Sections 1.3 Computation of Limits

Size: px
Start display at page:

Download "Sections 1.3 Computation of Limits"

Transcription

1 1 Sections 1.3 Computation of Limits We will shortly introduce the it laws. Limit laws allows us to evaluate the it of more complicated functions using the it of simpler ones. Theorem Suppose that c is a constant and the its f() and g() eists. Then; 1) 2) 3) 4) 5) [f() ± g()] = f() ± g() [cf()] = c f() [f()g()] = f() g() If g() 0, then [ f() f() g()] = g() [f()]n = [ f()] n n is a positive integer Indeed the same rules hold for directional its, so that (for instance) if f() and g() eists, then + g()] = f() + [f() g() Corollary If f() is a polynomial, then f() = f(a). Proof: If f() is a polynomial, we know that f() = a n n + a n 1 n a 1 + a 0. Then we have

2 2 f() = a n n + a n 1 n a 1 + a 0 = [a n n ] + [a n 1 n 1 ] [a 1 ] + [a 0 ] = a n [ n ] + a n 1 [ n 1 ] a 1 [] + a 0 = a n ( ) n + a n 1 ( ) n a 1 ( ) + a 0 = a n a n + a n 1 a n a 1 a + a 0 = f(a) Eample Find the 5 ( ). We will use the same steps as we did in the proof of the above Corollary. 5 ( ) = by Law Eample Find the = by Law = 2[ ] by Law = 2(5) 2 3(5) + 4 = First note that 5 3 = 5 3 Law 4 for quotients. =to 2 = So we may use the = = ( 2)3 + 2( 2) = 1 11 Theorem If f is a rational function and a is in the domain of f, then f() = f(a). After the Eample above the proof of this theorem should be clear. Let s see what happens if a is not in the domain of our rational function.

3 3 Eample Find We cannot simply substitute = 0 since f(0) is not defined. Hence we cannot apply the Law 4 for quotients (denominator is zero). However we can rationalize the numerator as follows: = ( 2 + 9) 9 = 2 ( ) = 2 2 ( ) 1 = ( ) = 1 ( 2 + 9) + 3 Eample Find = = 1 6 Note that again we cannot use the Law 4 for quotients because the denominator is zero at = 2. So we need another algebra trick; = ( 2)( + 2) ( 2) = ( + 2) = 4 In the above eample note that f() + 2. The rational function is very much like + 2 ecept it is not defined at = 2. So we are using the power of the it. Theorem Let f() = L and n is any positive integer, then If n is even, we need f() > 0. n f() = n f()

4 4 Eample Find = ( ) = ( 2) 2 + 3( 2) + 6 = 4 Eample Find 2. Your first reaction to this problem should be that it does not eits. Because any open interval around =2 contains values of not in the domain of 2. But if we correct the question and discuss the it from the right we have an answer: 2 = 0. If you consider 2 does not eist. By a fact we + have seen before you can also conclude that 2 does not eist. Some Cautionary Eamples: Note that I have underlined the verb eists in the statement of the it laws. You have to be cautious of this fact when you do the it calculations. If either one of the its do not eists, then you cannot automatically assume that you are able to use these rules. The Limit Laws guarantee results only if both results eits. So natural question might come to your mind such as: Question Does [f()+g()] eits even though f() and g() does not eists? Answer It depends on f() and g(). Check out the following: { 0 < 0 Let f() = 1 0 { 1 < 0 and g() = 0 0 Both f() and g() do not eist because both of their one-sided its are not equal. f() = 1 f() = 0 and g() = g() = 1 But f() + g() = 1 for all. So [f() + g()] = 1 hence the it of the sum eists.

5 Question Does f()g() eist even though f() eists but g() does not. Answer It again depends on f() and g(). Take your f() = and g() = 1. = 0 and 1/ does not eist. But 1/ = 1 and eists. (Note that 1/ is not defined at = 0 because 1/ is not.) Question What is [3f() + 2g()] where f() is the blue one and g() is the red. 5 Note again we cannot use the it laws because g() does not eist. So instead note that the directional its eist and hence you can use the it laws for the directional its and compare them for the eistence of [3f() + 2g()]. (Recall: [3f() + 2g()] eists iff + 2g()] and [3f() +[3f() + 2g()] eists and they are equal.) Now: f() = f() = 1, g() = 2 and + Using our it laws for directional its, we have and g() = g()] = + = ( 2) = 1 [3f() [3f()] [2g()] + 2g()] = + = ( 1) = 1 +[3f() +[3f()] +[2g()] Since these two directional it do not agree, we conclude that [3f() + 2g()] does not eist. So that you have more fun while solving the hw problems and in discussion sessions I ll state the following result from your book without proof.

