Numbers. Definition :Heading 4...1

Size: px
Start display at page:

Download "Numbers. Definition :Heading 4...1"

Transcription

1 Numbers Table of Contents Definition :Heading NUMBERS We are all familiar with numbers, from an early age. We develop an intuitive grasp of counting, adding, multiplying and so on. Here we show how they can be based on some logical foundation. All we have are sets (and relations, and functions, which are both types of set) so we want a set-theoretic basis. For example, 1+1 = 2 Does it? What exactly are 1, +, = and 2, in terms of sets? Similarly, JavaScript already can handle numbers. But can we construct our own numbers in code, just starting from sets? THE NATURAL NUMBERS AND PEANO The natural numbers are the set 0,1,2,3,4... Some people miss out 0. They are natural numbers in the sense that they are used to count things. This set is usually called N. Note the difference between a number and its name. Three, 3, trois in French, III in Roman numerals, 11 base 2 are all ways of writing the same number. The most common way of providing a logical foundation is a set of axioms first set out by Giuseppe Peano (Italian, ): 1. There is a set named N which contains an element, named 0 It is tempting to say something we are trying to define. N contains at least one element. But we cannot, since 'one' is 2. There is a function succ (the successor function) with domain and co-domain N 3. succ is one-to-one 4. For all n N succ(n) = N. For every n N, succ(n) is also an element of successor of any natural number. 0 is false. In other words, 0 is not the

2 This asserts, as axioms, that N exists, that 0 is an element, and that succ is a function. Informally it says there is 0, and the number that follows that, and the numberthat follow sthat, and so on. Peano gives characteristics of this set N, without actually sayingwhat the elements of N are. But what exactly is 0, and what is the succ function? If we do not know what it is, how could we code it? One version is due to John von Neumann (American, ), as follows: 0 is the null set Φ succ(n) = n n That is it. so the successor of a number is a new set. It contains all the elements in the set which is the number, n, together with a new elements, which is n. ( Note the difference between a set A and the set A. A might contain any number of elements, but A contains just one - the set A ) We use the notation rather than 0, 1, 2, 3. This is because are already associated with many properties which do not have formal definitions, and we want to start with only properties which are stated explicitly. So 0 = 1 = 0 2 = 0, 1 3 = 0, 1, 2 and so on. This is convenient, since it means n is a set with n elements. But that does not mean that 5, say, is a set with 5 elements, since that would be a circular definition. It is also vague, since we have not yet defined what we mean by 'counting' - but we will later. This is not the only way to do this. Zermelo initially suggested: 0 = 1 = 0 = 2 = 1 = 3 = 2 =

3 In this representation, each n is a set with just one element - n-1. The set n contains another set, which contains another, containing another.. down to the the null set, with n 'inclusions'. We can relate von Neumann's version as iteration, one number after another, whilst Zermelo is recursive, one number inside another. We will code the von Neumann version, simply: function succ(n) return n.union(new Set([n])); so for example: var zero = new Set([]); setshow(zero); newline(); var one = succ(zero); setshow(one); newline(); var two = succ(one); setshow(two); newline(); var three = succ(two); setshow(three); newline(); which outputs zero one two and three: It is not easy to interpret these sets as numbers. But they show how the natural numbers can be treated as sets. Fortunately we can just write 0, 1, 2, and 3. For convenience, it is useful to set up the inverse function to succ, prev, the previous number: function prev(n) var zero = new Set([]); if (n.equals(zero)) return undefined; var len = n.elements.length-1; // copy the array of elements, missing out the last one var e = n.elements.slice(0, len); var result = new Set(e); // make a new set from this return result; This works because we can go 'backwards' by missing out the last element from the array. Real sets are not ordered, so there is no 'first' element. But this works for our implementation (a Zermolo implementation would need to be different). ADDITION AND MULTIPLICATION We define addition as a function, mapping pairs of natural numbers to natural numbers (like 3+4 = 7). The function is defined recursively like this: add(a, 0) = a add(a, succ(b)) = succ( add(a, b ) )

4 How does this work? So to add two numbers, the result is the successor of adding the previous number. As the recursion unwinds, we must eventually get to adding zero - and a+0 = a For example 1+1 = add(1,succ(0)) = succ(add (1,0)) = succ(1) = 2 and 1+2 = add(1, succ(1)) =succ(add(1,1)) = succ( add(1, succ(0)) ) = succ( succ(add(1,0))) = succ(succ(1)) = succ(2) = 3 Who knew 1+2=3 was so complicated? Similarly we can define multiplication recursively: mul(a, 0) = 0 mul(a, succ(b)) = add(a, mul(a,b)) In other words a.0=0 a.(b+1) = a + a.b add(a, succ( b )) = succ( add(a, b ) ) this this is the number before THE SIGNED INTEGERS So we have defined the natural numbers N in set-theoretic terms and using Peano's axioms, and have defined addition and multiplication which work as we expect (in the sense of agreeing with our intuitive grasp of adding and multiplying). But of course we cannot find an element of N such that 3 + n = 2 We want to define the signed integers, Z ( from the German Zahlen, number). We start with N 2, the Cartesian Product N X N. So this is the set of ordered pairs b (a,b), where a and b N We define a relation R on this such that (a,b)r(c,d) iff a+d = b+c (it will turn out that (a,b) corresponds to a-b, but we have not defined 4 3 T 2 T 1 T 0 T a subtraction yet). The signed integers

