In this chapter, we define limits of functions and describe some of their properties.

Size: px
Start display at page:

Download "In this chapter, we define limits of functions and describe some of their properties."

Transcription

1 Chapter 2 Limits of Functions In this chapter, we define its of functions and describe some of their properties. 2.. Limits We begin with the ϵ-δ definition of the it of a function. Definition 2.. Let f : A R, where A R, and suppose that c R is an accumulation point of A. Then f() = L if for every ϵ > 0 there eists a δ > 0 such that 0 < c < δ and A implies that f() L < ϵ. We also denote its by the arrow notation f() L as c, and often leave it to be implicitly understood that A is restricted to the domain of f. Note that we eclude = c, so the function need not be defined at c for the it as c to eist. Also note that it follows directly from the definition that f() = L if and only if f() L = 0. Eample 2.2. Let A = [0, ) \ {9} and define f : A R by f() = 9 3. We claim that f() = 6. 9 To prove this, let ϵ > 0 be given. For A, we have from the difference of two squares that f() = + 3, and f() 6 = 3 9 = Thus, if δ = 3ϵ, then 9 < δ and A implies that f() 6 < ϵ.

2 2 2. Limits of Functions We can rephrase the ϵ-δ definition of its in terms of neighborhoods. Recall from Definition.6 that a set V R is a neighborhood of c R if V (c δ, c+δ) for some δ > 0, and (c δ, c + δ) is called a δ-neighborhood of c. A set U is a punctured (or deleted) neighborhood of c if U (c δ, c) (c, c + δ) for some δ > 0, and (c δ, c) (c, c + δ) is called a punctured (or deleted) δ-neighborhood of c. That is, a punctured neighborhood of c is a neighborhood of c with the point c itself removed. Definition 2.3. Let f : A R, where A R, and suppose that c R is an accumulation point of A. Then f() = L if and only if for every neighborhood V of L, there is a punctured neighborhood U of c such that A U implies that f() V. This is essentially a rewording of the ϵ-δ definition. If Definition 2. holds and V is a neighborhood of L, then V contains an ϵ-neighborhood of L, so there is a punctured δ-neighborhood U of c that maps into V, which verifies Definition 2.3. Conversely, if Definition 2.3 holds and ϵ > 0, let V = (L ϵ, L + ϵ) be an ϵ- neighborhood of L. Then there is a punctured neighborhood U of c that maps into V and U contains a punctured δ-neighborhood of c, which verifies Definition 2.. The net theorem gives an equivalent sequential characterization of the it. Theorem 2.4. Let f : A R, where A R, and suppose that c R is an accumulation point of A. Then f() = L if and only if f( n) = L. n for every sequence ( n ) in A with n c for all n N such that n = c. n Proof. First assume that the it eists. Suppose that ( n ) is any sequence in A with n c that converges to c, and let ϵ > 0 be given. From Definition 2., there eists δ > 0 such that f() L < ϵ whenever 0 < c < δ, and since n c there eists N N such that 0 < n c < δ for all n > N. It follows that f( n ) L < ϵ whenever n > N, so f( n ) L as n. To prove the converse, assume that the it does not eist. Then there is an ϵ 0 > 0 such that for every δ > 0 there is a point A with 0 < c < δ but f() L ϵ 0. Therefore, for every n N there is an n A such that 0 < n c < n, f( n) L ϵ 0. It follows that n c and n c, but f( n ) L, so the sequential condition does not hold. This proves the result. This theorem gives a way to show that a it of a function does not eist.

3 2.. Limits y 0 y Figure. A plot of the function y = sin(/), with the hyperbola y = / shown in red, and a detail near the origin. Corollary 2.5. Suppose that f : A R and c R is an accumulation point of A. Then f() does not eist if either of the following conditions holds: () There are sequences ( n ), (y n ) in A with n, y n c such that n = y n = c, but f( n) f(y n). n n n n (2) There is a sequence ( n ) in A with n c such that n n = c but the sequence (f( n )) does not converge. Eample 2.6. Define the sign function sgn : R R by if > 0, sgn = 0 if = 0, if < 0, Then the it sgn 0 doesn t eist. To prove this, note that (/n) is a non-zero sequence such that /n 0 and sgn(/n) as n, while ( /n) is a non-zero sequence such that /n 0 and sgn( /n) as n. Since the sequences of sgn-values have different its, Corollary 2.5 implies that the it does not eist. Eample 2.7. The it 0, corresponding to the function f : R \ {0} R given by f() = /, doesn t eist. For eample, consider the non-zero sequence ( n ) given by n = /n. Then /n 0 but the sequence of values (n) doesn t converge. Eample 2.8. The it ( ) sin, 0

4 4 2. Limits of Functions corresponding to the function f : R \ {0} R given by f() = sin(/), doesn t eist. (See Figure.) For eample, the non-zero sequences ( n ), (y n ) defined by n = 2πn, y n = 2πn + π/2 both converge to zero as n, but the its are different. f( n) = 0, n 2.2. Left, right, and infinite its f(y n) = n We can define other kinds of its in an obvious way. We list some of them here and give eamples, whose proofs are left as an eercise. All these definitions can be combined in various ways and have obvious equivalent sequential characterizations. Definition 2.9 (Right and left its). Let f : A R, where A R, and suppose that c R is an accumulation point of A. Then (right it) f() = L + if for every ϵ > 0 there eists a δ > 0 such that c < < c + δ and A implies that f() L < ϵ, and (left it) f() = L if for every ϵ > 0 there eists a δ > 0 such that c δ < < c and A implies that f() L < ϵ. Eample 2.0. For the sign function in Eample 2.6, we have sgn =, 0 + sgn =. 0 Net we introduce some convenient definitions for various kinds of its involving infinity. We emphasize that and are not real numbers (what is sin, for eample?) and all these definition have precise translations into statements that involve only real numbers. Definition 2. (Limits as ± ). Let f : A R, where A R. If A is not bounded from above, then f() = L if for every ϵ > 0 there eists an M R such that > M and A implies that f() L < ϵ. If A is not bounded from below, then f() = L if for every ϵ > 0 there eists an m R such that < m and A implies that f() L < ϵ.