6 6 Theorem For any number a, we have sin() = sin(a) cos() = cos(a) e = e a ln() = ln(a), for a > 0 If p() is a polynomial, and then f(p()) = L f() = L p(a) sin 1 () = sin 1 (a) for 1 < a < 1 cos 1 () = cos 1 (a) for 1 < a < 1 tan 1 () = tan 1 (a) for < a < We will re-visit the results of this theorem when we deal with continuity in the net section. Now let s learn another tool that will help us to evaluate some important its such as sin() Theorem If f() g() when is near a (ecept possibly at a) and the its of f and g eists as approaches a, then f() g() Squeeze Theorem/Sandwich Theorem If f() g() h() when is near a (ecept for possibly at a) and f() = h() = L then, g() = L Eample Show that 2 sin( 1 ) = 0. First note that you cannot use the it law 3 for products of functions because sin(1/) does not eist. However, since 1 sin( 1 ) 1 for all 0 we have 2 2 sin( 1 ) 2 since 2 0 always.

7 7 Also observe this relation in the graph below: Out[22]= We know that 2 = 2 = 0. Taking f() = 2, g() = 2 sin( 1 ) and h() = 2 in the Squeeze Theorem, we obtain 2 sin( 1 ) = 0 Little Eercise Try yourself to show sin(1/) = 0. Here you will need your directional it abilities along with the Squeeze Theorem.

Section 2.3: Calculating Limits using the Limit Laws

Section 2.3: Calculating Limits using the Limit Laws Section 2.3: Calculating Limits using te Limit Laws In previous sections, we used graps and numerics to approimate te value of a it if it eists. Te problem wit tis owever is tat it does not always give

More information

Limits. f(x) and lim. g(x) g(x)

Limits. f(x) and lim. g(x) g(x) Limits Limit Laws Suppose c is constant, n is a positive integer, and f() and g() both eist. Then,. [f() + g()] = f() + g() 2. [f() g()] = f() g() [ ] 3. [c f()] = c f() [ ] [ ] 4. [f() g()] = f() g()

More information

Limits and Derivatives (Review of Math 249 or 251)

Limits and Derivatives (Review of Math 249 or 251) Chapter 3 Limits and Derivatives (Review of Math 249 or 251) 3.1 Overview This is the first of two chapters reviewing material from calculus; its and derivatives are discussed in this chapter, and integrals

More information

Downloaded from

Downloaded from 1 Class XI: Math Chapter 13: Limits and Derivatives Chapter Notes Key-Concepts 1. The epected value of the function as dictated by the points to the left of a point defines the left hand it of the function

More information

TABLE OF CONTENTS CHAPTER 1 LIMIT AND CONTINUITY... 26

TABLE OF CONTENTS CHAPTER 1 LIMIT AND CONTINUITY... 26 TABLE OF CONTENTS CHAPTER LIMIT AND CONTINUITY... LECTURE 0- BASIC ALGEBRAIC EXPRESSIONS AND SOLVING EQUATIONS... LECTURE 0- INTRODUCTION TO FUNCTIONS... 9 LECTURE 0- EXPONENTIAL AND LOGARITHMIC FUNCTIONS...

More information

MATH 1A MIDTERM 1 (8 AM VERSION) SOLUTION. (Last edited October 18, 2013 at 5:06pm.) lim

MATH 1A MIDTERM 1 (8 AM VERSION) SOLUTION. (Last edited October 18, 2013 at 5:06pm.) lim MATH A MIDTERM (8 AM VERSION) SOLUTION (Last edited October 8, 03 at 5:06pm.) Problem. (i) State the Squeeze Theorem. (ii) Prove the Squeeze Theorem. (iii) Using a carefully justified application of the

More information

Section 2.5: Continuity

Section 2.5: Continuity Section 2.5: Continuity 1. The Definition of Continuity We start with a naive definition of continuity. Definition 1.1. We say a function f() is continuous if we can draw its graph without lifting out

More information

In this chapter, we define limits of functions and describe some of their properties.

In this chapter, we define limits of functions and describe some of their properties. Chapter 2 Limits of Functions In this chapter, we define its of functions and describe some of their properties. 2.. Limits We begin with the ϵ-δ definition of the it of a function. Definition 2.. Let

More information

f(x) lim does not exist.

f(x) lim does not exist. Indeterminate Forms and L Hopital s Rule When we computed its of quotients, i.e. its of the form f() a g(), we came across several different things that could happen: f(). a g() = f(a) g(a) when g(). a

More information

3.5 - Concavity. a concave up. a concave down

3.5 - Concavity. a concave up. a concave down . - Concavity 1. Concave up and concave down For a function f that is differentiable on an interval I, the graph of f is If f is concave up on a, b, then the secant line passing through points 1, f 1 and,

More information

Calculus I (part 1): Limits and Continuity (by Evan Dummit, 2016, v. 2.01)

Calculus I (part 1): Limits and Continuity (by Evan Dummit, 2016, v. 2.01) Calculus I (part ): Limits and Continuity (by Evan Dummit, 206, v. 2.0) Contents Limits and Continuity. Limits (Informally)...............................................2 Limits and the Limit Laws..........................................

More information

Domain: The domain of f is all real numbers except those values for which Q(x) =0.