5 Here we show the set of elements (a,b) for all of which (1,0)R(a,b) is true. This relation therefore creates a set of equivalence classes. Z is this set of equivalence classes. So (5,3) = (4,2) = (3,1) = 2 in 'normal' notation, 2 is the name of the equivalence class (a+2,a) where a N By (5,3) = (4,2) we mean (5,3) and (4,2) belong to the same equivalence class. And the negative integers are, for example, (3,5)=(2,4) = -2 EXERCISE 2 Show that R is an equivalence relation. ADDITION AND MULTIPLICATION OF INTEGERS We can define addition on A=(a,b) and B = (c,d) as A B = (a + c, b + d) Here means the addition we are defining, while + means addition of natural numbers as already defined. so for example 2 2 = (5,3) (6,4) = (11,7) =11-7 = 4 Can we find an additive identity? In other words an element 0 such that A 0 = A for all A? Yes, the equivalence class (2,2) = (1,1) = (x,x) where x is any N since if A = (a,b), A 0 = (a+x, b+x) = (a,b) = A What is the additive inverse of A? If A = (a,b), it is (b,a), since A A -1 = (a+b, b+a) = (a,a) = 0 and multiplication as A B = (ac + bd, ad + bc) We define an order A < B iff a+d < b+c. An integer is positive iff 0 < A, and negative iff A < 0

6 THE RATIONAL NUMBERS Obviously we cannot find an integer a such that 2. a = 3 We need the rational numbers Q ( numbers like 3/2 ). We do something similar to the integers: Start with the set Z X ( Z-0) ( We do not allow division by 0 ) Define an equivalence relation R on this such that (a,b)r(c,d) iff a.d = b.c (so (a,b) is like a/b. The multiplication is as defined on Z). The rational numbers are the equivalence classes of R Addition on Q is defined as (a, b) (c, d) = (ad + bc, bd) and multiplication is (a, b) (c, d) = (ac, bd) Look at the website to see how this could be coded. ANSWERS 1. For example function mult(a, b) var zero = new Set([]); if (b.equals(zero)) return zero; return add(a, mult(a, prev(b))); which could be tested by: var zero=new Set([]); var one = succ(zero); var two = succ(one); setshow(two); newline(); var n = mul(two, two); setshow(n); newline(); 2. We need to show that R is reflexive, symmetric and transitive: a+b = a + b implies (a,b)r(a,b) so its reflexive a+d = c + d implies c+d = a+d so (a,b)r(c,d) implies (c,d)r(a,b) so its is symmetric if (a,b)r(c,d) and (c,d)r(e,f) then a+d = b+c and c+f = d+e so a + d + c + f = b + c + md + e so a+f = b + e so (a,b)r(e,f) so it is transitive. 3. For example: this.mul = mul; function mul(other) return new Integer(this.a*other.a+ this.b*other.b, this.a*other.b+this.b*other.a); used as var x=new Integer(6,3); // 3 var y=new Integer(2,0); // 2 var prod = x.mul(y); prod.show(); // 6

Sets 1. The things in a set are called the elements of it. If x is an element of the set S, we say

Sets 1. The things in a set are called the elements of it. If x is an element of the set S, we say Sets 1 Where does mathematics start? What are the ideas which come first, in a logical sense, and form the foundation for everything else? Can we get a very small number of basic ideas? Can we reduce it

More information

A.1 Numbers, Sets and Arithmetic

A.1 Numbers, Sets and Arithmetic 522 APPENDIX A. MATHEMATICS FOUNDATIONS A.1 Numbers, Sets and Arithmetic Numbers started as a conceptual way to quantify count objects. Later, numbers were used to measure quantities that were extensive,

More information

NAME UNIT 4 ALGEBRA II. NOTES PACKET ON RADICALS, RATIONALS d COMPLEX NUMBERS

NAME UNIT 4 ALGEBRA II. NOTES PACKET ON RADICALS, RATIONALS d COMPLEX NUMBERS NAME UNIT 4 ALGEBRA II NOTES PACKET ON RADICALS, RATIONALS d COMPLEX NUMBERS Properties for Algebra II Name: PROPERTIES OF EQUALITY EXAMPLE/MEANING Reflexive a - a Any quantity is equal to itself. Symmetric

More information

A set with only one member is called a SINGLETON. A set with no members is called the EMPTY SET or 2 N

A set with only one member is called a SINGLETON. A set with no members is called the EMPTY SET or 2 N Mathematical Preliminaries Read pages 529-540 1. Set Theory 1.1 What is a set? A set is a collection of entities of any kind. It can be finite or infinite. A = {a, b, c} N = {1, 2, 3, } An entity is an

More information

2.4 Multiplication and Division of Integers

2.4 Multiplication and Division of Integers 2.4. MULTIPLICATION AND DIVISION OF INTEGERS 137 2.4 Multiplication and Division of Integers Before we begin, let it be known that the integers satisfy the same properties of multiplication as do the whole

More information

Unit 2: Accentuate the Negative Name:

Unit 2: Accentuate the Negative Name: Unit 2: Accentuate the Negative Name: 1.1 Using Positive & Negative Numbers Number Sentence A mathematical statement that gives the relationship between two expressions that are composed of numbers and

More information

CS 1200 Discrete Math Math Preliminaries. A.R. Hurson 323 CS Building, Missouri S&T

CS 1200 Discrete Math Math Preliminaries. A.R. Hurson 323 CS Building, Missouri S&T CS 1200 Discrete Math A.R. Hurson 323 CS Building, Missouri S&T hurson@mst.edu 1 Course Objective: Mathematical way of thinking in order to solve problems 2 Variable: holder. A variable is simply a place

More information

CHAPTER 8. Copyright Cengage Learning. All rights reserved.