5 2.2. Left, right, and infinite its 5 Sometimes we write + instead of to indicate that it denotes arbitrarily large, positive values, while denotes arbitrarily large, negative values. It follows from this definition that f() = f t 0 + ( ), f() = t f t 0 and it is often useful to convert one of these its into the other. Eample 2.2. We have + 2 =, + 2 =. ( ), t Definition 2.3 (Divergence to ± ). Let f : A R, where A R, and suppose that c R is an accumulation point of A. Then f() = if for every M R there eists a δ > 0 such that 0 < c < δ and A implies that f() > M, and f() = if for every m R there eists a δ > 0 such that 0 < c < δ and A implies that f() < m. The notation f() = ± is simply shorthand for the property stated in this definition; it does not mean that the it eists, and we say that f diverges to ±. Eample 2.4. We have Eample 2.5. We have 0 2 =, 0 + =, 2 = 0. 0 =. How would you define these statements precisely? Note that 0 ±, since / takes arbitrarily large positive (if > 0) and negative (if < 0) values in every two-sided neighborhood of 0. Eample 2.6. None of the its ( 0 + sin ), 0 sin ( ), 0 sin ( ) is or, since (/) sin(/) oscillates between arbitrarily large positive and negative values in every one-sided or two-sided neighborhood of 0.

6 6 2. Limits of Functions Eample 2.7. We have ( 3 ) ( ) =, 3 =. How would you define these statements precisely and prove them? 2.3. Properties of its The properties of its of functions follow immediately from the corresponding properties of sequences and the sequential characterization of the it in Theorem 2.4. We can also prove them directly from the ϵ-δ definition of the it, and we shall do so in a few cases below Uniqueness and boundedness. The following result might be taken forgranted, but it requires proof. Proposition 2.8. The it of a function is unique if it eists. Proof. Suppose that f : A R and c R is an accumulation point of A R. Assume that f() = L, f() = L 2 where L, L 2 R. Then for every ϵ > 0 there eist δ, δ 2 > 0 such that 0 < c < δ and A implies that f() L < ϵ/2, 0 < c < δ 2 and A implies that f() L 2 < ϵ/2. Let δ = min(δ, δ 2 ) > 0. Then, since c is an accumulation point of A, there eists A such that 0 < c < δ. It follows that L L 2 L f() + f() L 2 < ϵ. Since this holds for arbitrary ϵ > 0, we must have L = L 2. Note that in this proof we used the requirement in the definition of a it that c is an accumulation point of A. The it definition would be vacuous if it was applied to a non-accumulation point, and in that case every L R would be a it. Definition 2.9. A function f : A R is bounded on B A if there eists M 0 such that f() M for every B. A function is bounded if it is bounded on its domain. Equivalently, f is bounded on B if f(b) is a bounded subset of R. Eample The function f : (0, ] R defined by f() = / is unbounded, but it is bounded on any interval [δ, ] with 0 < δ <. The function g : R R defined by g() = 2 is unbounded, but is it bounded on any finite interval [a, b]. If a function has a it as c, it must be locally bounded at c, as stated in the net proposition.

7 2.3. Properties of its 7 Proposition 2.2. Suppose that f : A R and c is an accumulation point of A. If f() eists, then there is a punctured neighborhood U of c such that f is bounded on A U. Proof. Suppose that f() L as c. Taking ϵ = in the definition of the it, we get that there eists a δ > 0 such that 0 < c < δ and A implies that f() L <. Let U = (c δ, c) (c, c + δ), which is a punctured neighborhood of c. Then for A U, we have so f is bounded on A U. f() f() L + L < + L, Algebraic properties. Limits of functions respect algebraic operations. Theorem Suppose that f, g : A R, c is an accumulation point of A, and the its eist. Then f() = L, g() = M kf() = kl for every k R, [f() + g()] = L + M, [f()g()] = LM, f() g() = L M if M 0. Proof. We prove the results for sums and products from the definition of the it, and leave the remaining proofs as an eercise. All of the results also follow from the corresponding results for sequences. First, we consider the it of f + g. Given ϵ > 0, choose δ, δ 2 such that 0 < c < δ and A implies that f() L < ϵ/2, 0 < c < δ 2 and A implies that g() M < ϵ/2, and let δ = min(δ, δ 2 ) > 0. Then 0 < c < δ implies that f() + g() (L + M) f() L + g() M < ϵ, which proves that (f + g) = f + g. To prove the result for the it of the product, first note that from the local boundedness of functions with a it (Proposition 2.2) there eists δ 0 > 0 and K > 0 such that g() K for all A with 0 < c < δ 0. Choose δ, δ 2 > 0 such that 0 < c < δ and A implies that f() L < ϵ/(2k), 0 < c < δ 2 and A implies that g() M < ϵ/(2 L + ).