Domain: The domain of f is all real numbers except those values for which Q(x) =0. Math 1330 Section.3.3: Rational Functions Definition: A rational function is a function that can be written in the form P() f(), where f and g are polynomials. Q() The domain of the rational function such

More information

Chapter 1. Limits and Continuity. 1.1 Limits

Chapter 1. Limits and Continuity. 1.1 Limits Chapter Limits and Continuit. Limits The its is the fundamental notion of calculus. This underling concept is the thread that binds together virtuall all of the calculus ou are about to stud. In this section,

More information

MA 180 Lecture Chapter 7 College Algebra and Calculus by Larson/Hodgkins Limits and Derivatives

MA 180 Lecture Chapter 7 College Algebra and Calculus by Larson/Hodgkins Limits and Derivatives MA 180 Lecture Chapter 7 College Algebra and Calculus by Larson/Hodgkins Limits and Derivatives 7.1) Limits An important concept in the study of mathematics is that of a it. It is often one of the harder

More information

Section 1: Limits and Continuity

Section 1: Limits and Continuity Chapter The Derivative Applied Calculus 74 Section 1: Limits and Continuity In the last section, we saw that as the interval over which we calculated got smaller, the secant slopes approached the tangent

More information

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier Calculus I Review Handout 1.3 Introduction to Calculus - Limits by Kevin M. Chevalier We are now going to dive into Calculus I as we take a look at the it process. While precalculus covered more static

More information

Updated: January 16, 2016 Calculus II 6.8. Math 230. Calculus II. Brian Veitch Fall 2015 Northern Illinois University.

Updated: January 16, 2016 Calculus II 6.8. Math 230. Calculus II. Brian Veitch Fall 2015 Northern Illinois University. Updated: January 6, 206 Calculus II 6.8 Math 230 Calculus II Brian Veitch Fall 205 Northern Illinois University Indeterminate Forms and L Hospital s Rule From calculus I, we used a geometric approach to

More information

2.5 Continuity. f(x) + g(x) > (M c) + (c - 1) == M. Thus,

2.5 Continuity. f(x) + g(x) > (M c) + (c - 1) == M. Thus, 96 D CHAPTER LIMITS AND DERIVATIVES If() - LI < c. Let 6 be the smaller of 61 and 6. Then 0 < I - al < 6 =} a - 61 < X < a or a < < a + 6 so If() - LI < c. Hence, lim f() == L. So we have proved that lim

More information

WebAssign hw2.3 (Homework)

WebAssign hw2.3 (Homework) WebAssign hw2.3 (Homework) Current Score : / 98 Due : Wednesday, May 31 2017 07:25 AM PDT Michael Lee Math261(Calculus I), section 1049, Spring 2017 Instructor: Michael Lee 1. /6 pointsscalc8 1.6.001.

More information

Algebra 2 Notes Name: Section 8.4 Rational Functions. A function is a function whose rule can be written as a of. 1 x. =. Its graph is a, f x

Algebra 2 Notes Name: Section 8.4 Rational Functions. A function is a function whose rule can be written as a of. 1 x. =. Its graph is a, f x Algebra Notes Name: Section 8. Rational Functions DAY ONE: A function is a function whose rule can be written as a of two polynomials. The parent rational function is f. Its graph is a, which has two separate

More information

The domain of any rational function is all real numbers except the numbers that make the denominator zero or where q ( x)

The domain of any rational function is all real numbers except the numbers that make the denominator zero or where q ( x) We will look at the graphs of these functions, eploring their domain and end behavior. College algebra Class notes Rational Functions with Vertical, Horizontal, and Oblique Asymptotes (section 4.) Definition:

More information

1.5 LIMITS. The Limit of a Function

1.5 LIMITS. The Limit of a Function 60040_005.qd /5/05 :0 PM Page 49 SECTION.5 Limits 49.5 LIMITS Find its of functions graphicall and numericall. Use the properties of its to evaluate its of functions. Use different analtic techniques to

More information

Limits, Continuity, and Asymptotes

Limits, Continuity, and Asymptotes LimitsContinuity.nb 1 Limits, Continuity, and Asymptotes Limits Limit evaluation is a basic calculus tool that can be used in many different situations. We will develop a combined numerical, graphical,

More information

CSE 215: Foundations of Computer Science Recitation Exercises Set #4 Stony Brook University. Name: ID#: Section #: Score: / 4

CSE 215: Foundations of Computer Science Recitation Exercises Set #4 Stony Brook University. Name: ID#: Section #: Score: / 4 CSE 215: Foundations of Computer Science Recitation Exercises Set #4 Stony Brook University Name: ID#: Section #: Score: / 4 Unit 7: Direct Proof Introduction 1. The statement below is true. Rewrite the

More information

3.5 Indeterminate Forms. Consider the function given by the rule f(x) = Whenever direct substitution into lim x c f(x) yields a 0 0

3.5 Indeterminate Forms. Consider the function given by the rule f(x) = Whenever direct substitution into lim x c f(x) yields a 0 0 3.5 Indeterminate Forms Introduction; Consider the function given by the rule f() = ; its graph is shown below. 0 0 situations Clearly, = 3. Note, however, that if one merely tried to plug in 0 for when

More information

Radical Expressions and Functions What is a square root of 25? How many square roots does 25 have? Do the following square roots exist?