CHAPTER 8. Copyright Cengage Learning. All rights reserved. CHAPTER 8 RELATIONS Copyright Cengage Learning. All rights reserved. SECTION 8.3 Equivalence Relations Copyright Cengage Learning. All rights reserved. The Relation Induced by a Partition 3 The Relation

More information

CGF Lecture 2 Numbers

CGF Lecture 2 Numbers CGF Lecture 2 Numbers Numbers A number is an abstract entity used originally to describe quantity. i.e. 80 Students etc The most familiar numbers are the natural numbers {0, 1, 2,...} or {1, 2, 3,...},

More information

Quantification. Using the suggested notation, symbolize the statements expressed by the following sentences.

Quantification. Using the suggested notation, symbolize the statements expressed by the following sentences. Quantification In this and subsequent chapters, we will develop a more formal system of dealing with categorical statements, one that will be much more flexible than traditional logic, allow a deeper analysis

More information

Finite Math - J-term Homework. Section Inverse of a Square Matrix

Finite Math - J-term Homework. Section Inverse of a Square Matrix Section.5-77, 78, 79, 80 Finite Math - J-term 017 Lecture Notes - 1/19/017 Homework Section.6-9, 1, 1, 15, 17, 18, 1, 6, 9, 3, 37, 39, 1,, 5, 6, 55 Section 5.1-9, 11, 1, 13, 1, 17, 9, 30 Section.5 - Inverse

More information

Properties. Comparing and Ordering Rational Numbers Using a Number Line

Properties. Comparing and Ordering Rational Numbers Using a Number Line Chapter 5 Summary Key Terms natural numbers (counting numbers) (5.1) whole numbers (5.1) integers (5.1) closed (5.1) rational numbers (5.1) irrational number (5.2) terminating decimal (5.2) repeating decimal

More information

The word zero has had a long and interesting history so far. The word comes

The word zero has had a long and interesting history so far. The word comes Worth 1000 Words Real Numbers and Their Properties Learning Goals In this lesson, you will: Classify numbers in the real number system. Understand the properties of real numbers. Key Terms real number

More information

Chapter 3: Theory of Modular Arithmetic 1. Chapter 3: Theory of Modular Arithmetic

Chapter 3: Theory of Modular Arithmetic 1. Chapter 3: Theory of Modular Arithmetic Chapter 3: Theory of Modular Arithmetic 1 Chapter 3: Theory of Modular Arithmetic SECTION A Introduction to Congruences By the end of this section you will be able to deduce properties of large positive

More information

Axiom 3 Z(pos(Z) X(X intersection of Z P(X)))

Axiom 3 Z(pos(Z) X(X intersection of Z P(X))) In this section, we are going to prove the equivalence between Axiom 3 ( the conjunction of any collection of positive properties is positive ) and Proposition 3 ( it is possible that God exists ). First,

More information

13 th Annual Johns Hopkins Math Tournament Saturday, February 19, 2011 Automata Theory EUR solutions

13 th Annual Johns Hopkins Math Tournament Saturday, February 19, 2011 Automata Theory EUR solutions 13 th Annual Johns Hopkins Math Tournament Saturday, February 19, 011 Automata Theory EUR solutions Problem 1 (5 points). Prove that any surjective map between finite sets of the same cardinality is a

More information

Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103. Chapter 2. Sets

Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103. Chapter 2. Sets Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103 Chapter 2 Sets Slides are adopted from Discrete Mathematics and It's Applications Kenneth H.

More information

axiomatic semantics involving logical rules for deriving relations between preconditions and postconditions.

axiomatic semantics involving logical rules for deriving relations between preconditions and postconditions. CS 6110 S18 Lecture 18 Denotational Semantics 1 What is Denotational Semantics? So far we have looked at operational semantics involving rules for state transitions, definitional semantics involving translations

More information

Therefore, after becoming familiar with the Matrix Method, you will be able to solve a system of two linear equations in four different ways.

Therefore, after becoming familiar with the Matrix Method, you will be able to solve a system of two linear equations in four different ways. Grade 9 IGCSE A1: Chapter 9 Matrices and Transformations Materials Needed: Straightedge, Graph Paper Exercise 1: Matrix Operations Matrices are used in Linear Algebra to solve systems of linear equations.

More information

Rational Numbers CHAPTER Introduction

Rational Numbers CHAPTER Introduction RATIONAL NUMBERS Rational Numbers CHAPTER. Introduction In Mathematics, we frequently come across simple equations to be solved. For example, the equation x + () is solved when x, because this value of

More information

2.1 Sets 2.2 Set Operations

2.1 Sets 2.2 Set Operations CSC2510 Theoretical Foundations of Computer Science 2.1 Sets 2.2 Set Operations Introduction to Set Theory A set is a structure, representing an unordered collection (group, plurality) of zero or more

More information

Appendix 1. Description Logic Terminology

Appendix 1. Description Logic Terminology Appendix 1 Description Logic Terminology Franz Baader Abstract The purpose of this appendix is to introduce (in a compact manner) the syntax and semantics of the most prominent DLs occurring in this handbook.