8 8 2. Limits of Functions Let δ = min(δ 0, δ, δ 2 ) > 0. Then for 0 < c < δ and A, f()g() LM = (f() L) g() + L (g() M) which proves that (fg) = f g. f() L g() + L g() M < ϵ 2K K + L ϵ 2 L + < ϵ, Order properties. As for its of sequences, its of functions preserve (non-strict) inequalities. Theorem Suppose that f, g : A R and c is an accumulation point of A. If f() g() for all A, and f(), g() eist, then f() g(). Proof. Let f() = L, g() = M. Suppose for contradiction that L > M, and let ϵ = (L M) > 0. 2 From the definition of the it, there eist δ, δ 2 > 0 such that f() L < ϵ if A and 0 < c < δ, g() M < ϵ if A and 0 < c < δ 2. Let δ = min(δ, δ 2 ). Since c is an accumulation point of A, there eists A such that 0 < a < δ, and it follows that f() g() = [f() L] + L M + [M g()] > L M 2ϵ > 0, which contradicts the assumption that f() g(). Finally, we state a useful sandwich or squeeze criterion for the eistence of a it. Theorem Suppose that f, g, h : A R and c is an accumulation point of A. If f() g() h() for all A and f() = h() = L, then the it of g() as c eists and g() = L.

9 2.3. Properties of its 9 We leave the proof as an eercise. We often use this result, without comment, in the following way: If 0 f() g() or f() g() and g() 0 as c, then f() 0 as c. It is essential for the bounding functions f, h in Theorem 2.24 to have the same it. Eample We have and but sin ( ) for all 0 ( ) =, 0 ( ) sin 0 =, 0 does not eist.

Math 0420 Homework 3. Scratch Work:For c > 0, according to the definition of limit, we want to find δ to bound the term x c by ɛ.we have: x c.

Math 0420 Homework 3. Scratch Work:For c > 0, according to the definition of limit, we want to find δ to bound the term x c by ɛ.we have: x c. Math 0420 Homework 3 Eercise 311 Find the it or prove the it does not eit (a) for c 0 Solution: First, we might guess that the it is c Scratch Work:For c > 0, according to the definition of it, we want

More information

Sections 1.3 Computation of Limits

Sections 1.3 Computation of Limits 1 Sections 1.3 Computation of Limits We will shortly introduce the it laws. Limit laws allows us to evaluate the it of more complicated functions using the it of simpler ones. Theorem Suppose that c is

More information

MATH 1A MIDTERM 1 (8 AM VERSION) SOLUTION. (Last edited October 18, 2013 at 5:06pm.) lim

MATH 1A MIDTERM 1 (8 AM VERSION) SOLUTION. (Last edited October 18, 2013 at 5:06pm.) lim MATH A MIDTERM (8 AM VERSION) SOLUTION (Last edited October 8, 03 at 5:06pm.) Problem. (i) State the Squeeze Theorem. (ii) Prove the Squeeze Theorem. (iii) Using a carefully justified application of the

More information

Limits and Derivatives (Review of Math 249 or 251)

Limits and Derivatives (Review of Math 249 or 251) Chapter 3 Limits and Derivatives (Review of Math 249 or 251) 3.1 Overview This is the first of two chapters reviewing material from calculus; its and derivatives are discussed in this chapter, and integrals

More information

Limits. f(x) and lim. g(x) g(x)

Limits. f(x) and lim. g(x) g(x) Limits Limit Laws Suppose c is constant, n is a positive integer, and f() and g() both eist. Then,. [f() + g()] = f() + g() 2. [f() g()] = f() g() [ ] 3. [c f()] = c f() [ ] [ ] 4. [f() g()] = f() g()

More information

Calculus I (part 1): Limits and Continuity (by Evan Dummit, 2016, v. 2.01)

Calculus I (part 1): Limits and Continuity (by Evan Dummit, 2016, v. 2.01) Calculus I (part ): Limits and Continuity (by Evan Dummit, 206, v. 2.0) Contents Limits and Continuity. Limits (Informally)...............................................2 Limits and the Limit Laws..........................................

More information

Part 2.2 Continuous functions and their properties v1 2018

Part 2.2 Continuous functions and their properties v1 2018 Part 2.2 Continuous functions and their properties v 208 Intermediate Values Recall R is complete. This means that ever non-empt subset of R which is bounded above has a least upper bound. That is: (A

More information

WebAssign hw2.3 (Homework)

WebAssign hw2.3 (Homework) WebAssign hw2.3 (Homework) Current Score : / 98 Due : Wednesday, May 31 2017 07:25 AM PDT Michael Lee Math261(Calculus I), section 1049, Spring 2017 Instructor: Michael Lee 1. /6 pointsscalc8 1.6.001.

More information

Compact Sets. James K. Peterson. September 15, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Compact Sets. James K. Peterson. September 15, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Compact Sets James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 15, 2017 Outline 1 Closed Sets 2 Compactness 3 Homework Closed Sets

More information

Bounded subsets of topological vector spaces

Bounded subsets of topological vector spaces Chapter 2 Bounded subsets of topological vector spaces In this chapter we will study the notion of bounded set in any t.v.s. and analyzing some properties which will be useful in the following and especially

More information

MA651 Topology. Lecture 4. Topological spaces 2

MA651 Topology. Lecture 4. Topological spaces 2 MA651 Topology. Lecture 4. Topological spaces 2 This text is based on the following books: Linear Algebra and Analysis by Marc Zamansky Topology by James Dugundgji Fundamental concepts of topology by Peter

More information

Cardinality Lectures

Cardinality Lectures Cardinality Lectures Enrique Treviño March 8, 014 1 Definition of cardinality The cardinality of a set is a measure of the size of a set. When a set A is finite, its cardinality is the number of elements