Radical Expressions and Functions What is a square root of 25? How many square roots does 25 have? Do the following square roots exist? Hartfield Intermediate Algebra (Version 2014-2D) Unit 4 Page 1 Topic 4 1 Radical Epressions and Functions What is a square root of 25? How many square roots does 25 have? Do the following square roots

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Eam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the intervals on which the function is continuous. 2 1) y = ( + 5)2 + 10 A) (-, ) B)

More information

Math 0420 Homework 3. Scratch Work:For c > 0, according to the definition of limit, we want to find δ to bound the term x c by ɛ.we have: x c.

Math 0420 Homework 3. Scratch Work:For c > 0, according to the definition of limit, we want to find δ to bound the term x c by ɛ.we have: x c. Math 0420 Homework 3 Eercise 311 Find the it or prove the it does not eit (a) for c 0 Solution: First, we might guess that the it is c Scratch Work:For c > 0, according to the definition of it, we want

More information

A Catalog of Essential Functions

A Catalog of Essential Functions Section. A Catalog of Essential Functions Kiryl Tsishchanka A Catalog of Essential Functions In this course we consider 6 groups of important functions:. Linear Functions. Polynomials 3. Power functions.

More information

lim x c x 2 x +2. Suppose that, instead of calculating all the values in the above tables, you simply . What do you find? x +2

lim x c x 2 x +2. Suppose that, instead of calculating all the values in the above tables, you simply . What do you find? x +2 MA123, Chapter 3: The idea of its (pp. 47-67, Gootman) Chapter Goals: Evaluate its. Evaluate one-sided its. Understand the concepts of continuity and differentiability and their relationship. Assignments:

More information

12.2 TECHNIQUES FOR EVALUATING LIMITS

12.2 TECHNIQUES FOR EVALUATING LIMITS Section Tecniques for Evaluating Limits 86 TECHNIQUES FOR EVALUATING LIMITS Wat ou sould learn Use te dividing out tecnique to evaluate its of functions Use te rationalizing tecnique to evaluate its of

More information

Limits and Continuity: section 12.2

Limits and Continuity: section 12.2 Limits and Continuity: section 1. Definition. Let f(x,y) be a function with domain D, and let (a,b) be a point in the plane. We write f (x,y) = L if for each ε > 0 there exists some δ > 0 such that if

More information

MATH 137 : Calculus 1 for Honours Mathematics. Online Assignment #5. Limits and Continuity of Functions

MATH 137 : Calculus 1 for Honours Mathematics. Online Assignment #5. Limits and Continuity of Functions 1 Instructions: MATH 137 : Calculus 1 for Honours Mathematics Online Assignment #5 Limits and Continuity of Functions Due by 9:00 pm on WEDNESDAY, June 13, 2018 Weight: 2% This assignment includes the

More information

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright Cengage Learning. All rights reserved. SECTION 4.2 Direct Proof and Counterexample II: Rational Numbers Copyright Cengage Learning. All

More information

Finding Asymptotes KEY

Finding Asymptotes KEY Unit: 0 Lesson: 0 Discontinuities Rational functions of the form f ( are undefined at values of that make 0. Wherever a rational function is undefined, a break occurs in its graph. Each such break is called

More information

Limits and an Introduction to Calculus. Copyright Cengage Learning. All rights reserved.

Limits and an Introduction to Calculus. Copyright Cengage Learning. All rights reserved. Limits and an Introduction to Calculus 12 Copyright Cengage Learning. All rights reserved. 12.2 TECHNIQUES FOR EVALUATING LIMITS Copyright Cengage Learning. All rights reserved. What You Should Learn Use

More information

Sections 4.3, 4.5 & 4.6: Graphing

Sections 4.3, 4.5 & 4.6: Graphing Sections 4.3, 4.5 & 4.6: Graphing In this section, we shall see how facts about f () and f () can be used to supply useful information about the graph of f(). Since there are three sections devoted to

More information

The method of rationalizing

The method of rationalizing Roberto s Notes on Differential Calculus Chapter : Resolving indeterminate forms Section The method of rationalizing What you need to know already: The concept of it and the factor-and-cancel method of

More information

Section 2.2: Absolute Value Functions, from College Algebra: Corrected Edition by Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a

Section 2.2: Absolute Value Functions, from College Algebra: Corrected Edition by Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Section.: Absolute Value Functions, from College Algebra: Corrected Edition b Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Creative Commons Attribution-NonCommercial-ShareAlike.0 license.

More information

2.2 Absolute Value Functions

2.2 Absolute Value Functions . Absolute Value Functions 7. Absolute Value Functions There are a few was to describe what is meant b the absolute value of a real number. You ma have been taught that is the distance from the real number

More information

Section 4.4 Rational Functions and Their Graphs. 1, the line x = 0 (y-axis) is its vertical asymptote.

Section 4.4 Rational Functions and Their Graphs. 1, the line x = 0 (y-axis) is its vertical asymptote. Section 4.4 Rational Functions and Their Graphs p( ) A rational function can be epressed as where p() and q() are q( ) 3 polynomial functions and q() is not equal to 0. For eample, 16 is a rational function.