More information

Algebra 1 Review. Properties of Real Numbers. Algebraic Expressions

Algebra 1 Review. Properties of Real Numbers. Algebraic Expressions Algebra 1 Review Properties of Real Numbers Algebraic Expressions Real Numbers Natural Numbers: 1, 2, 3, 4,.. Numbers used for counting Whole Numbers: 0, 1, 2, 3, 4,.. Natural Numbers and 0 Integers:,

More information

Appendix 1. Description Logic Terminology

Appendix 1. Description Logic Terminology Appendix 1 Description Logic Terminology Franz Baader Abstract The purpose of this appendix is to introduce (in a compact manner) the syntax and semantics of the most prominent DLs occurring in this handbook.

More information

CS 33. Data Representation, Part 1. CS33 Intro to Computer Systems VII 1 Copyright 2017 Thomas W. Doeppner. All rights reserved.

CS 33. Data Representation, Part 1. CS33 Intro to Computer Systems VII 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. CS 33 Data Representation, Part 1 CS33 Intro to Computer Systems VII 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. Number Representation Hindu-Arabic numerals developed by Hindus starting in

More information

An Interesting Way to Combine Numbers

An Interesting Way to Combine Numbers An Interesting Way to Combine Numbers Joshua Zucker and Tom Davis October 12, 2016 Abstract This exercise can be used for middle school students and older. The original problem seems almost impossibly

More information

Caltech Harvey Mudd Mathematics Competition March 3, 2012

Caltech Harvey Mudd Mathematics Competition March 3, 2012 Team Round Caltech Harvey Mudd Mathematics Competition March 3, 2012 1. Let a, b, c be positive integers. Suppose that (a + b)(a + c) = 77 and (a + b)(b + c) = 56. Find (a + c)(b + c). Solution: The answer

More information

To begin this textbook, we need to start with a refresher of the topics of numbers and numbering systems.

To begin this textbook, we need to start with a refresher of the topics of numbers and numbering systems. 1.1 Integers To begin this textbook, we need to start with a refresher of the topics of numbers and numbering systems. We will start, here, with a recap of the simplest of numbering systems, the integers.

More information

The Further Mathematics Support Programme

The Further Mathematics Support Programme Degree Topics in Mathematics Groups A group is a mathematical structure that satisfies certain rules, which are known as axioms. Before we look at the axioms, we will consider some terminology. Elements

More information

4&5 Binary Operations and Relations. The Integers. (part I)

4&5 Binary Operations and Relations. The Integers. (part I) c Oksana Shatalov, Spring 2016 1 4&5 Binary Operations and Relations. The Integers. (part I) 4.1: Binary Operations DEFINITION 1. A binary operation on a nonempty set A is a function from A A to A. Addition,

More information

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology Intermediate Algebra Gregg Waterman Oregon Institute of Technology c 2017 Gregg Waterman This work is licensed under the Creative Commons Attribution 4.0 International license. The essence of the license

More information

What Is A Relation? Example. is a relation from A to B.

What Is A Relation? Example. is a relation from A to B. 3.3 Relations What Is A Relation? Let A and B be nonempty sets. A relation R from A to B is a subset of the Cartesian product A B. If R A B and if (a, b) R, we say that a is related to b by R and we write

More information

Semantics via Syntax. f (4) = if define f (x) =2 x + 55.

Semantics via Syntax. f (4) = if define f (x) =2 x + 55. 1 Semantics via Syntax The specification of a programming language starts with its syntax. As every programmer knows, the syntax of a language comes in the shape of a variant of a BNF (Backus-Naur Form)

More information

Chapter 1. Linear Equations and Straight Lines. 2 of 71. Copyright 2014, 2010, 2007 Pearson Education, Inc.

Chapter 1. Linear Equations and Straight Lines. 2 of 71. Copyright 2014, 2010, 2007 Pearson Education, Inc. Chapter 1 Linear Equations and Straight Lines 2 of 71 Outline 1.1 Coordinate Systems and Graphs 1.4 The Slope of a Straight Line 1.3 The Intersection Point of a Pair of Lines 1.2 Linear Inequalities 1.5

More information

MACHINE LEVEL REPRESENTATION OF DATA

MACHINE LEVEL REPRESENTATION OF DATA MACHINE LEVEL REPRESENTATION OF DATA CHAPTER 2 1 Objectives Understand how integers and fractional numbers are represented in binary Explore the relationship between decimal number system and number systems

More information

JME Language Reference Manual

JME Language Reference Manual JME Language Reference Manual 1 Introduction JME (pronounced jay+me) is a lightweight language that allows programmers to easily perform statistic computations on tabular data as part of data analysis.

More information

Chapter 3. Set Theory. 3.1 What is a Set?