More information

I-CONTINUITY IN TOPOLOGICAL SPACES. Martin Sleziak

I-CONTINUITY IN TOPOLOGICAL SPACES. Martin Sleziak I-CONTINUITY IN TOPOLOGICAL SPACES Martin Sleziak Abstract. In this paper we generalize the notion of I-continuity, which was defined in [1] for real functions, to maps on topological spaces. We study

More information

Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS

Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS Definition 1.1. Let X be a set and T a subset of the power set P(X) of X. Then T is a topology on X if and only if all of the following

More information

9.5 Equivalence Relations

9.5 Equivalence Relations 9.5 Equivalence Relations You know from your early study of fractions that each fraction has many equivalent forms. For example, 2, 2 4, 3 6, 2, 3 6, 5 30,... are all different ways to represent the same

More information

Open and Closed Sets

Open and Closed Sets Open and Closed Sets Definition: A subset S of a metric space (X, d) is open if it contains an open ball about each of its points i.e., if x S : ɛ > 0 : B(x, ɛ) S. (1) Theorem: (O1) and X are open sets.

More information

COMPUTABILITY THEORY AND RECURSIVELY ENUMERABLE SETS

COMPUTABILITY THEORY AND RECURSIVELY ENUMERABLE SETS COMPUTABILITY THEORY AND RECURSIVELY ENUMERABLE SETS JOSHUA LENERS Abstract. An algorithm is function from ω to ω defined by a finite set of instructions to transform a given input x to the desired output

More information

MA 180 Lecture Chapter 7 College Algebra and Calculus by Larson/Hodgkins Limits and Derivatives

MA 180 Lecture Chapter 7 College Algebra and Calculus by Larson/Hodgkins Limits and Derivatives MA 180 Lecture Chapter 7 College Algebra and Calculus by Larson/Hodgkins Limits and Derivatives 7.1) Limits An important concept in the study of mathematics is that of a it. It is often one of the harder

More information

lim x c x 2 x +2. Suppose that, instead of calculating all the values in the above tables, you simply . What do you find? x +2

lim x c x 2 x +2. Suppose that, instead of calculating all the values in the above tables, you simply . What do you find? x +2 MA123, Chapter 3: The idea of its (pp. 47-67, Gootman) Chapter Goals: Evaluate its. Evaluate one-sided its. Understand the concepts of continuity and differentiability and their relationship. Assignments:

More information

2. Sets. 2.1&2.2: Sets and Subsets. Combining Sets. c Dr Oksana Shatalov, Fall

2. Sets. 2.1&2.2: Sets and Subsets. Combining Sets. c Dr Oksana Shatalov, Fall c Dr Oksana Shatalov, Fall 2014 1 2. Sets 2.1&2.2: Sets and Subsets. Combining Sets. Set Terminology and Notation DEFINITIONS: Set is well-defined collection of objects. Elements are objects or members

More information

Section 4.1: Maximum and Minimum Values

Section 4.1: Maximum and Minimum Values Section 4.: Maimum and Minimum Values In this chapter, we shall consider further applications of the derivative. The main application we shall consider is using derivatives to sketch accurate graphs of

More information

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions.

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions. THREE LECTURES ON BASIC TOPOLOGY PHILIP FOTH 1. Basic notions. Let X be a set. To make a topological space out of X, one must specify a collection T of subsets of X, which are said to be open subsets of

More information

Limits at Infinity

Limits at Infinity Limits at Infinity 9-6-08 In this section, I ll discuss the it of a function f() as goes to and. We ll see that this is related to horizontal asyptotes of a graph. It s natural to discuss vertical asymptotes

More information

EXTREME POINTS AND AFFINE EQUIVALENCE

EXTREME POINTS AND AFFINE EQUIVALENCE EXTREME POINTS AND AFFINE EQUIVALENCE The purpose of this note is to use the notions of extreme points and affine transformations which are studied in the file affine-convex.pdf to prove that certain standard

More information

Lecture 6: Faces, Facets

Lecture 6: Faces, Facets IE 511: Integer Programming, Spring 2019 31 Jan, 2019 Lecturer: Karthik Chandrasekaran Lecture 6: Faces, Facets Scribe: Setareh Taki Disclaimer: These notes have not been subjected to the usual scrutiny

More information

Lecture 2 - Introduction to Polytopes

Lecture 2 - Introduction to Polytopes Lecture 2 - Introduction to Polytopes Optimization and Approximation - ENS M1 Nicolas Bousquet 1 Reminder of Linear Algebra definitions Let x 1,..., x m be points in R n and λ 1,..., λ m be real numbers.

More information

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3.

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. 301. Definition. Let m be a positive integer, and let X be a set. An m-tuple of elements of X is a function x : {1,..., m} X. We sometimes use x i instead

More information

Point-Set Topology II

Point-Set Topology II Point-Set Topology II Charles Staats September 14, 2010 1 More on Quotients Universal Property of Quotients. Let X be a topological space with equivalence relation. Suppose that f : X Y is continuous and

More information

3.5 - Concavity. a concave up. a concave down

3.5 - Concavity. a concave up. a concave down . - Concavity 1. Concave up and concave down For a function f that is differentiable on an interval I, the graph of f is If f is concave up on a, b, then the secant line passing through points 1, f 1 and,

More information

INTRODUCTION TO TOPOLOGY

INTRODUCTION TO TOPOLOGY INTRODUCTION TO TOPOLOGY MARTINA ROVELLI These notes are an outline of the topics covered in class, and are not substitutive of the lectures, where (most) proofs are provided and examples are discussed

More information

Math 5593 Linear Programming Lecture Notes

Math 5593 Linear Programming Lecture Notes Math 5593 Linear Programming Lecture Notes Unit II: Theory & Foundations (Convex Analysis) University of Colorado Denver, Fall 2013 Topics 1 Convex Sets 1 1.1 Basic Properties (Luenberger-Ye Appendix B.1).........................