More information

EXPLORING RATIONAL FUNCTIONS GRAPHICALLY

EXPLORING RATIONAL FUNCTIONS GRAPHICALLY EXPLORING RATIONAL FUNCTIONS GRAPHICALLY Precalculus Project Objectives: To find patterns in the graphs of rational functions. To construct a rational function using its properties. Required Information:

More information

Section 4.4 Rational Functions and Their Graphs

Section 4.4 Rational Functions and Their Graphs Section 4.4 Rational Functions and Their Graphs p( ) A rational function can be epressed as where p() and q() are q( ) 3 polynomial functions and q() is not equal to 0. For eample, is a 16 rational function.

More information

ICM ~Unit 4 ~ Day 2. Section 1.2 Domain, Continuity, Discontinuities

ICM ~Unit 4 ~ Day 2. Section 1.2 Domain, Continuity, Discontinuities ICM ~Unit 4 ~ Day Section 1. Domain, Continuity, Discontinuities Warm Up Day Find the domain, -intercepts and y-intercepts. 1. 3 5. 1 9 3. Factor completely. 6 4 16 3 4. Factor completely. 8 7 Practice

More information

UNIT-II NUMBER THEORY

UNIT-II NUMBER THEORY UNIT-II NUMBER THEORY An integer n is even if, and only if, n equals twice some integer. i.e. if n is an integer, then n is even an integer k such that n =2k An integer n is odd if, and only if, n equals

More information

Proving Trigonometric Identities

Proving Trigonometric Identities MHF 4UI Unit 7 Day Proving Trigonometric Identities An identity is an epression which is true for all values in the domain. Reciprocal Identities csc θ sin θ sec θ cos θ cot θ tan θ Quotient Identities

More information

11.2 Techniques for Evaluating Limits

11.2 Techniques for Evaluating Limits 11.2 Techniques for Evaluating Limits Copyright Cengage Learning. All rights reserved. What You Should Learn Use the dividing out technique to evaluate limits of functions. Use the rationalizing technique

More information

Relations and Functions

Relations and Functions Relations and Functions. RELATION Mathematical Concepts Any pair of elements (, y) is called an ordered pair where is the first component (abscissa) and y is the second component (ordinate). Relations

More information

12.2 Techniques for Evaluating Limits

12.2 Techniques for Evaluating Limits 335_qd /4/5 :5 PM Page 863 Section Tecniques for Evaluating Limits 863 Tecniques for Evaluating Limits Wat ou sould learn Use te dividing out tecnique to evaluate its of functions Use te rationalizing

More information

EXERCISE I JEE MAIN. x continuous at x = 0 if a equals (A) 0 (B) 4 (C) 5 (D) 6 Sol. x 1 CONTINUITY & DIFFERENTIABILITY. Page # 20

EXERCISE I JEE MAIN. x continuous at x = 0 if a equals (A) 0 (B) 4 (C) 5 (D) 6 Sol. x 1 CONTINUITY & DIFFERENTIABILITY. Page # 20 Page # 0 EXERCISE I 1. A function f() is defined as below cos(sin) cos f() =, 0 and f(0) = a, f() is continuous at = 0 if a equals (A) 0 (B) 4 (C) 5 (D) 6 JEE MAIN CONTINUITY & DIFFERENTIABILITY 4. Let

More information

3.5 - Concavity 1. Concave up and concave down

3.5 - Concavity 1. Concave up and concave down . - Concavit. Concave up and concave down Eample: The graph of f is given below. Determine graphicall the interval on which f is For a function f that is differentiable on an interval I, the graph of f

More information

The method of rationalizing

The method of rationalizing Roberto s Notes on Differential Calculus Chapter : Resolving indeterminate forms Section The method of rationalizing What you need to know already: The concept of it and the factor-and-cancel method of

More information

A Rational Shift in Behavior. Translating Rational Functions. LEARnIng goals

A Rational Shift in Behavior. Translating Rational Functions. LEARnIng goals . A Rational Shift in Behavior LEARnIng goals In this lesson, ou will: Analze rational functions with a constant added to the denominator. Compare rational functions in different forms. Identif vertical

More information

Graphing Functions. 0, < x < 0 1, 0 x < is defined everywhere on R but has a jump discontinuity at x = 0. h(x) =

Graphing Functions. 0, < x < 0 1, 0 x < is defined everywhere on R but has a jump discontinuity at x = 0. h(x) = Graphing Functions Section. of your tetbook is devoted to reviewing a series of steps that you can use to develop a reasonable graph of a function. Here is my version of a list of things to check. You

More information

Multiplying and Dividing Rational Expressions

Multiplying and Dividing Rational Expressions Multiplying and Dividing Rational Expressions Warm Up Simplify each expression. Assume all variables are nonzero. 1. x 5 x 2 3. x 6 x 2 x 7 Factor each expression. 2. y 3 y 3 y 6 x 4 4. y 2 1 y 5 y 3 5.

