliers

More information

Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Knowledge Discovery and Data Mining Basis Functions Tom Kelsey School of Computer Science University of St Andrews http://www.cs.st-andrews.ac.uk/~tom/ tom@cs.st-andrews.ac.uk Tom Kelsey ID5059-02-BF 2015-02-04

More information

nag regsn mult linear add var (g02dec)

nag regsn mult linear add var (g02dec) g02 Regression Analysis g02dec nag regsn mult linear add var (g02dec) 1. Purpose nag regsn mult linear add var (g02dec) adds a new independent variable to a general linear regression model. 2. Specification

More information

Two-Stage Least Squares

Two-Stage Least Squares Chapter 316 Two-Stage Least Squares Introduction This procedure calculates the two-stage least squares (2SLS) estimate. This method is used fit models that include instrumental variables. 2SLS includes

More information

CS 664 Image Matching and Robust Fitting. Daniel Huttenlocher

CS 664 Image Matching and Robust Fitting. Daniel Huttenlocher CS 664 Image Matching and Robust Fitting Daniel Huttenlocher Matching and Fitting Recognition and matching are closely related to fitting problems Parametric fitting can serve as more restricted domain

More information

Robust PARAFAC for incomplete data

Robust PARAFAC for incomplete data Robust PARAFAC for incomplete data Mia Hubert, Johan Van Kerckhoven, Tim Verdonck April 12, 2012 KU Leuven, Department of Mathematics - LStat, Celestijnenlaan 200B, BE-3001 Heverlee, Belgium KU Leuven,

More information

Clustering Reduced Order Models for Computational Fluid Dynamics

Clustering Reduced Order Models for Computational Fluid Dynamics Clustering Reduced Order Models for Computational Fluid Dynamics Gabriele Boncoraglio, Forest Fraser Abstract We introduce a novel approach to solving PDE-constrained optimization problems, specifically

More information

Diffusion Wavelets for Natural Image Analysis

Diffusion Wavelets for Natural Image Analysis Diffusion Wavelets for Natural Image Analysis Tyrus Berry December 16, 2011 Contents 1 Project Description 2 2 Introduction to Diffusion Wavelets 2 2.1 Diffusion Multiresolution............................

More information

Linear Penalized Spline Model Estimation Using Ranked Set Sampling Technique

Linear Penalized Spline Model Estimation Using Ranked Set Sampling Technique Linear Penalized Spline Model Estimation Using Ranked Set Sampling Technique Al Kadiri M. A. Abstract Benefits of using Ranked Set Sampling (RSS) rather than Simple Random Sampling (SRS) are indeed significant

More information

Standard Errors in OLS Luke Sonnet

Standard Errors in OLS Luke Sonnet Standard Errors in OLS Luke Sonnet Contents Variance-Covariance of ˆβ 1 Standard Estimation (Spherical Errors) 2 Robust Estimation (Heteroskedasticity Constistent Errors) 4 Cluster Robust Estimation 7

More information

Lecture 9 Fitting and Matching

Lecture 9 Fitting and Matching Lecture 9 Fitting and Matching Problem formulation Least square methods RANSAC Hough transforms Multi- model fitting Fitting helps matching! Reading: [HZ] Chapter: 4 Estimation 2D projective transformation

More information

Robust Optic Flow Computation

Robust Optic Flow Computation International Journal of Computer Vision 29(1), 59 77 (1998) c 1998 Kluwer Academic Publishers. Manufactured in The Netherlands. Robust Optic Flow Computation ALIREZA BAB-HADIASHAR AND DAVID SUTER Intelligent

More information

Lecture 16: High-dimensional regression, non-linear regression

Lecture 16: High-dimensional regression, non-linear regression Lecture 16: High-dimensional regression, non-linear regression Reading: Sections 6.4, 7.1 STATS 202: Data mining and analysis November 3, 2017 1 / 17 High-dimensional regression Most of the methods we

More information

ARTICLE IN PRESS Computer-Aided Design ( )

ARTICLE IN PRESS Computer-Aided Design ( ) Computer-Aided Design ( ) Contents lists available at ScienceDirect Computer-Aided Design journal homepage: www.elsevier.com/locate/cad Robust principal axes determination for point-based shapes using

More information

Lecture on Modeling Tools for Clustering & Regression

Lecture on Modeling Tools for Clustering & Regression Lecture on Modeling Tools for Clustering & Regression CS 590.21 Analysis and Modeling of Brain Networks Department of Computer Science University of Crete Data Clustering Overview Organizing data into

More information

Performance Estimation and Regularization. Kasthuri Kannan, PhD. Machine Learning, Spring 2018

Performance Estimation and Regularization. Kasthuri Kannan, PhD. Machine Learning, Spring 2018 Performance Estimation and Regularization Kasthuri Kannan, PhD. Machine Learning, Spring 2018 Bias- Variance Tradeoff Fundamental to machine learning approaches Bias- Variance Tradeoff Error due to Bias:

More information

On Computing the Centroid of the Vertices of an Arrangement and Related Problems

On Computing the Centroid of the Vertices of an Arrangement and Related Problems On Computing the Centroid of the Vertices of an Arrangement and Related Problems Deepak Ajwani, Saurabh Ray, Raimund Seidel, and Hans Raj Tiwary Max-Planck-Institut für Informatik, Saarbrücken, Germany