More information

Chapter 1. Preliminaries

Chapter 1. Preliminaries Chapter 1 Preliminaries 1.1 Topological spaces 1.1.1 The notion of topological space The topology on a set X is usually defined by specifying its open subsets of X. However, in dealing with topological

More information

Sets. De Morgan s laws. Mappings. Definition. Definition

Sets. De Morgan s laws. Mappings. Definition. Definition Sets Let X and Y be two sets. Then the set A set is a collection of elements. Two sets are equal if they contain exactly the same elements. A is a subset of B (A B) if all the elements of A also belong

More information

However, this is not always true! For example, this fails if both A and B are closed and unbounded (find an example).

However, this is not always true! For example, this fails if both A and B are closed and unbounded (find an example). 98 CHAPTER 3. PROPERTIES OF CONVEX SETS: A GLIMPSE 3.2 Separation Theorems It seems intuitively rather obvious that if A and B are two nonempty disjoint convex sets in A 2, then there is a line, H, separating

More information

2.2 Limit of a Function and Limit Laws

2.2 Limit of a Function and Limit Laws Limit of a Function and Limit Laws Section Notes Page Let s look at the graph y What is y()? That s right, its undefined, but what if we wanted to find the y value the graph is approaching as we get close

More information

Math 734 Aug 22, Differential Geometry Fall 2002, USC

Math 734 Aug 22, Differential Geometry Fall 2002, USC Math 734 Aug 22, 2002 1 Differential Geometry Fall 2002, USC Lecture Notes 1 1 Topological Manifolds The basic objects of study in this class are manifolds. Roughly speaking, these are objects which locally

More information

M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements.

M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements. M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements. Chapter 1: Metric spaces and convergence. (1.1) Recall the standard distance function

More information

REVIEW OF FUZZY SETS

REVIEW OF FUZZY SETS REVIEW OF FUZZY SETS CONNER HANSEN 1. Introduction L. A. Zadeh s paper Fuzzy Sets* [1] introduces the concept of a fuzzy set, provides definitions for various fuzzy set operations, and proves several properties

More information

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge.

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge. 1 Graph Basics What is a graph? Graph: a graph G consists of a set of vertices, denoted V (G), a set of edges, denoted E(G), and a relation called incidence so that each edge is incident with either one

More information

Chapter S:V. V. Formal Properties of A*

Chapter S:V. V. Formal Properties of A* Chapter S:V V. Formal Properties of A* Properties of Search Space Graphs Auxiliary Concepts Roadmap Completeness of A* Admissibility of A* Efficiency of A* Monotone Heuristic Functions S:V-1 Formal Properties

More information

AXIOMS FOR THE INTEGERS

AXIOMS FOR THE INTEGERS AXIOMS FOR THE INTEGERS BRIAN OSSERMAN We describe the set of axioms for the integers which we will use in the class. The axioms are almost the same as what is presented in Appendix A of the textbook,

More information

ON SWELL COLORED COMPLETE GRAPHS

ON SWELL COLORED COMPLETE GRAPHS Acta Math. Univ. Comenianae Vol. LXIII, (1994), pp. 303 308 303 ON SWELL COLORED COMPLETE GRAPHS C. WARD and S. SZABÓ Abstract. An edge-colored graph is said to be swell-colored if each triangle contains

More information

MA123, Chapter 6: Extreme values, Mean Value Theorem, Curve sketching, and Concavity

MA123, Chapter 6: Extreme values, Mean Value Theorem, Curve sketching, and Concavity MA123, Chapter 6: Etreme values, Mean Value Theorem, Curve sketching, and Concavit Chapter Goals: Appl the Etreme Value Theorem to find the global etrema for continuous function on closed and bounded interval.

More information

Topology and Topological Spaces

Topology and Topological Spaces Topology and Topological Spaces Mathematical spaces such as vector spaces, normed vector spaces (Banach spaces), and metric spaces are generalizations of ideas that are familiar in R or in R n. For example,

More information

MATH 54 - LECTURE 10

MATH 54 - LECTURE 10 MATH 54 - LECTURE 10 DAN CRYTSER The Universal Mapping Property First we note that each of the projection mappings π i : j X j X i is continuous when i X i is given the product topology (also if the product

More information

simply ordered sets. We ll state only the result here, since the proof is given in Munkres.

simply ordered sets. We ll state only the result here, since the proof is given in Munkres. p. 1 Math 490 Notes 20 More About Compactness Recall that in Munkres it is proved that a simply (totally) ordered set X with the order topology is connected iff it satisfies: (1) Every subset bounded above

More information

Pebble Sets in Convex Polygons

Pebble Sets in Convex Polygons 2 1 Pebble Sets in Convex Polygons Kevin Iga, Randall Maddox June 15, 2005 Abstract Lukács and András posed the problem of showing the existence of a set of n 2 points in the interior of a convex n-gon

More information

arxiv: v4 [math.co] 25 Apr 2010

arxiv: v4 [math.co] 25 Apr 2010 QUIVERS OF FINITE MUTATION TYPE AND SKEW-SYMMETRIC MATRICES arxiv:0905.3613v4 [math.co] 25 Apr 2010 AHMET I. SEVEN Abstract. Quivers of finite mutation type are certain directed graphs that first arised