More information

2.2 Limit of a Function and Limit Laws

2.2 Limit of a Function and Limit Laws Limit of a Function and Limit Laws Section Notes Page Let s look at the graph y What is y()? That s right, its undefined, but what if we wanted to find the y value the graph is approaching as we get close

More information

( ) ( ) Completing the Square. Alg 3 1 Rational Roots Solving Polynomial Equations. A Perfect Square Trinomials

( ) ( ) Completing the Square. Alg 3 1 Rational Roots Solving Polynomial Equations. A Perfect Square Trinomials Alg Completing the Square A Perfect Square Trinomials (± ) ± (± ) ± 4 4 (± ) ± 6 9 (± 4) ± 8 6 (± 5) ± 5 What is the relationship between the red term and the blue term? B. Creating perfect squares.. 6

More information

4.2 Properties of Rational Functions. 188 CHAPTER 4 Polynomial and Rational Functions. Are You Prepared? Answers

4.2 Properties of Rational Functions. 188 CHAPTER 4 Polynomial and Rational Functions. Are You Prepared? Answers 88 CHAPTER 4 Polnomial and Rational Functions 5. Obtain a graph of the function for the values of a, b, and c in the following table. Conjecture a relation between the degree of a polnomial and the number

More information

Chapter 4 Using Fundamental Identities Section USING FUNDAMENTAL IDENTITIES. Fundamental Trigonometric Identities. Reciprocal Identities

Chapter 4 Using Fundamental Identities Section USING FUNDAMENTAL IDENTITIES. Fundamental Trigonometric Identities. Reciprocal Identities Chapter 4 Using Fundamental Identities Section 4.1 4.1 USING FUNDAMENTAL IDENTITIES Fundamental Trigonometric Identities Reciprocal Identities csc x sec x cot x Quotient Identities tan x cot x Pythagorean

More information

Warm Up Simplify each expression. Assume all variables are nonzero.

Warm Up Simplify each expression. Assume all variables are nonzero. Warm Up Simplify each expression. Assume all variables are nonzero. 1. x 5 x 2 3. x 6 x 2 x 7 x 4 Factor each expression. 2. y 3 y 3 y 6 4. y 2 1 y 5 y 3 5. x 2 2x 8 (x 4)(x + 2) 6. x 2 5x x(x 5) 7. x

More information

function at the given point. Thus, for our previous example we would find that lim f(x) = 0

function at the given point. Thus, for our previous example we would find that lim f(x) = 0 Limits In order to introduce the notion of the it, we will consider the following situation. Suppose you are given a function, defined on some interval, except at a single point in the interval. What,

More information

A Formal Definition of Limit

A Formal Definition of Limit 5 CHAPTER Limits and Their Properties L + ε L L ε (c, L) c + δ c c δ The - definition of the it of f as approaches c Figure. A Formal Definition of Limit Let s take another look at the informal description

More information

Domain of Rational Functions

Domain of Rational Functions SECTION 46 RATIONAL FU NCTIONS SKI LLS OBJ ECTIVES Find the domain of a rational function Determine vertical, horizontal, and slant asmptotes of rational functions Graph rational functions CONCE PTUAL

More information

Limits at Infinity

Limits at Infinity Limits at Infinity 9-6-08 In this section, I ll discuss the it of a function f() as goes to and. We ll see that this is related to horizontal asyptotes of a graph. It s natural to discuss vertical asymptotes

More information

5.2 Verifying Trigonometric Identities

5.2 Verifying Trigonometric Identities 360 Chapter 5 Analytic Trigonometry 5. Verifying Trigonometric Identities Introduction In this section, you will study techniques for verifying trigonometric identities. In the next section, you will study

More information

24 Nov Boolean Operations. Boolean Algebra. Boolean Functions and Expressions. Boolean Functions and Expressions

24 Nov Boolean Operations. Boolean Algebra. Boolean Functions and Expressions. Boolean Functions and Expressions 24 Nov 25 Boolean Algebra Boolean algebra provides the operations and the rules for working with the set {, }. These are the rules that underlie electronic circuits, and the methods we will discuss are

More information

South County Secondary School AP Calculus BC

South County Secondary School AP Calculus BC South County Secondary School AP Calculus BC Summer Assignment For students entering Calculus BC in the Fall of 8 This packet will be collected for a grade at your first class. The material covered in

More information

9.8 Graphing Rational Functions

9.8 Graphing Rational Functions 9. Graphing Rational Functions Lets begin with a deinition. Deinition: Rational Function A rational unction is a unction o the orm P where P and Q are polynomials. Q An eample o a simple rational unction

More information

Fundamentals. Copyright Cengage Learning. All rights reserved.

Fundamentals. Copyright Cengage Learning. All rights reserved. Fundamentals Copyright Cengage Learning. All rights reserved. 1.4 Rational Expressions Copyright Cengage Learning. All rights reserved. Objectives The Domain of an Algebraic Expression Simplifying Rational

More information

2.6 Limits atinfinity; Horizontal Asymptotes

2.6 Limits atinfinity; Horizontal Asymptotes 106 D CHAPTER LIMITS AND DERIVATIVES.6 Limits atinfinit; Horizontal Asmptotes 1. (a) As becomes large, the values of f() approach 5. (b) As becomes large negative, the values of f () approach 3.. (a) The

More information

Techniques for Evaluating Limits. Techniques for Evaluating Limits. Techniques for Evaluating Limits

Techniques for Evaluating Limits. Techniques for Evaluating Limits. Techniques for Evaluating Limits PreCalc CH 12.2.notebook In the beginning of this chapter we evaluated limits of rational functions and saw that the indeterminate form gave us problems. There is a technique that can overcome this difficulty

More information

Multiplying and Dividing Rational Expressions

Multiplying and Dividing Rational Expressions Page 1 of 14 Multiplying and Dividing Rational Expressions Attendance Problems. Simplify each expression. Assume all variables are nonzero. x 6 y 2 1. x 5 x 2 2. y 3 y 3 3. 4. x 2 y 5 Factor each expression.