Chapter 3. Set Theory. 3.1 What is a Set? Chapter 3 Set Theory 3.1 What is a Set? A set is a well-defined collection of objects called elements or members of the set. Here, well-defined means accurately and unambiguously stated or described. Any

More information

An Introduction to Programming and Proving in Agda (incomplete draft)

An Introduction to Programming and Proving in Agda (incomplete draft) An Introduction to Programming and Proving in Agda (incomplete draft) Peter Dybjer January 29, 2018 1 A first Agda module Your first Agda-file is called BoolModule.agda. Its contents are module BoolModule

More information

SOFTWARE ENGINEERING DESIGN I

SOFTWARE ENGINEERING DESIGN I 2 SOFTWARE ENGINEERING DESIGN I 3. Schemas and Theories The aim of this course is to learn how to write formal specifications of computer systems, using classical logic. The key descriptional technique

More information

Number System. Introduction. Natural Numbers (N) Whole Numbers (W) Integers (Z) Prime Numbers (P) Face Value. Place Value

Number System. Introduction. Natural Numbers (N) Whole Numbers (W) Integers (Z) Prime Numbers (P) Face Value. Place Value 1 Number System Introduction In this chapter, we will study about the number system and number line. We will also learn about the four fundamental operations on whole numbers and their properties. Natural

More information

Medium Term Plan Year 4

Medium Term Plan Year 4 Wk Unit Strands Objectives 1 Block B2.c: Classify and sketch 2D shapes according to the concept of symmetry Rehearse the concept of line symmetry Classify polygons according to their lines of symmetry

More information

n λxy.x n y, [inc] [add] [mul] [exp] λn.λxy.x(nxy) λmn.m[inc]0 λmn.m([add]n)0 λmn.n([mul]m)1

n λxy.x n y, [inc] [add] [mul] [exp] λn.λxy.x(nxy) λmn.m[inc]0 λmn.m([add]n)0 λmn.n([mul]m)1 LAMBDA CALCULUS 1. Background λ-calculus is a formal system with a variety of applications in mathematics, logic, and computer science. It examines the concept of functions as processes, rather than the

More information

Natural Numbers. We will use natural numbers to illustrate several ideas that will apply to Haskell data types in general.

Natural Numbers. We will use natural numbers to illustrate several ideas that will apply to Haskell data types in general. Natural Numbers We will use natural numbers to illustrate several ideas that will apply to Haskell data types in general. For the moment we will ignore that fact that each type in Haskell includes possible

More information

Project 2: How Parentheses and the Order of Operations Impose Structure on Expressions

Project 2: How Parentheses and the Order of Operations Impose Structure on Expressions MAT 51 Wladis Project 2: How Parentheses and the Order of Operations Impose Structure on Expressions Parentheses show us how things should be grouped together. The sole purpose of parentheses in algebraic

More information

The Language of Sets and Functions

The Language of Sets and Functions MAT067 University of California, Davis Winter 2007 The Language of Sets and Functions Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (January 7, 2007) 1 The Language of Sets 1.1 Definition and Notation

More information

Working with Algebraic Expressions

Working with Algebraic Expressions 2 Working with Algebraic Expressions This chapter contains 25 algebraic expressions; each can contain up to five variables. Remember that a variable is just a letter that represents a number in a mathematical

More information

Binary Relations McGraw-Hill Education

Binary Relations McGraw-Hill Education Binary Relations A binary relation R from a set A to a set B is a subset of A X B Example: Let A = {0,1,2} and B = {a,b} {(0, a), (0, b), (1,a), (2, b)} is a relation from A to B. We can also represent

More information

Propositional Calculus: Boolean Algebra and Simplification. CS 270: Mathematical Foundations of Computer Science Jeremy Johnson

Propositional Calculus: Boolean Algebra and Simplification. CS 270: Mathematical Foundations of Computer Science Jeremy Johnson Propositional Calculus: Boolean Algebra and Simplification CS 270: Mathematical Foundations of Computer Science Jeremy Johnson Propositional Calculus Topics Motivation: Simplifying Conditional Expressions

More information

Section 2.3 Rational Numbers. A rational number is a number that may be written in the form a b. for any integer a and any nonzero integer b.

Section 2.3 Rational Numbers. A rational number is a number that may be written in the form a b. for any integer a and any nonzero integer b. Section 2.3 Rational Numbers A rational number is a number that may be written in the form a b for any integer a and any nonzero integer b. Why is division by zero undefined? For example, we know that

More information

Chapter 4. Number Theory. 4.1 Factors and multiples

Chapter 4. Number Theory. 4.1 Factors and multiples Chapter 4 Number Theory We ve now covered most of the basic techniques for writing proofs. So we re going to start applying them to specific topics in mathematics, starting with number theory. Number theory

More information

Table : IEEE Single Format ± a a 2 a 3 :::a 8 b b 2 b 3 :::b 23 If exponent bitstring a :::a 8 is Then numerical value represented is ( ) 2 = (

Table : IEEE Single Format ± a a 2 a 3 :::a 8 b b 2 b 3 :::b 23 If exponent bitstring a :::a 8 is Then numerical value represented is ( ) 2 = ( Floating Point Numbers in Java by Michael L. Overton Virtually all modern computers follow the IEEE 2 floating point standard in their representation of floating point numbers. The Java programming language

More information

Representability of Homotopy Groups in Type Theory

Representability of Homotopy Groups in Type Theory Representability of Homotopy Groups in Type Theory Brandon Shapiro Constructive Type Theory The emerging field of homotopy type theory is built around the idea that in intensive type theory types can be

More information

Fundamentals of Programming CS-110. Lecture 3

Fundamentals of Programming CS-110. Lecture 3 Fundamentals of Programming CS-110 Lecture 3 Operators Operators Operators are words or symbols that cause a program to do something to variables. OPERATOR TYPES: Type Operators Usage Arithmetic + - *

More information

SETS. Sets are of two sorts: finite infinite A system of sets is a set, whose elements are again sets.