More information

Section 2.5: Continuity

Section 2.5: Continuity Section 2.5: Continuity 1. The Definition of Continuity We start with a naive definition of continuity. Definition 1.1. We say a function f() is continuous if we can draw its graph without lifting out

More information

MATH 137 : Calculus 1 for Honours Mathematics. Online Assignment #5. Limits and Continuity of Functions

MATH 137 : Calculus 1 for Honours Mathematics. Online Assignment #5. Limits and Continuity of Functions 1 Instructions: MATH 137 : Calculus 1 for Honours Mathematics Online Assignment #5 Limits and Continuity of Functions Due by 9:00 pm on WEDNESDAY, June 13, 2018 Weight: 2% This assignment includes the

More information

Notes on point set topology, Fall 2010

Notes on point set topology, Fall 2010 Notes on point set topology, Fall 2010 Stephan Stolz September 3, 2010 Contents 1 Pointset Topology 1 1.1 Metric spaces and topological spaces...................... 1 1.2 Constructions with topological

More information

H = {(1,0,0,...),(0,1,0,0,...),(0,0,1,0,0,...),...}.

H = {(1,0,0,...),(0,1,0,0,...),(0,0,1,0,0,...),...}. II.4. Compactness 1 II.4. Compactness Note. Conway states on page 20 that the concept of compactness is an extension of benefits of finiteness to infinite sets. I often state this idea as: Compact sets

More information

Notes on metric spaces and topology. Math 309: Topics in geometry. Dale Rolfsen. University of British Columbia

Notes on metric spaces and topology. Math 309: Topics in geometry. Dale Rolfsen. University of British Columbia Notes on metric spaces and topology Math 309: Topics in geometry Dale Rolfsen University of British Columbia Let X be a set; we ll generally refer to its elements as points. A distance function, or metric

More information

Cantor s Diagonal Argument for Different Levels of Infinity

Cantor s Diagonal Argument for Different Levels of Infinity JANUARY 2015 1 Cantor s Diagonal Argument for Different Levels of Infinity Michael J. Neely University of Southern California http://www-bcf.usc.edu/ mjneely Abstract These notes develop the classic Cantor

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Eam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the intervals on which the function is continuous. 2 1) y = ( + 5)2 + 10 A) (-, ) B)

More information

Lecture notes on the simplex method September We will present an algorithm to solve linear programs of the form. maximize.

Lecture notes on the simplex method September We will present an algorithm to solve linear programs of the form. maximize. Cornell University, Fall 2017 CS 6820: Algorithms Lecture notes on the simplex method September 2017 1 The Simplex Method We will present an algorithm to solve linear programs of the form maximize subject

More information

CS321 Introduction To Numerical Methods

CS321 Introduction To Numerical Methods CS3 Introduction To Numerical Methods Fuhua (Frank) Cheng Department of Computer Science University of Kentucky Lexington KY 456-46 - - Table of Contents Errors and Number Representations 3 Error Types

More information

Downloaded from

Downloaded from 1 Class XI: Math Chapter 13: Limits and Derivatives Chapter Notes Key-Concepts 1. The epected value of the function as dictated by the points to the left of a point defines the left hand it of the function

More information

The Limit Concept. Introduction to Limits. Definition of Limit. Example 1. Example 2. Example 3 4/7/2015

The Limit Concept. Introduction to Limits. Definition of Limit. Example 1. Example 2. Example 3 4/7/2015 4/7/015 The Limit Concept Introduction to Limits Precalculus 1.1 The notion of a it is a fundamental concept of calculus. We will learn how to evaluate its and how they are used in the two basic problems

More information

Johns Hopkins Math Tournament Proof Round: Point Set Topology

Johns Hopkins Math Tournament Proof Round: Point Set Topology Johns Hopkins Math Tournament 2019 Proof Round: Point Set Topology February 9, 2019 Problem Points Score 1 3 2 6 3 6 4 6 5 10 6 6 7 8 8 6 9 8 10 8 11 9 12 10 13 14 Total 100 Instructions The exam is worth

More information

EXERCISE I JEE MAIN. x continuous at x = 0 if a equals (A) 0 (B) 4 (C) 5 (D) 6 Sol. x 1 CONTINUITY & DIFFERENTIABILITY. Page # 20

EXERCISE I JEE MAIN. x continuous at x = 0 if a equals (A) 0 (B) 4 (C) 5 (D) 6 Sol. x 1 CONTINUITY & DIFFERENTIABILITY. Page # 20 Page # 0 EXERCISE I 1. A function f() is defined as below cos(sin) cos f() =, 0 and f(0) = a, f() is continuous at = 0 if a equals (A) 0 (B) 4 (C) 5 (D) 6 JEE MAIN CONTINUITY & DIFFERENTIABILITY 4. Let

More information

Section 17. Closed Sets and Limit Points

Section 17. Closed Sets and Limit Points 17. Closed Sets and Limit Points 1 Section 17. Closed Sets and Limit Points Note. In this section, we finally define a closed set. We also introduce several traditional topological concepts, such as limit

More information

Lecture 17: Continuous Functions

Lecture 17: Continuous Functions Lecture 17: Continuous Functions 1 Continuous Functions Let (X, T X ) and (Y, T Y ) be topological spaces. Definition 1.1 (Continuous Function). A function f : X Y is said to be continuous if the inverse

More information

2. Functions, sets, countability and uncountability. Let A, B be sets (often, in this module, subsets of R).

2. Functions, sets, countability and uncountability. Let A, B be sets (often, in this module, subsets of R). 2. Functions, sets, countability and uncountability I. Functions Let A, B be sets (often, in this module, subsets of R). A function f : A B is some rule that assigns to each element of A a unique element