More information

P-spline ANOVA-type interaction models for spatio-temporal smoothing

P-spline ANOVA-type interaction models for spatio-temporal smoothing P-spline ANOVA-type interaction models for spatio-temporal smoothing Dae-Jin Lee and María Durbán Universidad Carlos III de Madrid Department of Statistics IWSM Utrecht 2008 D.-J. Lee and M. Durban (UC3M)

More information

Principal Component Analysis for Distributed Data

Principal Component Analysis for Distributed Data Principal Component Analysis for Distributed Data David Woodruff IBM Almaden Based on works with Ken Clarkson, Ravi Kannan, and Santosh Vempala Outline 1. What is low rank approximation? 2. How do we solve

More information

SYS 6021 Linear Statistical Models

SYS 6021 Linear Statistical Models SYS 6021 Linear Statistical Models Project 2 Spam Filters Jinghe Zhang Summary The spambase data and time indexed counts of spams and hams are studied to develop accurate spam filters. Static models are

More information

Section 2.2: Covariance, Correlation, and Least Squares

Section 2.2: Covariance, Correlation, and Least Squares Section 2.2: Covariance, Correlation, and Least Squares Jared S. Murray The University of Texas at Austin McCombs School of Business Suggested reading: OpenIntro Statistics, Chapter 7.1, 7.2 1 A Deeper

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 13: The bootstrap (v3) Ramesh Johari ramesh.johari@stanford.edu 1 / 30 Resampling 2 / 30 Sampling distribution of a statistic For this lecture: There is a population model

More information

The problem we have now is called variable selection or perhaps model selection. There are several objectives.

The problem we have now is called variable selection or perhaps model selection. There are several objectives. STAT-UB.0103 NOTES for Wednesday 01.APR.04 One of the clues on the library data comes through the VIF values. These VIFs tell you to what extent a predictor is linearly dependent on other predictors. We

More information

Incorporating Geospatial Data in House Price Indexes: A Hedonic Imputation Approach with Splines. Robert J. Hill and Michael Scholz

Incorporating Geospatial Data in House Price Indexes: A Hedonic Imputation Approach with Splines. Robert J. Hill and Michael Scholz Incorporating Geospatial Data in House Price Indexes: A Hedonic Imputation Approach with Splines Robert J. Hill and Michael Scholz Department of Economics University of Graz, Austria OeNB Workshop Vienna,

More information

Mapping of Hierarchical Activation in the Visual Cortex Suman Chakravartula, Denise Jones, Guillaume Leseur CS229 Final Project Report. Autumn 2008.

Mapping of Hierarchical Activation in the Visual Cortex Suman Chakravartula, Denise Jones, Guillaume Leseur CS229 Final Project Report. Autumn 2008. Mapping of Hierarchical Activation in the Visual Cortex Suman Chakravartula, Denise Jones, Guillaume Leseur CS229 Final Project Report. Autumn 2008. Introduction There is much that is unknown regarding

More information

Multiresponse Sparse Regression with Application to Multidimensional Scaling

Multiresponse Sparse Regression with Application to Multidimensional Scaling Multiresponse Sparse Regression with Application to Multidimensional Scaling Timo Similä and Jarkko Tikka Helsinki University of Technology, Laboratory of Computer and Information Science P.O. Box 54,

More information

ICRA 2016 Tutorial on SLAM. Graph-Based SLAM and Sparsity. Cyrill Stachniss

ICRA 2016 Tutorial on SLAM. Graph-Based SLAM and Sparsity. Cyrill Stachniss ICRA 2016 Tutorial on SLAM Graph-Based SLAM and Sparsity Cyrill Stachniss 1 Graph-Based SLAM?? 2 Graph-Based SLAM?? SLAM = simultaneous localization and mapping 3 Graph-Based SLAM?? SLAM = simultaneous

More information

Using Existing Numerical Libraries on Spark

Using Existing Numerical Libraries on Spark Using Existing Numerical Libraries on Spark Brian Spector Chicago Spark Users Meetup June 24 th, 2015 Experts in numerical algorithms and HPC services How to use existing libraries on Spark Call algorithm

More information

10701 Machine Learning. Clustering

10701 Machine Learning. Clustering 171 Machine Learning Clustering What is Clustering? Organizing data into clusters such that there is high intra-cluster similarity low inter-cluster similarity Informally, finding natural groupings among

More information

On Choosing the Right Coordinate Transformation Method

On Choosing the Right Coordinate Transformation Method On Choosing the Right Coordinate Transformation Method Yaron A. Felus 1 and Moshe Felus 1 The Survey of Israel, Tel-Aviv Surveying Engineering Department, MI Halperin Felus Surveying and Photogrammetry

More information

Supplementary Material : Partial Sum Minimization of Singular Values in RPCA for Low-Level Vision

Supplementary Material : Partial Sum Minimization of Singular Values in RPCA for Low-Level Vision Supplementary Material : Partial Sum Minimization of Singular Values in RPCA for Low-Level Vision Due to space limitation in the main paper, we present additional experimental results in this supplementary

More information

5. Direct Methods for Solving Systems of Linear Equations. They are all over the place... and may have special needs

5. Direct Methods for Solving Systems of Linear Equations. They are all over the place... and may have special needs 5. Direct Methods for Solving Systems of Linear Equations They are all over the place... and may have special needs They are all over the place... and may have special needs, December 13, 2012 1 5.3. Cholesky

More information