SETS. Sets are of two sorts: finite infinite A system of sets is a set, whose elements are again sets. SETS A set is a file of objects which have at least one property in common. The objects of the set are called elements. Sets are notated with capital letters K, Z, N, etc., the elements are a, b, c, d,

More information

Object Oriented Programming Using C++ Mathematics & Computing IET, Katunayake

Object Oriented Programming Using C++ Mathematics & Computing IET, Katunayake Assigning Values // Example 2.3(Mathematical operations in C++) float a; cout > a; cout

More information

Problem. Prove that the square of any whole number n is a multiple of 4 or one more than a multiple of 4.

Problem. Prove that the square of any whole number n is a multiple of 4 or one more than a multiple of 4. CHAPTER 8 Integers Problem. Prove that the square of any whole number n is a multiple of 4 or one more than a multiple of 4. Strategy 13 Use cases. This strategy may be appropriate when A problem can be

More information

1 Elementary number theory

1 Elementary number theory Math 215 - Introduction to Advanced Mathematics Spring 2019 1 Elementary number theory We assume the existence of the natural numbers and the integers N = {1, 2, 3,...} Z = {..., 3, 2, 1, 0, 1, 2, 3,...},

More information

Basics of Computational Geometry

Basics of Computational Geometry Basics of Computational Geometry Nadeem Mohsin October 12, 2013 1 Contents This handout covers the basic concepts of computational geometry. Rather than exhaustively covering all the algorithms, it deals

More information

Note: Definitions are always reversible (converse is true) but postulates and theorems are not necessarily reversible.

Note: Definitions are always reversible (converse is true) but postulates and theorems are not necessarily reversible. Honors Math 2 Deductive ing and Two-Column Proofs Name: Date: Deductive reasoning is a system of thought in which conclusions are justified by means of previously assumed or proven statements. Every deductive

More information

Chapter 18 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal.

Chapter 18 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal. Chapter 8 out of 7 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal 8 Matrices Definitions and Basic Operations Matrix algebra is also known

More information

not to be republished NCERT CONSTRUCTIONS CHAPTER 10 (A) Main Concepts and Results (B) Multiple Choice Questions

not to be republished NCERT CONSTRUCTIONS CHAPTER 10 (A) Main Concepts and Results (B) Multiple Choice Questions CONSTRUCTIONS CHAPTER 10 (A) Main Concepts and Results Division of a line segment internally in a given ratio. Construction of a triangle similar to a given triangle as per given scale factor which may

More information

Slides for Faculty Oxford University Press All rights reserved.

Slides for Faculty Oxford University Press All rights reserved. Oxford University Press 2013 Slides for Faculty Assistance Preliminaries Author: Vivek Kulkarni vivek_kulkarni@yahoo.com Outline Following topics are covered in the slides: Basic concepts, namely, symbols,

More information

3.7 Denotational Semantics

3.7 Denotational Semantics 3.7 Denotational Semantics Denotational semantics, also known as fixed-point semantics, associates to each programming language construct a well-defined and rigorously understood mathematical object. These

More information

1. Represent each of these relations on {1, 2, 3} with a matrix (with the elements of this set listed in increasing order).

1. Represent each of these relations on {1, 2, 3} with a matrix (with the elements of this set listed in increasing order). Exercises Exercises 1. Represent each of these relations on {1, 2, 3} with a matrix (with the elements of this set listed in increasing order). a) {(1, 1), (1, 2), (1, 3)} b) {(1, 2), (2, 1), (2, 2), (3,

More information

COSC 122 Computer Fluency. Iteration and Arrays. Dr. Ramon Lawrence University of British Columbia Okanagan

COSC 122 Computer Fluency. Iteration and Arrays. Dr. Ramon Lawrence University of British Columbia Okanagan COSC 122 Computer Fluency Iteration and Arrays Dr. Ramon Lawrence University of British Columbia Okanagan ramon.lawrence@ubc.ca Key Points 1) A loop repeats a set of statements multiple times until some

More information

Integers and Mathematical Induction

Integers and Mathematical Induction IT Program, NTUT, Fall 07 Integers and Mathematical Induction Chuan-Ming Liu Computer Science and Information Engineering National Taipei University of Technology TAIWAN 1 Learning Objectives Learn about

More information

2 Solution of Homework

2 Solution of Homework Math 3181 Name: Dr. Franz Rothe February 6, 2014 All3181\3181_spr14h2.tex Homework has to be turned in this handout. The homework can be done in groups up to three due February 11/12 2 Solution of Homework

More information

Today s Outline. Motivation. Disjoint Sets. Disjoint Sets and Dynamic Equivalence Relations. Announcements. Today s Topics:

Today s Outline. Motivation. Disjoint Sets. Disjoint Sets and Dynamic Equivalence Relations. Announcements. Today s Topics: Today s Outline Disjoint Sets and Dynamic Equivalence Relations Announcements Assignment # due Thurs 0/ at pm Today s Topics: Disjoint Sets & Dynamic Equivalence CSE Data Structures and Algorithms 0//0