More information

f x How can we determine algebraically where f is concave up and where f is concave down?

f x How can we determine algebraically where f is concave up and where f is concave down? Concavity - 3.5 1. Concave up and concave down Definition For a function f that is differentiable on an interval I, the graph of f is a. If f is concave up on a, b, then the secant line passing through

More information

.Math 0450 Honors intro to analysis Spring, 2009 Notes #4 corrected (as of Monday evening, 1/12) some changes on page 6, as in .

.Math 0450 Honors intro to analysis Spring, 2009 Notes #4 corrected (as of Monday evening, 1/12) some changes on page 6, as in  . 0.1 More on innity.math 0450 Honors intro to analysis Spring, 2009 Notes #4 corrected (as of Monday evening, 1/12) some changes on page 6, as in email. 0.1.1 If you haven't read 1.3, do so now! In notes#1

More information

Cardinality Lectures

Cardinality Lectures Cardinality Lectures Enrique Treviño March 8, 014 1 Definition of cardinality The cardinality of a set is a measure of the size of a set. When a set A is finite, its cardinality is the number of elements

More information

FUNCTIONS AND MODELS

FUNCTIONS AND MODELS 1 FUNCTIONS AND MODELS FUNCTIONS AND MODELS 1.3 New Functions from Old Functions In this section, we will learn: How to obtain new functions from old functions and how to combine pairs of functions. NEW

More information

Section 4.1: Maximum and Minimum Values

Section 4.1: Maximum and Minimum Values Section 4.: Maimum and Minimum Values In this chapter, we shall consider further applications of the derivative. The main application we shall consider is using derivatives to sketch accurate graphs of

More information

The following information is for reviewing the material since Exam 3:

The following information is for reviewing the material since Exam 3: Outcomes List for Math 121 Calculus I Fall 2010-2011 General Information: The purpose of this Outcomes List is to give you a concrete summary of the material you should know, and the skills you should

More information

MAT137 Calculus! Lecture 31

MAT137 Calculus! Lecture 31 MAT137 Calculus! Lecture 31 Today: Next: Integration Methods: Integration Methods: Trig. Functions (v. 9.10-9.12) Rational Functions Trig. Substitution (v. 9.13-9.15) (v. 9.16-9.17) Integration by Parts

More information

Focusing properties of spherical and parabolic mirrors

Focusing properties of spherical and parabolic mirrors Physics 5B Winter 008 Focusing properties of spherical and parabolic mirrors 1 General considerations Consider a curved mirror surface that is constructed as follows Start with a curve, denoted by y()

More information

9.5 Equivalence Relations

9.5 Equivalence Relations 9.5 Equivalence Relations You know from your early study of fractions that each fraction has many equivalent forms. For example, 2, 2 4, 3 6, 2, 3 6, 5 30,... are all different ways to represent the same

More information

Session 3. Rational and Radical Equations. Math 30-1 R 3. (Revisit, Review and Revive)

Session 3. Rational and Radical Equations. Math 30-1 R 3. (Revisit, Review and Revive) Session 3 Rational and Radical Equations Math 30-1 R 3 (Revisit, Review and Revive) Rational Functions Review Specific Outcome 14 Graph and analyze rational functions (limited to numerators and denominators

More information

Section 6.3: Further Rules for Counting Sets

Section 6.3: Further Rules for Counting Sets Section 6.3: Further Rules for Counting Sets Often when we are considering the probability of an event, that event is itself a union of other events. For example, suppose there is a horse race with three

More information

Section 4.3: Derivatives and the Shapes of Curves

Section 4.3: Derivatives and the Shapes of Curves 1 Section 4.: Derivatives and the Shapes of Curves Practice HW from Stewart Textbook (not to hand in) p. 86 # 1,, 7, 9, 11, 19, 1,, 5 odd The Mean Value Theorem If f is a continuous function on the closed

More information

x 16 d( x) 16 n( x) 36 d( x) zeros: x 2 36 = 0 x 2 = 36 x = ±6 Section Yes. Since 1 is a polynomial (of degree 0), P(x) =

x 16 d( x) 16 n( x) 36 d( x) zeros: x 2 36 = 0 x 2 = 36 x = ±6 Section Yes. Since 1 is a polynomial (of degree 0), P(x) = 9 CHAPTER POLYNOMIAL AND RATIONAL FUNCTIONS Section -. Yes. Since is a polynomial (of degree 0), P() P( ) is a rational function if P() is a polynomial.. A vertical asymptote is a vertical line a that