More information

CONNECTED SPACES AND HOW TO USE THEM

CONNECTED SPACES AND HOW TO USE THEM CONNECTED SPACES AND HOW TO USE THEM 1. How to prove X is connected Checking that a space X is NOT connected is typically easy: you just have to find two disjoint, non-empty subsets A and B in X, such

More information

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings On the Relationships between Zero Forcing Numbers and Certain Graph Coverings Fatemeh Alinaghipour Taklimi, Shaun Fallat 1,, Karen Meagher 2 Department of Mathematics and Statistics, University of Regina,

More information

TABLE OF CONTENTS CHAPTER 1 LIMIT AND CONTINUITY... 26

TABLE OF CONTENTS CHAPTER 1 LIMIT AND CONTINUITY... 26 TABLE OF CONTENTS CHAPTER LIMIT AND CONTINUITY... LECTURE 0- BASIC ALGEBRAIC EXPRESSIONS AND SOLVING EQUATIONS... LECTURE 0- INTRODUCTION TO FUNCTIONS... 9 LECTURE 0- EXPONENTIAL AND LOGARITHMIC FUNCTIONS...

More information

Treewidth and graph minors

Treewidth and graph minors Treewidth and graph minors Lectures 9 and 10, December 29, 2011, January 5, 2012 We shall touch upon the theory of Graph Minors by Robertson and Seymour. This theory gives a very general condition under

More information

7. The Gauss-Bonnet theorem

7. The Gauss-Bonnet theorem 7. The Gauss-Bonnet theorem 7.1 Hyperbolic polygons In Euclidean geometry, an n-sided polygon is a subset of the Euclidean plane bounded by n straight lines. Thus the edges of a Euclidean polygon are formed

More information

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier Calculus I Review Handout 1.3 Introduction to Calculus - Limits by Kevin M. Chevalier We are now going to dive into Calculus I as we take a look at the it process. While precalculus covered more static

More information

1.7 The Heine-Borel Covering Theorem; open sets, compact sets

1.7 The Heine-Borel Covering Theorem; open sets, compact sets 1.7 The Heine-Borel Covering Theorem; open sets, compact sets This section gives another application of the interval halving method, this time to a particularly famous theorem of analysis, the Heine Borel

More information

Math 414 Lecture 2 Everyone have a laptop?

Math 414 Lecture 2 Everyone have a laptop? Math 44 Lecture 2 Everyone have a laptop? THEOREM. Let v,...,v k be k vectors in an n-dimensional space and A = [v ;...; v k ] v,..., v k independent v,..., v k span the space v,..., v k a basis v,...,

More information

Graph Connectivity G G G

Graph Connectivity G G G Graph Connectivity 1 Introduction We have seen that trees are minimally connected graphs, i.e., deleting any edge of the tree gives us a disconnected graph. What makes trees so susceptible to edge deletions?

More information

Generell Topologi. Richard Williamson. May 27, 2013

Generell Topologi. Richard Williamson. May 27, 2013 Generell Topologi Richard Williamson May 27, 2013 1 1 Tuesday 15th January 1.1 Topological spaces definition, terminology, finite examples Definition 1.1. A topological space is a pair (X, O) of a set

More information

11.1. Definitions. 11. Domination in Graphs

11.1. Definitions. 11. Domination in Graphs 11. Domination in Graphs Some definitions Minimal dominating sets Bounds for the domination number. The independent domination number Other domination parameters. 11.1. Definitions A vertex v in a graph

More information

Math 190: Quotient Topology Supplement

Math 190: Quotient Topology Supplement Math 190: Quotient Topology Supplement 1. Introduction The purpose of this document is to give an introduction to the quotient topology. The quotient topology is one of the most ubiquitous constructions

More information

Lecture 0: Reivew of some basic material

Lecture 0: Reivew of some basic material Lecture 0: Reivew of some basic material September 12, 2018 1 Background material on the homotopy category We begin with the topological category TOP, whose objects are topological spaces and whose morphisms

More information

Chapter 1. Limits and Continuity. 1.1 Limits

Chapter 1. Limits and Continuity. 1.1 Limits Chapter Limits and Continuit. Limits The its is the fundamental notion of calculus. This underling concept is the thread that binds together virtuall all of the calculus ou are about to stud. In this section,

More information

Topology - I. Michael Shulman WOMP 2004

Topology - I. Michael Shulman WOMP 2004 Topology - I Michael Shulman WOMP 2004 1 Topological Spaces There are many different ways to define a topological space; the most common one is as follows: Definition 1.1 A topological space (often just

More information

THE INSULATION SEQUENCE OF A GRAPH

THE INSULATION SEQUENCE OF A GRAPH THE INSULATION SEQUENCE OF A GRAPH ELENA GRIGORESCU Abstract. In a graph G, a k-insulated set S is a subset of the vertices of G such that every vertex in S is adjacent to at most k vertices in S, and

More information

Sequential Coordinate-wise Algorithm for Non-negative Least Squares Problem

Sequential Coordinate-wise Algorithm for Non-negative Least Squares Problem CENTER FOR MACHINE PERCEPTION CZECH TECHNICAL UNIVERSITY Sequential Coordinate-wise Algorithm for Non-negative Least Squares Problem Woring document of the EU project COSPAL IST-004176 Vojtěch Franc, Miro

More information

Planar graphs. Chapter 8

Planar graphs. Chapter 8 Chapter 8 Planar graphs Definition 8.1. A graph is called planar if it can be drawn in the plane so that edges intersect only at vertices to which they are incident. Example 8.2. Different representations