More information

Chapter 3 (part 3) Describing Syntax and Semantics

Chapter 3 (part 3) Describing Syntax and Semantics Chapter 3 (part 3) Describing Syntax and Semantics Chapter 3 Topics Introduction The General Problem of Describing Syntax Formal Methods of Describing Syntax Attribute Grammars Describing the Meanings

More information

Section A Arithmetic ( 5) Exercise A

Section A Arithmetic ( 5) Exercise A Section A Arithmetic In the non-calculator section of the examination there might be times when you need to work with quite awkward numbers quickly and accurately. In particular you must be very familiar

More information

Review of Operations on the Set of Real Numbers

Review of Operations on the Set of Real Numbers 1 Review of Operations on the Set of Real Numbers Before we start our jurney through algebra, let us review the structure of the real number system, properties of four operations, order of operations,

More information

Math 302 Introduction to Proofs via Number Theory. Robert Jewett (with small modifications by B. Ćurgus)

Math 302 Introduction to Proofs via Number Theory. Robert Jewett (with small modifications by B. Ćurgus) Math 30 Introduction to Proofs via Number Theory Robert Jewett (with small modifications by B. Ćurgus) March 30, 009 Contents 1 The Integers 3 1.1 Axioms of Z...................................... 3 1.

More information

Automating Construction of Lexers

Automating Construction of Lexers Automating Construction of Lexers Regular Expression to Programs Not all regular expressions are simple. How can we write a lexer for (a*b aaa)? Tokenizing aaaab Vs aaaaaa Regular Expression Finite state

More information

Chapter 1: Number and Operations

Chapter 1: Number and Operations Chapter 1: Number and Operations 1.1 Order of operations When simplifying algebraic expressions we use the following order: 1. Perform operations within a parenthesis. 2. Evaluate exponents. 3. Multiply

More information

Euclid's Algorithm. MA/CSSE 473 Day 06. Student Questions Odd Pie Fight Euclid's algorithm (if there is time) extended Euclid's algorithm

Euclid's Algorithm. MA/CSSE 473 Day 06. Student Questions Odd Pie Fight Euclid's algorithm (if there is time) extended Euclid's algorithm MA/CSSE 473 Day 06 Euclid's Algorithm MA/CSSE 473 Day 06 Student Questions Odd Pie Fight Euclid's algorithm (if there is time) extended Euclid's algorithm 1 Quick look at review topics in textbook REVIEW

More information

CSE 215: Foundations of Computer Science Recitation Exercises Set #4 Stony Brook University. Name: ID#: Section #: Score: / 4

CSE 215: Foundations of Computer Science Recitation Exercises Set #4 Stony Brook University. Name: ID#: Section #: Score: / 4 CSE 215: Foundations of Computer Science Recitation Exercises Set #4 Stony Brook University Name: ID#: Section #: Score: / 4 Unit 7: Direct Proof Introduction 1. The statement below is true. Rewrite the

More information

Section 1.2 Fractions

Section 1.2 Fractions Objectives Section 1.2 Fractions Factor and prime factor natural numbers Recognize special fraction forms Multiply and divide fractions Build equivalent fractions Simplify fractions Add and subtract fractions

More information

Lecture 3: Binary Subtraction, Switching Algebra, Gates, and Algebraic Expressions

Lecture 3: Binary Subtraction, Switching Algebra, Gates, and Algebraic Expressions EE210: Switching Systems Lecture 3: Binary Subtraction, Switching Algebra, Gates, and Algebraic Expressions Prof. YingLi Tian Feb. 5/7, 2019 Department of Electrical Engineering The City College of New

More information

Mathematics Scope & Sequence Algebra I

Mathematics Scope & Sequence Algebra I Mathematics Scope & Sequence 2016-17 Algebra I Revised: June 20, 2016 First Grading Period (24 ) Readiness Standard(s) Solving Equations and Inequalities A.5A solve linear equations in one variable, including

More information

Pick any positive integer. If the integer is even, divide it by 2. If it is odd,

Pick any positive integer. If the integer is even, divide it by 2. If it is odd, Equal Groups Multiplying and Dividing Integers Learning Goals In this lesson, you will: Multiply integers. Divide integers. Pick any positive integer. If the integer is even, divide it by 2. If it is odd,

More information

Excerpt from "Art of Problem Solving Volume 1: the Basics" 2014 AoPS Inc.

Excerpt from Art of Problem Solving Volume 1: the Basics 2014 AoPS Inc. Chapter 5 Using the Integers In spite of their being a rather restricted class of numbers, the integers have a lot of interesting properties and uses. Math which involves the properties of integers is

More information

The Intersection of Two Sets

The Intersection of Two Sets Venn Diagrams There are times when it proves useful or desirable for us to represent sets and the relationships among them in a visual manner. This can be beneficial for a variety of reasons, among which

More information

Ray-Triangle and Ray-Quadrilateral Intersections in Homogeneous Coordinates

Ray-Triangle and Ray-Quadrilateral Intersections in Homogeneous Coordinates Ray-Triangle and Ray-Quadrilateral Intersections in Homogeneous Coordinates Pat Hanrahan Geometry Computing Group Minnesota Supercomputer Center Minneapolis, MN 55415 hanrahan@princeton.edu Experience