More information

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright Cengage Learning. All rights reserved. SECTION 4.6 Indirect Argument: Contradiction and Contraposition Copyright Cengage Learning. All

More information

Rational Functions. Definition A rational function can be written in the form. where N(x) and D(x) are

Rational Functions. Definition A rational function can be written in the form. where N(x) and D(x) are Rational Functions Deinition A rational unction can be written in the orm () N() where N() and D() are D() polynomials and D() is not the zero polynomial. *To ind the domain o a rational unction we must

More information

Section 1.5 Transformation of Functions

Section 1.5 Transformation of Functions Section.5 Transformation of Functions 6 Section.5 Transformation of Functions Often when given a problem, we try to model the scenario using mathematics in the form of words, tables, graphs and equations

More information

CHAPTER 4 APPLICATIONS OF DERIVATIVES

CHAPTER 4 APPLICATIONS OF DERIVATIVES CHAPTER 4 APPLICATIONS OF DERIVATIVES 4. EXTREME VALUES OF FUNCTIONS. An asolute minimum at c, an asolute maimum at. Theorem guarantees the eistence of such etreme values ecause h is continuous on [aß

More information

Number Theory and Proof Methods

Number Theory and Proof Methods 9/6/17 Lecture Notes on Discrete Mathematics. Birzeit University Palestine 2016 and Proof Methods Mustafa Jarrar 4.1 Introduction 4.3 Divisibility 4.4 Quotient-Remainder Theorem mjarrar 2015 1 Watch this

More information

1. y = f(x) y = f(x + 3) 3. y = f(x) y = f(x 1) 5. y = 3f(x) 6. y = f(3x) 7. y = f(x) 8. y = f( x) 9. y = f(x 3) + 1

1. y = f(x) y = f(x + 3) 3. y = f(x) y = f(x 1) 5. y = 3f(x) 6. y = f(3x) 7. y = f(x) 8. y = f( x) 9. y = f(x 3) + 1 .7 Transformations.7. Eercises To see all of the help resources associated with this section, click OSttS Chapter b. Suppose (, ) is on the graph of = f(). In Eercises - 8, use Theorem.7 to find a point

More information

10. f(x) = 3 2 x f(x) = 3 x 12. f(x) = 1 x 2 + 1

10. f(x) = 3 2 x f(x) = 3 x 12. f(x) = 1 x 2 + 1 Relations and Functions.6. Eercises To see all of the help resources associated with this section, click OSttS Chapter b. In Eercises -, sketch the graph of the given function. State the domain of the

More information

Chapter 9 Review. By Charlie and Amy

Chapter 9 Review. By Charlie and Amy Chapter 9 Review By Charlie and Amy 9.1- Inverse and Joint Variation- Explanation There are 3 basic types of variation: direct, indirect, and joint. Direct: y = kx Inverse: y = (k/x) Joint: y=kxz k is

More information

MTH-112 Quiz 1 - Solutions

MTH-112 Quiz 1 - Solutions MTH- Quiz - Solutions Words in italics are for eplanation purposes onl (not necessar to write in te tests or. Determine weter te given relation is a function. Give te domain and range of te relation. {(,

More information

5.2 Properties of Rational functions

5.2 Properties of Rational functions 5. Properties o Rational unctions A rational unction is a unction o the orm n n1 polynomial p an an 1 a1 a0 k k1 polynomial q bk bk 1 b1 b0 Eample 3 5 1 The domain o a rational unction is the set o all

More information

Copyright 2006 Melanie Butler Chapter 1: Review. Chapter 1: Review

Copyright 2006 Melanie Butler Chapter 1: Review. Chapter 1: Review QUIZ AND TEST INFORMATION: The material in this chapter is on Quiz 1 and Exam 1. You should complete at least one attempt of Quiz 1 before taking Exam 1. This material is also on the final exam. TEXT INFORMATION:

More information

Calculus Chapter 1 Limits. Section 1.2 Limits

Calculus Chapter 1 Limits. Section 1.2 Limits Calculus Chapter 1 Limits Section 1.2 Limits Limit Facts part 1 1. The answer to a limit is a y-value. 2. The limit tells you to look at a certain x value. 3. If the x value is defined (in the domain),

More information

Section 2.3 Rational Numbers. A rational number is a number that may be written in the form a b. for any integer a and any nonzero integer b.

Section 2.3 Rational Numbers. A rational number is a number that may be written in the form a b. for any integer a and any nonzero integer b. Section 2.3 Rational Numbers A rational number is a number that may be written in the form a b for any integer a and any nonzero integer b. Why is division by zero undefined? For example, we know that

More information

4.2 Implicit Differentiation

4.2 Implicit Differentiation 6 Chapter 4 More Derivatives 4. Implicit Differentiation What ou will learn about... Implicitl Define Functions Lenses, Tangents, an Normal Lines Derivatives of Higher Orer Rational Powers of Differentiable

More information

Trigonometric Integrals

Trigonometric Integrals Most trigonometric integrals can be solved by using trigonometric identities or by following a strategy based on the form of the integrand. There are some that are not so easy! Basic Trig Identities and

More information