More information

2 The Fractional Chromatic Gap

2 The Fractional Chromatic Gap C 1 11 2 The Fractional Chromatic Gap As previously noted, for any finite graph. This result follows from the strong duality of linear programs. Since there is no such duality result for infinite linear

More information

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism CHAPTER 2 Graphs 1. Introduction to Graphs and Graph Isomorphism 1.1. The Graph Menagerie. Definition 1.1.1. A simple graph G = (V, E) consists of a set V of vertices and a set E of edges, represented

More information

Chromatic Transversal Domatic Number of Graphs

Chromatic Transversal Domatic Number of Graphs International Mathematical Forum, 5, 010, no. 13, 639-648 Chromatic Transversal Domatic Number of Graphs L. Benedict Michael Raj 1, S. K. Ayyaswamy and I. Sahul Hamid 3 1 Department of Mathematics, St.

More information

4. Definition: topological space, open set, topology, trivial topology, discrete topology.

4. Definition: topological space, open set, topology, trivial topology, discrete topology. Topology Summary Note to the reader. If a statement is marked with [Not proved in the lecture], then the statement was stated but not proved in the lecture. Of course, you don t need to know the proof.

More information

Infinity and Uncountability. Countable Countably infinite. Enumeration

Infinity and Uncountability. Countable Countably infinite. Enumeration Infinity and Uncountability. Countable Countably infinite. Enumeration How big is the set of reals or the set of integers? Infinite! Is one bigger or smaller? Same size? Same number? Make a function f

More information

Lesson 10. Student Outcomes. Lesson Notes

Lesson 10. Student Outcomes. Lesson Notes Student Outcomes Students understand that a function from one set (called the domain) to another set (called the range) assigns each element of the domain to exactly one element of the range and understand

More information

MAT 3271: Selected Solutions to the Assignment 6

MAT 3271: Selected Solutions to the Assignment 6 Chapter 2: Major Exercises MAT 3271: Selected Solutions to the Assignment 6 1. Since a projective plan is a model of incidence geometry, Incidence Axioms 1-3 and Propositions 2.1-2.5 (which follow logically

More information

= [ U 1 \ U 2 = B \ [ B \ B.

= [ U 1 \ U 2 = B \ [ B \ B. 5. Mon, Sept. 8 At the end of class on Friday, we introduced the notion of a topology, and I asked you to think about how many possible topologies there are on a 3-element set. The answer is... 29. The

More information

The set consisting of all natural numbers that are in A and are in B is the set f1; 3; 5g;

The set consisting of all natural numbers that are in A and are in B is the set f1; 3; 5g; Chapter 5 Set Theory 5.1 Sets and Operations on Sets Preview Activity 1 (Set Operations) Before beginning this section, it would be a good idea to review sets and set notation, including the roster method

More information

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics 400 lecture note #4 [Ch 6] Set Theory 1. Basic Concepts and Definitions 1) Basics Element: ; A is a set consisting of elements x which is in a/another set S such that P(x) is true. Empty set: notated {

More information

Natural Numbers. We will use natural numbers to illustrate several ideas that will apply to Haskell data types in general.

Natural Numbers. We will use natural numbers to illustrate several ideas that will apply to Haskell data types in general. Natural Numbers We will use natural numbers to illustrate several ideas that will apply to Haskell data types in general. For the moment we will ignore that fact that each type in Haskell includes possible

More information

2 Geometry Solutions

2 Geometry Solutions 2 Geometry Solutions jacques@ucsd.edu Here is give problems and solutions in increasing order of difficulty. 2.1 Easier problems Problem 1. What is the minimum number of hyperplanar slices to make a d-dimensional

More information

Topology problem set Integration workshop 2010

Topology problem set Integration workshop 2010 Topology problem set Integration workshop 2010 July 28, 2010 1 Topological spaces and Continuous functions 1.1 If T 1 and T 2 are two topologies on X, show that (X, T 1 T 2 ) is also a topological space.

More information

Computer Science 280 Fall 2002 Homework 10 Solutions

Computer Science 280 Fall 2002 Homework 10 Solutions Computer Science 280 Fall 2002 Homework 10 Solutions Part A 1. How many nonisomorphic subgraphs does W 4 have? W 4 is the wheel graph obtained by adding a central vertex and 4 additional "spoke" edges

More information

6c Lecture 3 & 4: April 8 & 10, 2014

6c Lecture 3 & 4: April 8 & 10, 2014 6c Lecture 3 & 4: April 8 & 10, 2014 3.1 Graphs and trees We begin by recalling some basic definitions from graph theory. Definition 3.1. A (undirected, simple) graph consists of a set of vertices V and

More information

The Set-Open topology

The Set-Open topology Volume 37, 2011 Pages 205 217 http://topology.auburn.edu/tp/ The Set-Open topology by A. V. Osipov Electronically published on August 26, 2010 Topology Proceedings Web: http://topology.auburn.edu/tp/ Mail:

More information

1 Linear programming relaxation

1 Linear programming relaxation Cornell University, Fall 2010 CS 6820: Algorithms Lecture notes: Primal-dual min-cost bipartite matching August 27 30 1 Linear programming relaxation Recall that in the bipartite minimum-cost perfect matching

More information

Numerical Optimization

Numerical Optimization Convex Sets Computer Science and Automation Indian Institute of Science Bangalore 560 012, India. NPTEL Course on Let x 1, x 2 R n, x 1 x 2. Line and line segment Line passing through x 1 and x 2 : {y

More information