More information

Medium Term Plan Year 6: Autumn Term

Medium Term Plan Year 6: Autumn Term Medium Term Plan Year 6: Autumn Term Block A1.a: Multiply integers and decimals by 10, 100 or 1000 AUTUMN TERM Block A1.b: Divide integers by 10, 100 or 1000, and divide decimals by 10 or 100 Block A1.c:

More information

Chapter 1 Preliminaries

Chapter 1 Preliminaries Chapter 1 Preliminaries This chapter discusses the major classes of programming languages and the relationship among them. It also discusses the binary and the hexadecimal number systems which are used

More information

2 1 = 1; 1 1 = 0; 0 1 = 1; 1 1 = 2

2 1 = 1; 1 1 = 0; 0 1 = 1; 1 1 = 2 Section 1: Integers MATH LESSON PLAN 8 INTEGERS 2015 Copyright Vinay Agarwala, Checked: 10/28/15 1. The following chart shows where integers fit in the scheme of Arithmetic. 2. Integers are numbers that

More information

Solving Equations with Inverse Operations

Solving Equations with Inverse Operations Solving Equations with Inverse Operations Math 97 Supplement LEARNING OBJECTIVES 1. Solve equations by using inverse operations, including squares, square roots, cubes, and cube roots. The Definition of

More information

Rational Expressions Sections

Rational Expressions Sections Rational Expressions Sections Multiplying / Dividing Let s first review how we multiply and divide fractions. Multiplying / Dividing When multiplying/ dividing, do we have to have a common denominator?

More information

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Discrete Mathematics

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Discrete Mathematics About the Tutorial Discrete Mathematics is a branch of mathematics involving discrete elements that uses algebra and arithmetic. It is increasingly being applied in the practical fields of mathematics

More information

1 of 7 7/15/2009 3:40 PM Virtual Laboratories > 1. Foundations > 1 2 3 4 5 6 7 8 9 1. Sets Poincaré's quote, on the title page of this chapter could not be more wrong (what was he thinking?). Set theory

More information

11 The Regular Pentagon

11 The Regular Pentagon 11 The Regular Pentagon 11.1 The Euclidean construction with the Golden Ratio The figure on page 561 shows an easy Euclidean construction of a regular pentagon. The justification of the construction begins

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Organization of Programming Languages Context Free Grammars and Parsing 1 Recall: Architecture of Compilers, Interpreters Source Parser Static Analyzer Intermediate Representation Front End Back

More information

Rational number operations can often be simplified by converting mixed numbers to improper fractions Add EXAMPLE:

Rational number operations can often be simplified by converting mixed numbers to improper fractions Add EXAMPLE: Rational number operations can often be simplified by converting mixed numbers to improper fractions Add ( 2) EXAMPLE: 2 Multiply 1 Negative fractions can be written with the negative number in the numerator

More information

(l) Represent each of the sets A, B and C using bit strings. Then, use bit string representation and bitwise logical operations to find

(l) Represent each of the sets A, B and C using bit strings. Then, use bit string representation and bitwise logical operations to find Fall 2004 Ahmed Elgammal CS 205: Sample Final Exam December 6th, 2004 1. [10 points] Let A = {1, 3, 5, 7, 9}, B = {4, 5, 6, 7, 8}, C = {2, 4, 6, 8, 10}, D = {1, 2, 3} and let the universal set be U = {1,

More information

CS422 - Programming Language Design

CS422 - Programming Language Design 1 CS422 - Programming Language Design Denotational Semantics Grigore Roşu Department of Computer Science University of Illinois at Urbana-Champaign 2 Denotational semantics, alsoknownasfix-point semantics,

More information

Practice Final. Read all the problems first before start working on any of them, so you can manage your time wisely

Practice Final. Read all the problems first before start working on any of them, so you can manage your time wisely PRINT your name here: Practice Final Print your name immediately on the cover page, as well as each page of the exam, in the space provided. Each time you are caught working on a page without your name

More information

You should be able to plot points on the coordinate axis. You should know that the the midpoint of the line segment joining (x, y 1 1

You should be able to plot points on the coordinate axis. You should know that the the midpoint of the line segment joining (x, y 1 1 Name GRAPHICAL REPRESENTATION OF DATA: You should be able to plot points on the coordinate axis. You should know that the the midpoint of the line segment joining (x, y 1 1 ) and (x, y ) is x1 x y1 y,.

More information

BITS, BYTES, AND INTEGERS

BITS, BYTES, AND INTEGERS BITS, BYTES, AND INTEGERS CS 045 Computer Organization and Architecture Prof. Donald J. Patterson Adapted from Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition ORIGINS

More information

The set consisting of all natural numbers that are in A and are in B is the set f1; 3; 5g;

The set consisting of all natural numbers that are in A and are in B is the set f1; 3; 5g; Chapter 5 Set Theory 5.1 Sets and Operations on Sets Preview Activity 1 (Set Operations) Before beginning this section, it would be a good idea to review sets and set notation, including the roster method

More information

This is already grossly inconvenient in present formalisms. Why do we want to make this convenient? GENERAL GOALS

This is already grossly inconvenient in present formalisms. Why do we want to make this convenient? GENERAL GOALS 1 THE FORMALIZATION OF MATHEMATICS by Harvey M. Friedman Ohio State University Department of Mathematics friedman@math.ohio-state.edu www.math.ohio-state.edu/~friedman/ May 21, 1997 Can mathematics be

More information